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Abstract—The problem of detecting packet flows between two
nodes in a wireless network is considered. Especially, the trans-
mission timings of two nodes are recorded, and their transmission
rates can be time-varying (piecewise constant). Based on the
timing measurements, our objective is to detect the presence of
packet flows between them.

Two different scenarios are considered; the first is that a flow
may exist in only one specific direction, and the other is that a flow
may exist in any direction. For each case, a detection algorithm
is provided, and for the latter scenario, an additional algorithm
aimed at estimating the direction of the underlying flow is
proposed. When the transmission processes are nonhomogeneous
Poisson processes, under certain conditions, our algorithms are
proved to be consistent. The algorithms are tested using the MSN
Voice over IP (VoIP) traffic and the synthetic Poisson traffic.

I. I NTRODUCTION

This paper considers detection of flows between two nodes
having time-varying transmission rates. Fig. 1 illustrates the
problem. In the wireless network,R1 andR2 may have time-
varying transmission rates, and their transmission timings are
recorded. We say that a packet flow exists fromR1 to R2, if
R1 is sending packets toR2, andR2 is forwarding them to its
neighbor. Based on the transmission timing measurements, our
objective is to detect the presence of packet flows betweenR1

andR2. The timing measurements may correspond to different
scenarios: They may represent independent transmissions of
R1 and R2 with no packet flow. They may have epochs
that belong to a packet flow fromR1 to R2 or vice versa.
Unsurprisingly, packet flows may exist in both directions.

Flow detection can find its application in various problems.
As illustrated in Fig. 1, using simple monitors, one may infer
about network routes and configuration. Another application
is in detection of interactive stepping stone attack [1], in
which a chain of compromised nodes (stepping stones) carry
packets between an attacker and a victim. Flow detection
can be employed to trace back the stepping stone chain, and
eventually the attacker. Fig. 2 describes a specific application
scenario where wireless transmission epochs of a wireless de-
vice (P1) and an access point (A2) are recorded. By detecting
a packet flow fromP1 to A2, one can check whetherP1 is
communicating with any device in the area covered byA2.
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Fig. 1. Transmission timings ofR1 andR2 are measured. In this example,
a packet flow exists fromR1 to R2. However, detecting its presence based
on the timing measurements is nontrivial.
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Fig. 2. A1 and A2 are access points connecting wireless devices to the
network. If P1 sends packets toP2, a packet flow should exist fromP1 to
A2.

Transmission timings can be easily measured by simple
monitoring devices. However, timing-based flow detection is
certainly a nontrivial problem, partly because we do not
assume any information from packet headers1: only the trans-
mission timings are used. Another source of difficulty is the
presence of noise-like epochs. Even when a packet flow exists
from R1 to R2, R1 andR2 may have many transmissions that
do not belong to the packet flow. They may multiplex trans-
missions of intersecting packet flows involving other nodes, or
possibly superpose dummy transmissions to confuse detection
systems. We refer to the epochs of such transmissions aschaff
epochs.

Since we are entirely relying on timing measurements, we
need to impose certain constraint on packet flows, so that
transmission epochs of packet flows are distinguishable from
independent transmissions. Hence, we assume a maximum
end-to-end delay constraint∆ on flow packets. Such constraint
can be found in latency-sensitive applications such as VoIP,
video conference, etc.

We study flow detection under two different scenarios. The
first scenario is that a packet flow can exist in only one

1In practice, header information may be available in many cases,and
in such cases it should be exploited to enhance the detectionperformance.
However, it is beyond the scope of this paper, and we assume that header
information is not available due to encryption or some other technical issues.



specific direction, and the direction is priorly known. The
second scenario is that packet flows may exist in either or
both directions between two nodes. Without prior knowledge
of flow direction, most problems fall into the second scenario.
However, depending on applications, some problems may fit
into the first scenario; the problem described in Fig. 2 is a good
example. We refer to flow detection under the first scenario as
detection ofunidirectional flow, and flow detection under the
second scenario as detection ofgeneral flow.

A. Related Work

Detection of unidirectional flow has been actively studied
in the intrusion detection literature, especially in the field of
stepping-stone detection [1]. To deal with encrypted traffic,
many researchers assumed the absence of header information
and entirely relied on timing measurements. Donohoet al.
[2] were the first to employ the flow model with a maximum
delay constraint. Their wavelet analysis was shown to be able
to detect a flow if the chaff part is independent of the flow part
and the sample size is large enough. Following their seminal
work, numerous practical detectors were developed to detect
flows with a maximum delay constraint (see references in [3]).
The counting-based method of Blumet al. [4] was shown to be
able to detect a flow in arbitrary chaff if the fraction of chaff
is lower than certain level. Also, the matching-based detector
of He and Tong [3] can deal with arbitrary chaff insertion.
Under the Poisson traffic assumption, it was shown that there
exists a thresholdτ such that if fraction of chaff is less than
τ , a flow is detectable; otherwise, a flow can be hidden by
proper chaff insertion. Furthermore, in [5], their matching-
based detector was proved to be able to detect a flow with
any positive rate if the chaff parts are independent Poisson
processes. Motivated by [3], Kim and Tong [5] proposed a
matching-based algorithm for detection of a general flow.

To the best of our knowledge, most previous studies did
not give enough attention to the traffic with time-varying rates;
their detectors may fail if the traffic has time-varying rates and
simultaneously contains a large amount of chaff transmissions.
Even though Blumet al. [4] studied the nonhomogeneous
Poisson traffic case, the algorithm was analyzed only for the
non-chaff case, and even the insertion of independent chaff
may cause the algorithm to fail.

Recently, Kim and Tong [6] proposed a detection scheme
that is especially designed to deal with traffic with time-
varying rates. In this paper, we further develop the idea in
[6] to study a wider range of problems.

B. Summary of Contributions and Organization

In [6], Kim and Tong proposed Adaptive Flow Detector
(AFD), an algorithm for detecting a general flow in traffic
with time-varying rates. In this paper, we extended their idea to
propose a more general detection scheme. Fig. 3 describes our
detection scheme for time-varying traffic. The scheme consists
of three parts: detection of unidirectional flow, detectionof
general flow, and estimation of flow direction. We present
algorithms for detection of unidirectional flow and estimation
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Fig. 3. If we know that a flow can exist in only one priorly knowndirection,
a unidirectional flow detector is employed to detect a flow in that specific
direction. Otherwise, a general flow detector first detects the presence of flows;
and if a flow exists, we estimate its direction.

of flow direction. For detection of general flow, we employ
AFD in [6].

Under the nonhomogeneous Poisson traffic assumption and
some additional conditions, our algorithms are proved to be
consistent. We tested the algorithms using the MSN VoIP
traffic and the synthetic nonhomogeneous Poisson traffic; the
results are promising. Even though the algorithms are analyzed
under the nonhomogeneous Poisson traffic assumption, the
intuition behind the algorithms suggests that they may perform
well on more general network traffic; the test results using the
MSN VoIP traffic are supportive to this claim.

Due to the space limit, all the results are stated without
proof. The reader may refer to the below for the details:
http://acsp.ece.cornell.edu/members/jinsub/allerton10.html

The rest of the paper is organized as follows. Section II
first introduces mathematical formulation of flow detection
problems. Section III considers detection of unidirectional
flow, and Section IV considers detection of general flow
and estimation of flow direction. In each section, algorithms
are presented with consistency results. After that, Section V
follows with supporting numerical results, and Section VI
finally concludes the paper with remarks.

II. M ATHEMATICAL FORMULATION

A. Notations and Definitions

We model the transmission epochs of each node by a point
process on[0, ∞). An upper case bold letterS denotes a
point process, andS(i) is the ith point of S. A lower case
bold letters denotes a realization of a point processS, and
s(i) is a realization ofS(i). In addition,S denotes a set of
elements in a realizations: S = {s(i), i ≥ 1}. We define a
superpositionoperator

⊕

as follows: for a pair of increasing
sequences(ai)

∞
i=1 and (bi)

∞
i=1, (ai)

∞
i=1 ⊕ (bi)

∞
i=1 , (ci)

∞
i=1,

whereci is the ith smallest element among all the elements
of two sequences2

We can formally define aunidirectional flowas below.

Definition 2.1: An ordered pair of processes(F1, F2) is a
unidirectional flow, if for every realization(f1, f2), there exists
a bijectiong : F1 → F2 satisfyingg(s)−s ∈ [0,∆], ∀s ∈ F1.

2Order all the elements of(ai)
∞
i=1 and (bi)

∞
i=1 in an increasing order

without removing any of them; some numbers might appear multiple times if
they appeared multiple times in two sequences. Then,ci is the ith element
in the ordered sequence.



The bijection condition means packet conservation, and
g(s) − s ∈ [0,∆] means that each transmission satisfies
causality and the maximum delay constraint. Based on the
above definition, we define ageneral flowas below.

Definition 2.2: A pair of processes(F1, F2) is a general
flow, if Fi can be decomposed intoF12

i andF
21
i (i.e., Fi =

F
12
i ⊕ F

21
i , i = 1, 2), such that(F12

1 , F
12
2 ) and (F21

2 , F
21
1 )

are unidirectional flows.

A general flow, as the name stands, is more general in terms
of directionality, compared to a unidirectional flow; it may
consist of two unidirectional flows with opposite directions,
or it may be just a unidirectional flow3 in certain direction.

B. Problem Statement

Let S1 andS2 denote the transmission processes of nodes
R1 andR2, respectively. In each problem, we assume the same
marginal distributions ofS1 andS2 for all hypotheses; in other
words, one cannot make a decision relying on the marginal
distribution ofSi.

1) Detection of unidirectional flow:Suppose it is priorly
known that a packet flow may exist only fromR1 to R2.
Given the measurements(si)

2
i=1 in [0, t], we test the following

hypotheses:

H0 : S1 andS2 are independent
H1 : Si = Fi ⊕ Wi, i = 1, 2.

(F1, F2) is a unidirectional flow
(1)

where underH1

• F1 andF2 have non-zero rates4.
• F1 andF2 are not independent.
• (F1,F2), W1, andW2 are independent.
H1 represents the case that the traffic contains a unidirec-

tional flow, andWi denotes the chaff part ofSi.
The listed assumptions are needed to make the problem

well-posed; they are needed to guarantee thatH0 andH1 are
disjoint. For instance, without the third assumption, it can be
shown that independent homogeneous Poisson processesS1

andS2 satisfy bothH0 andH1 statements.
2) Detection of general flow:Suppose that a packet flow

may exist in either or both directions betweenR1 and R2.
Given the measurements(si)

2
i=1 in [0, t], we test the following

hypotheses:

H0 : S1 andS2 are independent

H1 : Si = Fi ⊕ Wi, i = 1, 2.

(F1, F2) is a general flow

(2)

where underH1

• F1 andF2 have non-zero rates.
• F1 andF2 are not independent.
• (F1,F2), W1, andW2 are independent.

3Definition 2.2 implies that a unidirectional flow(F1, F2) is also a
general flow, because we can setF21

1 andF21
2 to be empty sequences

4A point process F is said to have non-zero rate if∃δ s.t.
lim inft→∞

NF([0, t])
t

> δ, a.s., whereNF([0, t]) is the number of points
of F in [0, t].

3) Estimation of flow direction:Suppose thatS1 and S2

satisfy theH1 statement and the assumptions in the hypothesis
testing (2). Given the measurements(si)

2
i=1 in [0, t], we test

the following hypotheses:

H0 : Si = F
12
i ⊕ Wi, i = 1, 2.

(F12
1 , F

12
2 ) is a unidirectional flow

H1 : Si = F
21
i ⊕ Wi, i = 1, 2.

(F21
2 , F

21
1 ) is a unidirectional flow

H2 : Si = (F12
i ⊕ F

21
i ) ⊕ Wi, i = 1, 2.

(F12
i )2i=1, (F21

i )1i=2 : unidirectional flows

(3)

where

• F
12
1 andF

21
2 have non-zero rates.

• F
12
1 andF

12
2 are not independent;F21

2 andF
21
1 are not

independent.
• (F12

i )2i=1, (F21
i )1i=2, W1, andW2 are independent.

H0 and H1 represent the case that the traffic contains
a unidirectional flow in only one direction.H2 represents
the case that the traffic contains unidirectional flows in both
directions.

III. D ETECTION OFUNIDIRECTIONAL FLOW

In this section, we study detection of unidirectional flow,
the binary hypothesis test (1) in Section II-B1. We first
introduce the matching-based detector in [3] as a solution for
the homogeneous Poisson traffic case. Then, we present our
detection algorithm for the traffic with time-varying rates.

A. Relative Flow Rate

In timing-based detection, chaff epochs are analogous to
noise in signal detection problems. UnderH1, similar to
signal-to-noise ratio, we use a metric calledrelative flow rate
to measure the relative strength of the flow with respect to the
whole traffic.

Definition 3.1: Suppose that a unidirectional flow(F1, F2)
is contained in(Si)

2
i=1. Let (fi)

2
i=1 and (si)

2
i=1 denote the

realizations of(Fi)
2
i=1 and(Si)

2
i=1 respectively. Then,relative

flow rateof (f1, f2) is defined as

Rf(t) ,

2
∑

i=1

|Fi ∩ [0, t]|

2
∑

i=1

|Si ∩ [0, t]|

,

Rf , lim inf
t→∞

Rf(t)

(4)

In other words, Rf(t) is the fraction of the unidirectional
flow epochs in the measurements up to timet, and Rf is its
limiting value ast increases to infinity.
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Fig. 4. Bounded-Greedy-Match [4]

B. Homogeneous Poisson Traffic: Detect-Bounded-Delay

This section introduces Detect-Bounded-Delay (DBD), a
matching-based algorithm in [3].

DBD calculates an upper bound̄Rf(t) of Rf(t), and com-
pares it to a thresholdτ to make a decision. Specifically, DBD
takes the following form:

{

declareH0 if R̄f(t) < τ

declareH1 otherwise
(5)

whereR̄f(t) is defined as

max
fi, wi :

si = fi ⊕wi ∼ H1

2
∑

i=1

|Fi ∩ [0, t]|

2
∑

i=1

|(Fi ∪ Wi) ∩ [0, t]|

wheresi = fi ⊕ wi ∼ H1 denotes the constraint that(f1, f2)
is a realization5 of a unidirectional flow.

To evaluateR̄f(t), DBD employs Bounded-Greedy-Match
(BGM), a matching algorithm by Blumet al. in [4]. BGM
was shown to find a maximum number of matches between
S1 andS2, that satisfy causality and the delay constraint. Given
the measurements(si)

2
i=1, BGM with ∆ operates as follows.

1) Let l1 be the earliest epoch inS1. Match l1 with the
earliest unmatched epoch in[l1, l1 + ∆] in S2.

2) Move to the second epochl2 in S1. Match l2 with the
earliest unmatched epoch in[l2, l2 + ∆] in S2. Repeat
this step to find matches for all the epochs inS1.

3) After the trial to match the last epoch inS1, label all the
unmatched epochs inS1 ∪ S2 as chaff, and terminate.

Fig. 4 illustrates the operation of BGM. BGM first tries to
find a match fort1. Sincet2 is the earliest unmatched epoch
in [t1, t1 +∆]∩S2, t1 is matched tot2. Then, BGM searches
for a match fort3. However,t2 is the only epoch in[t3, t3 +
∆]∩S2, and it is already matched witht1. Hence, BGM leaves
t3 unmatched, and moves tot5.

The implementation of BGM is given in Table I. Its com-
putational complexity is linear with respect to the sample size.

The intuition behind DBD is that̄Rf(t) tends to be bigger
when (Si)

2
i=1 contains a unidirectional flow6, compared to

when S1 and S2 are independent. If underH0, as t grows,
R̄f(t) converges to or stay close toτ0 with high probability,

5In other words,∃g : F1 → F2, s.t. g(s) − s ∈ [0, ∆], ∀s ∈ F1.
6Note that underH1, the optimality of BGM guarantees thatR̄f(t) is at

least greater than Rf(t).

TABLE I
BOUNDED-GREEDY-MATCH [4]

BGM(s1, s2, ∆):

1: m = n = 1;
2: while m ≤ |S1| andn ≤ |S2|
3: if s2(n) < s1(m)
4: s2(n) is chaff; n← n + 1;
5: else ifs2(n) > s1(m) + ∆
6: s1(m) is chaff; m← m + 1;
7: else
8: matchs1(m) with s2(n);
9: m← m + 1; n← n + 1;
10: end
11: end
12: marks1(i), s2(j) with m ≤ i, n ≤ j as chaff;

13: R̄f ←
|{Matched epochs}|

|S1|+ |S2|
;

14: returnR̄f

we can set the thresholdτ to be slightly larger thanτ0 (i.e.,
τ = τ0 + ǫ) and make the false alarm probability reasonably
small for a larget; ǫ should be chosen carefully to balance
the false alarm probability and the miss detection probability.

Finding suchτ0 is nontrivial, because it requires us to infer
the distribution ofSi. In [3], a closed-form expression forτ0 is
provided under the homogeneous Poisson traffic assumption.
If S1 andS2 are homogeneous Poisson processes with ratesλ1

andλ2, R̄f(t) underH0 converges almost surely to a constant
τ0(λ1, λ2), which is a function ofλ1 and λ2. Based on this
result, Kim and Tong [5] proved that if underH1, W1 and
W2 are independent homogeneous Poisson processes, for any
ρ ∈ (0, 1) we can find a small positiveǫ such that DBD
with a thresholdτ0(λ1, λ2) + ǫ can consistently detect any
unidirectional flow with Rf ≥ ρ.

However, if the traffic is allowed to have time-varying rates,
we face a great difficulty in setting a thresholdτ . The analyses
in [3] and [5] are entirely based on the homogeneous Poisson
traffic assumption, in which one can infer the distribution of
Si based on its average rate|Si∩[0, t]|

t
. However, even a small

deviation from the homogeneous Poisson traffic assumption
would make the distribution inference extremely difficult.

As a simple example of traffic with time-varying rates, sup-
pose thatS1 andS2 are nonhomogeneous Poisson processes.
Unlike estimating rates in homogeneous case, estimating local
intensities of nonhomogeneous Poisson processes is nontrivial.
Hence, it is difficult to infer the distribution ofSi. This leads
to the difficulty in estimating the behavior of̄Rf(t) underH0,
and eventually the difficulty in setting a thresholdτ .

To overcome such limitations of DBD, in the following
section we introduce an algorithm to deal with the traffic with
time-varying rates.

C. Unsupervised Nonparametric Flow Detector:
Unidirectional Flow

This section presents a unidirectional flow detector called
Unsupervised Nonparametric Flow Detector (UNFD). The
name represents the characteristics of our problem. The prob-
lem is unsupervised in the sense that without any training data,



we should classify the type of relation between a pair of trans-
mission processes. In addition, it is nonparametric because
we do not assume any specific distribution on transmission
processes.

UNFD is similar to DBD in that it compares̄Rf(t) to certain
threshold for making a decision. However, in contrast to DBD,
UNFD gives a specific method to set a threshold: it generates
‘H0-like’ traffic, and run BGM on it to calculate a threshold.
Specifically, UNFD has the following form:

{

declareH0 if R̄f(t) < τ̄(t) + ǫ

declareH1 otherwise
(6)

whereτ̄(t) is obtained by running BGM on theH0-like traffic,
which will be explained soon.

Recall that if underH0, as t increases,̄Rf(t) converges to
or stay nearτ0 with high probability, then we can setτ of
DBD to be slightly bigger thanτ0. In UNFD, τ̄(t) plays a
role of an estimate ofτ0, and a small positiveǫ gives a slight
gap between the threshold andτ̄(t).

To obtain τ̄(t), we first employ Independent Traffic Ap-
proximation (ITA) in [6] to generate theH0-like traffic. ITA
is a heuristic to generate theH0-like traffic based on the
measurements. It has two parameters: the synthesis window
sizeWS and the gapα (α ≥ ∆) between subsequent synthesis
windows7. Fig. 5 is describing the procedure. ITA relies on the
intuition that if α is large enough, thenS1 epochs inA1 and
S2 epochs inB1 will tend to be uncorrelated, even when a
unidirectional flow exists. Given the measurements(si)

n
i=1 in

[0, t], ITA with (WS , α) operates as follows [6]:

1) (s̄i)
2
i=1 denotes the resulting data. Initially,s̄1 and s̄2

contain no epoch.
2) Take the epochs ofs1 in [0, WS ], and add them tōs1.
3) Take the epochs ofs2 in [WS + α, 2WS + α], subtract

WS + α from the epochs, and add them tos̄2.
4) For i = 1, 2, . . . , ⌊ t

2(WS+α)⌋ − 1:

a) Take the epochs ofs1 in [2i(WS + α), 2i(WS +
α) + WS ], subtracti(WS + 2α) from the epochs,
and add them tōs1.

b) Take the epochs ofs2 in [(2i+1)(WS +α), (2i+
1)(WS+α)+WS ], subtracti(WS+2α)+(WS+α)
from the epochs, and add them tos̄2.

The sample size of(s̄i)
2
i=1 can be doubled by a heuristic

referred to as ITAh in [6]. Fig. 6 illustrates its operation.
Given the measurements(si)

2
i=1, UNFD with ǫ incorporates

ITA and works as follows:

1) Run BGM on(si)
2
i=1: R̄f(t) denotes the return value.

2) Run ITA with (WS , α) (α ≥ ∆) on (si)
2
i=1 to generate

(s̄i)
2
i=1, and run BGM on(s̄i)

2
i=1: τ̄(t) denotes the

return value.
3) If R̄f(t) ≥ τ̄(t) + ǫ, declareH1; otherwise, declareH0.

7WS and α need to be properly adjusted for different traffic char-
acteristics. Unless some information is available for parameter setting, we
recommend to setα = ∆ andWS ∈ [10α, 20α].
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Fig. 5. Independent Traffic Approximation [6]: TheWS -second intervalsA1,
A2, B1, andB2 are cut from the measurements and assembled to generate
theH0-like traffic.
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Fig. 6. ITAh [6]: Unlike ITA, ITAh does not throw awayA2, A4, . . . and
B2, B4, . . .. Here,A1, A2, A3, . . . andB1, B2, B3, . . . are cut from the
measurements and assembled to generateH0-like traffic.

The computational complexity of UNFD is linear with
respect to the sample size, because BGM and ITA, its main
components, have linear complexity.

SinceS̄i is obtained by sequentially sampling subintervals
of Si and assembling them together, it is expected to retain
several traffic characteristics ofSi (e.g., the trend in rate
changes, interarrival distribution, etc.) in some degree.Further-
more, S̄1 and S̄2 are approximately uncorrelated. Therefore,
depending on the distribution of(Si)

2
i=1, the return value of

BGM on (s̄i)
2
i=1, which is τ̄(t), may well approxmiatēRf(t)

underH0. Hence, we suggest that UNFD would perform well
on quite general network traffic, not restricted to nonhomoge-
neous Poisson traffic assumed in our consistency result.

Under the nonhomogeneous Poisson traffic assumption and
some additional conditions, the below theorem states that a
unidirectional flow with any positive rate can be consistently
detected by UNFD with properǫ.

Theorem 3.1:Suppose thatS1 andS2 are nonhomogeneous
Poisson processes. For anyω ∈ (0, 1), there exists anǫ such
that UNFD with ǫ can consistently detect8 any unidirectional
flow with Rf ≥ ω, if the following assumptions hold:
• Under H1, F1, W1, and W2 are nonhomogeneous

Poisson processes, andF2 = sort{F1(i) + αi, i ≥ 1}
whereαi ∈ [0,∆] a.s. and{αi} ⊥⊥ F1, W1.

• Let ~λ(t) = (λ1(t), λ2(t), λf (t)) denote the local inten-
sities9 of S1, S2, andF1. λ1, λ2, andλf are piecewise
constant, and~λ(t) can take values in the finite set
Λ , {~λ(k) = (λ

(k)
1 , λ

(k)
2 , λ

(k)
f ), 1 ≤ k ≤ M}. ~λ(t)

andΛ are deterministic and unknown.

• Let ρk(t) (1 ≤ k ≤ M) denote the fraction of time in
[0, t] that ~λ(t) = ~λ(k). As t increases,ρk(t) converges
to a constantρk, 1 ≤ k ≤ M .

• Let c(t) denote the number of times that~λ(t) changes in
[0, t]. As t increases,c(t)

t
converges to 0.

8A detector is said to beconsistent, if its false alarm probability and miss
detection probability decreases to 0 as the sample size grows.

9If the measurements come fromH0, thenλf (t) = 0, ∀t.



IV. D ETECTION OFGENERAL FLOW

In this section, we study detection of general flow and esti-
mation of flow direction, which are mathematically formulated
in Section II-B2 and Section II-B3.

A. Unsupervised Nonparametric Flow Detector:
General Flow

This section presents a modification of UNFD for general
flow detection10. We denote this detector by UNFD-G, where
‘G’ stands for general flow.

In this section, Definition III-A ofrelative flow ratewill be
extended to represent the relative strength of a general flow;
Rf(t) denotes the fraction of the general flow epochs in the
measurements up to timet, and Rf is lim inft→∞ Rf(t).

For UNFD-G, we replace every BGM in the steps of UNFD
with Bidirectional-Bounded-Greedy-Match (BiBGM) [5], the
bidirectional version of BGM. Similar to BGM, underH1,
BiBGM gives the below upper bound̄Rf(t) of Rf(t),

max
fi, wi :

si = fi ⊕wi ∼ H1

2
∑

i=1

|Fi ∩ [0, t]|

2
∑

i=1

|(Fi ∪ Wi) ∩ [0, t]|

wheresi = fi ⊕ wi ∼ H1 denotes the constraint that(f1, f2)
is a realization11 of a general flow.

Given the measurements(si)
2
i=1, BiBGM with ∆ works as

follows [5]:

1) Let s be the earliest epoch inS1 ∪S2. Matchs with the
first unmatched epoch in[s, s + ∆] in the other node.

2) Move to the next unmatched epocht in S1 ∪ S2. Match
t with the first unmatched epoch in[t, t + ∆] in the
other node. Keep moving to the next unmatched epoch
in S1∪S2 and finding its match based on the same rule.

3) After the trial to match the last unmatched epoch, label
all the unmatched epochs as chaff and terminate.

For the detailed description of BiBGM, see [5]. Given the
measurements(si)

2
i=1, UNFD-G with ǫ works as follow [6]:

1) Run BiBGM with∆ on (si)
2
i=1: R̄f(t) denotes the return

value.
2) Run ITA with (WS , α) (α ≥ ∆) on (si)

2
i=1 to generate

(s̄i)
2
i=1, and run BiBGM on(s̄i)

2
i=1: τ̄(t) denotes the

return value.
3) If R̄f(t) ≥ τ̄(t) + ǫ, declareH1; otherwise, declareH0.

Under the nonhomogeneous Poisson traffic assumption and
some additional conditions, the following theorem implies
that a general flow with any positive rate can be consistently

10We already presented this algorithm in [6] as Adaptive Flow Detector.
To better describe its connection with UNFD, we will illustrate this algorithm
as a modification of UNFD.

11In other words,fi can be partitioned intof12
i

and f21
i

such that there
exist bijectionsg1 : F12

1 → F12
2 andg2 : F21

2 → F21
1 satisfyingg1(s)−s ∈

[0, ∆], ∀s ∈ F12
1 andg2(s) − s ∈ [0, ∆], ∀s ∈ F21

2 .

detected by UNFD-G with properǫ. This is a stronger result
than the consistency result given in Theorem 3.1 in [6].

Theorem 4.1:Suppose thatS1 andS2 are nonhomogeneous
Poisson processes. For anyω ∈ (0, 1), there exists anǫ such
that UNFD-G withǫ can consistently detect any general flow
with Rf ≥ ω, if the following assumptions hold:
• Under H1, Si = (F12

i ⊕ F
21
i ) ⊕ Wi. F

12
1 , F

21
2 , W1,

andW2 are independent nonhomogeneous Poisson pro-
cesses12, F

12
2 = sort{F12

1 (i) + αi, i ≥ 1} where αi ∈
[0,∆] a.s., andF21

1 = sort{F21
2 (i) + βi, i ≥ 1} where

βi ∈ [0,∆] a.s..
{αi} ⊥⊥ W1, {βi} ⊥⊥ W2, and⊥⊥ {αi}, {βi}, F

12
1 , F

21
2 .

• Let ~λ(t) = (λ1(t), λ2(t), λf1(t), λf2(t)) denote the lo-
cal intensities13 of S1, S2, F12

1 , andF
21
2 . λ1, λ2, λf1, and

λf2 are piecewise constant, and~λ(t) can take values in
the finite setΛ , {~λ(k) = (λ

(k)
1 , λ

(k)
2 , λ

(k)
f1 , λ

(k)
f2 ), 1 ≤

k ≤ M}. ~λ(t) andΛ are deterministic and unknown.

• Let ρk(t) (1 ≤ k ≤ M) denote the fraction of time in
[0, t] that ~λ(t) = ~λ(k). As t increases,ρk(t) converges
to a constantρk, 1 ≤ k ≤ M .

• Let c(t) denote the number of times that~λ(t) changes in
[0, t]. As t increases,c(t)

t
converges to 0.

B. Estimation of Flow Direction

This section considers estimation of flow direction, which
is mathematically formulated in Section II-B3. The measure-
ments are assumed to contain a general flow, and our objective
is to estimate the direction of the underlying flow.

We propose an algorithm called Unsupervised Nonparamet-
ric Direction Estimator (UNDE). UNDE tests whether a uni-
directional flow exists in a specific direction. In other words,
UNDE tests{H0, H2} versusH1 for a unidirectional flow
from R1 to R2, and{H1, H2} versusH0 for a unidirectional
flow from R2 to R1. The specific steps to estimate directions
are as follows:

1) Run UNDE to test{H0, H2} versusH1: if the decision
is H1, declareH1 and terminate; otherwise, go to 2.

2) Run UNDE to test{H1, H2} versusH0: if the decision
is H0, declareH0; otherwise, declareH2.

Suppose we want to test{H0, H2} versusH1. Given the
measurements(si)

2
i=1 in [0, t], UNDE with ǫ executes the

following steps:
1) Increase all the epochs ins1 by ∆

2 .
2) Divide the observation interval into∆2 -second subinter-

vals. LetAi denote theith subinterval,(∆
2 (i − 1), ∆

2 i].
3) AssembleAis to generate four data: fork = 1 : 1 : 4,

assemble{A4n+k, n ≥ 0} to generate(s(k)
i )2i=1. (Refer

to Fig. 7)

4) For k = 1 : 1 : 4, run ITA with (WS , α) (α ≥ ∆
2 ) on

(s
(k)
i )2i=1 to generate(s̄(k)

i )2i=1.

12EitherF12
1 or F21

2 may have zero rate if the underlying general flow is
a unidirectional flow.

13If the measurements come fromH0, thenλf1(t) = λf2(t) = 0, ∀t.
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Fig. 7. Steps of Unsupervised Nonparametric Direction Estimator: Some
of the matches (blue arrows pointing downward) corresponding to the packet
flow from R1 to R2 survives in(s

(k)
i

)2
i=1, k = 1, . . . , 4, but the matches

(red arrows pointing upward) corresponding to the packet flow from R2 to
R1 are all removed.

5) For k = 1 : 1 : 4, run BiBGM with ∆
2 on (s

(k)
i )2i=1 and

(s̄
(k)
i )2i=1; R̄

(k)

f (t) and τ̄ (k)(t) denote the return values.

6) If

∑4
k=1 R̄

(k)

f (t)

4
<

∑4
k=1 τ̄ (k)(t)

4
+ ǫ, declareH1;

otherwise, declare{H0, H2}.
Fig. 7 illustrates the first three steps of UNDE, which are

aimed at removing the packet flow fromR2 to R1 if it exists.
Suppose thats2(i2) − s1(i1) ∈ [0,∆] and s1(j1) − s2(j2) ∈
[0,∆]. Then, once the epochs ins1 are all increased by∆2 ,
s2(i2) − s1(i1) ∈ [−∆

2 , ∆
2 ] and s1(j1) − s2(j2) ∈ [∆2 , 3∆

2 ].
Hence, after the chopping,s1(i1) and s2(i2) may belong to
the sameAi, but s1(j1) and s2(j2) will belong to different
intervalsAi andAj with |i− j| ∈ {1, 2, 3}. This implies that,
after assembling, the matches corresponding to the packet flow
from R1 to R2 may survive in(s

(k)
i )2i=1, k = 1, . . . , 4, with

some probability, but the matches corresponding to the packet
flow from R2 to R1 are completely removed. In addition, if
a match(a, b) corresponding to the packet flow fromR1 to
R2 survives in(s

(k)
i )2i=1 for somek, it satisfies|a − b| < ∆

2 .
Therefore, we can detect the unidirectional flow fromR1 to
R2 by detecting the general flow with delay constraint∆

2 in
(s

(k)
i )2i=1, k = 1, . . . , 4; this is the objective of the step 4, 5,

and 6.
Under the nonhomogeneous Poisson traffic assumption and

some additional conditions, the following consistency result
implies that if a unidirectional flow with any positive rate
exists in a specific direction, then UNDE with properǫ on
that direction can consistently detect its presence.

Theorem 4.2:Suppose thatS1 andS2 are nonhomogeneous
Poisson processes. For anyω ∈ (0, 1), there exists anǫ such
that UNDE with ǫ on a specific direction can consistently
detect the presence of a unidirectional flow with Rf ≥ ω in
that direction, if the following assumptions hold:
• All the assumptions listed in Theorem 4.1 hold.
• {αi} is an i.i.d. sequence;{βi} is an i.i.d. sequence.

• Pr(α1 ∈ [∆2 − x, ∆− x]) andPr(β1 ∈ [∆2 − x, ∆− x])
are constant14 for x ∈ [0, ∆

2 ].

V. NUMERICAL RESULTS

A. Simulation Results: Synthetic Poisson Traffic

We first tested the performance of UNFD using the synthetic
nonhomogeneous Poisson traffic.S1 and S2 are set to be
nonhomogeneous Poisson processes with piecewise constant
ratesλ1(t) andλ2(t). UnderH1, we generated a unidirectional
flow (F1, F2) from R1 to R2. F1 is a nonhomogeneous
Poisson process with a piecewise constant rateλf (t). F2 is
generated by adding i.i.d. random delays to the epochs of
F1; delays are uniformly distributed in[0, ∆]. W1 andW2

are also generated as independent nonhomogeneous Poisson
processes, and they are independent of the flow part. In each
measurements,(λ1(t), λ2(t), λf (t)) is piecewise constant,
and it changes twice; it takes different values for the first
third, the second third, and the last third of the measurements.
In each measurements,(λ1(t), λ2(t), λf (t)) takes one of the
four different rate changes15 with equal probability. ForH0, S1

andS2 are generated as independent nonhomogeneous Poisson
processes whose rates change in the same manner as inH1.

Fig. 8 shows the ROC curves of UNFD. ROC curves are
obtained by increasingǫ of UNFD from 0 to 1 by 0.01, and
plotting the false alarm probability (x-axis) and the detection
probability (y-axis) of each case. The curves with circles are
ROCs for the case that UNFD employs ITAh, and the curves
with rectangles are ROCs when UNFD employs ITA. It is
evident from the plot that ITAh, a heuristic to double the
sample size of(s̄i)

2
i=1, gives better ROCs. For comparison,

UNFD-G was also tested on the same data assuming no prior
information about flow direction is available. The curves with
plus signs are ROCs of UNFD-G with ITAh. It requires much
larger sample size to obtain a similar ROC curve with UNFD,
due to the lack of direction information. In all cases, as the
sample size grows, ROC curves move closer to the upper
left corner implying better detection performance. In all other
numerical results to be presented, the algorithms employed
ITAh instead of ITA, unless otherwise specified.

For testing UNDE,S1 andS2 are generated to satisfy one
of the three hypotheses (H0, H1, andH2 in (3)) with equal
probability. In every hypothesis,(λ1(t), λ2(t)) is (8, 8) for
the first half of the measurements, and(10, 10) for the second
half of the measurements. In each hypothesis, a unidirectional
flow ((F12

1 , F
12
2 ) or (F21

2 , F
21
2 )) with the constant rateλf is

generated in the same way as in the simulation for UNFD. We
ran UNDE on both directions to make a decision. Fig. 9 shows
the plots of the error probability versus the sample size16 for
different λf s. As expected, the biggerλf results in a smaller

14A uniform distribution on[0, ∆] satisfies this condition.
151. (10, 10, 6) → (10, 20, 6) → (20, 20, 6).

2. (6, 10, 5) → (10, 10, 5) → (12, 12, 7).
3. (25, 20, 15) → (20, 20, 15) → (20, 16, 15).
4. (15, 10, 5) → (25, 20, 15) → (25, 25, 15).

16An error occurs if our decision is different from the true hypothesis.
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error probability. The error probability displays exponential
decay as the sample size grows.

B. Experimental Results: MSN VoIP Traffic

UNFD was tested using the real-world MSN VoIP traffic,
which is a representative example of traffic with an end-to-
end delay constraint. As illustrated in Fig. 2, we located one
laptop (P1) in a room covered by the access pointA1, and
two laptops (P2 and P3) in a different room covered byA2.
We measure17 the transmission epochs ofP1 (s1) and those of
A2 (s2), and our objective is to detect the VoIP call between
P1 and any laptop in the area covered byA2. Under H1,
P1 has an MSN VoIP call withP2, and P3 downloads a
file from an FTP server with 20kB/s rate limit. UnderH0,
P1 and P2 have independent MSN VoIP calls, andP3 does
the same job as inH1. Hence,s1 consists of transmission
epochs of VoIP packets and control/management packets, and
s2 consists of transmission epochs of VoIP packets forP2,
FTP packets forP3, and control/management packets (except
beacon packets).s1 and s2 displayed time-varying rates. We
evaluated the average rates ofs1 ⊕ s2 in consecutive 1000-
second intervals, and the average rate dynamically fluctuated
between 46 and 71 epochs/sec.

Table II shows the false alarm probability and the miss
detection probability of UNFD for different sample sizes.

17Window Live Messenger 2009 (14.0.8089.726) was used for MSNVoIP
calls, and Wireshark network protocol analyzer (ver 1.2.6.) with the AirPcap
classic adaptor was used to collect the timings of wireless transmissions.

TABLE II
UNFD ON MSN VOIP TRAFFIC: WS = 2, α = ∆ = 0.15, ǫ = 0.05.

NUMBER OF EXPERIMENTS: 160, 80,AND 40 FOR SAMPLE SIZE5000,
10000,AND 20000,RESPECTIVELY.

TOTAL TRAFFIC RATES: λ1 = 26.80, λ2 = 34.93. FTPDATA RATE : 11.11.

UNFD DBD

sample size PF PM PF PM

5000 0.0750 0.0750 0 0.9875

10000 0 0.0625 0 1

20000 0 0.0250 0 1

UNFD resulted in reasonably small error probabilities. For
∆ in UNFD, we used 150ms, which is the upper bound of
acceptable end-to-end delays of VoIP packets, recommended
by ITU-T recommendation G.114 [7]. For comparison, we
also tested Detect-Bounded-Delay (DBD) [3] while using the
Poisson threshold18. The results clearly show that UNFD
outperforms DBD. DBD with the Poisson threshold does not
work for our experimental data. The results support our claim
that UNFD may perform well on traffic with more general
distribution than Poisson process.

VI. CONCLUSION

In this paper, we considered timing-based detection of
packet flows in traffic with time-varying rates. Assuming time-
varying traffic, we studied three different problems: detection
of unidirectional flow, detection of general flow, and estimation
of flow direction. For each problem, a timing-based algorithm
with linear complexity was presented with a consistency
result under the nonhomogeneous Poisson traffic assumption.
Furthermore, the algorithms were tested using the MSN VoIP
traffic and the synthetic nonhomogeneous Poisson traffic. The
test results are promising.

Even though the algorithms were analyzed under the non-
homogeneous Poisson traffic assumption, the intuition behind
the algorithms suggests that they would perform well on traffic
with more general distribution; our experimental results using
the MSN VoIP traffic support this claim.
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