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Transmission epochs

Abstract—The problem of detecting packet flows between two BRI R,
nodes in a wireless network is considered. Especially, the trans-  R:
mission timings of two nodes are recorded, and their transmission TNRIREEE,
rates can be time-varying (piecewise constant). Based on the R
timing measurements, our objective is to detect the presence of
packet flows between them.

Two different scenarios are considered; the first is that a flow Fig. 1. Transmission timings aR; and R, are measured. In this example,
may exist in only one specific direction, and the other is that a flow a packet flow exists froni?; to Ra. However, detecting its presence based
may exist in any direction. For each case, a detection algorithm ©n the timing measurements is nontrivial.
is provided, and for the latter scenario, an additional algorithm
aimed at estimating the direction of the underlying flow is
proposed. When the transmission processes are nonhomogensou
Poisson processes, under certain conditions, our algorithms are
proved to be consistent. The algorithms are tested using the MSN
Voice over IP (VoIP) traffic and the synthetic Poisson traffic.
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I. INTRODUCTION

This paper considers detection of flows between two nodesp, _tt tra t
having t|me—vary|rjg transmission rates. Fig. 1 '"usma_'the Fig. 2. A; and A> are access points connecting wireless devices to the
problem. In the wireless networl®; and R, may have time- network. If P, sends packets t&%, a packet flow should exist fronP; to
varying transmission rates, and their transmission tisiage 2-

recorded. We say that a packet flow exists frémto Ry, if  Transmission timings can be easily measured by simple
Ry is sending packets t&5, and I, is forwarding them to its monjtoring devices. However, timing-based flow detectisn i
neighbor. Based on the transmission timing measuremaeunts, Eertainly a nontrivial problem, partly because we do not
objective is to detect the presence of packet flows betw&en z5syme any information from packet headeosly the trans-
andR,. The timing measurements may correspond to differepfission timings are used. Another source of difficulty is the
scenarios: They may represent independent transmissfong,@sence of noise-like epochs. Even when a packet flow exists
R, and R, with no packet flow. They may have epoch§iom R, to R,, R, and R, may have many transmissions that
that belong to a packet flow fron®; to R, or vice versa. (g not belong to the packet flow. They may multiplex trans-
Unsurprisingly, packet flows may exist in both directions.  mjssions of intersecting packet flows involving other noaes
Flow detection can find its application in various problem%ossimy superpose dummy transmissions to confuse detecti
As illustrated in Fig. 1, using simple monitors, one may infesystems. We refer to the epochs of such transmissionkats
about network routes and configuration. Another applicatiqepochs
is in detection of interactive stepping stone attack [1], in Since we are entirely relying on timing measurements, we
which a chain of compromised nodes (stepping stones) cafed to impose certain constraint on packet flows, so that
packets between an attacker and a victim. Flow detectigdnsmission epochs of packet flows are distinguishable fro
can be employed to trace back the stepping stone chain, igependent transmissions. Hence, we assume a maximum
eventually the attacker. Fig. 2 describes a specific agfgita end-to-end delay constraint on flow packets. Such constraint
scenario where wireless transmission epochs of a wireless gan be found in latency-sensitive applications such as,VolP
vice (P1) and an access pointlg) are recorded. By detectingyideo conference, etc.
a packet flow fromP; to Az, one can check whethef, is  Wwe study flow detection under two different scenarios. The
communicating with any device in the area coveredhy  first scenario is that a packet flow can exist in only one

Work in this paper was sponsored by National Science Foiordat In practice, header information may be available in many cased,
under Contract CCF-0728872 and Army Research Office MURI farag in such cases it should be exploited to enhance the deteptdormance.
under award W911NF-08-1-0238. The first author was partisllpported However, it is beyond the scope of this paper, and we assunehézaler
by Samsung Scholarship. information is not available due to encryption or some othehnéal issues.



specific direction, and the direction is priorly known. The
second scenario is that packet flows may exist in either or
both directions between two nodes. Without prior knowledge
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However, depending on applications, some problems may fit I flow direction | | Rz2t0 R1
. . . . . . . tecti
into the first scenario; the problem described in Fig. 2 is@dgo general flow Flows i both

. . . irections
example. We refer to flow detection under the first scenario as No flow
detection ofunidirectional flow and flow detection under the
second scenario as detectionggneral flow Fig. 3. If we know that a flow can exist in only one priorly knowitection,

a unidirectional flow detector is employed to detect a flow iat thpecific

A. Related Work direction. Otherwise, a general flow detector first detdetspresence of flows;

and if a flow exists, we estimate its direction.

Detection of unidirectional flow has been actively studied o .
in the intrusion detection literature, especially in thadief ©Of flow direction. For detection of general flow, we employ
stepping-stone detection [1]. To deal with encrypted tr:affiAFD in [6]. ] ] .
many researchers assumed the absence of header informati¢f'der the nonhomogeneous Poisson traffic assumption and
and entirely relied on timing measurements. Donaftcal. SOM€ additional conditions, our glgonthm; are proved to be
[2] were the first to employ the flow model with a maximunfonsistent. We tested the algorithms using the MSN VoIP
delay constraint. Their wavelet analysis was shown to be aiféffic and the synthetic nonhomogeneous Poisson traffec; th
to detect a flow if the chaff part is independent of the flow pafgsults are promising. Even though the algorithms are aedly
and the sample size is large enough. Following their semirfd]der the nonhomogeneous Poisson traffic assumption, the
work, numerous practical detectors were developed to tetétuition behind the algorithms suggests that they mayqerf
flows with a maximum delay constraint (see references in [3}f€!l 0n more general network traffic; the test results usire t
The counting-based method of Bluzhal. [4] was shown to be MSN VoIP traffic are supportive to this claim. .
able to detect a flow in arbitrary chaff if the fraction of chaf Due to the space limit, all the results are stated without
is lower than certain level. Also, the matching-based detecProof. The reader may refer to the below for the details:
of He and Tong [3] can deal with arbitrary chaff insertionnttp://acsp.ece.cornell.edu/members/jinsub/alldi@dmtmi
Under the Poisson traffic assumption, it was shown that thereThe rest of the paper is organized as follows. Section II
exists a threshold such that if fraction of chaff is less thanfirst introduces mathematical formulation of flow detection
7, a flow is detectable; otherwise, a flow can be hidden t;};oblems. Section Ill considers detection of unidirecsion
proper chaff insertion. Furthermore, in [5], their matafin flow, and Section IV considers detection of general flow
based detector was proved to be able to detect a flow witRd estimation of flow direction. In each section, algorishm
any positive rate if the chaff parts are independent Poiss®ff Presented with consistency results. After that, Sectio
processes. Motivated by [3], Kim and Tong [5] proposed fgllows with supporting numerical results, and Section VI
matching-based algorithm for detection of a general flow. finally concludes the paper with remarks.

To the best of our knowledge, most previous studies did
not give enough attention to the traffic with time-varyintesa
their detectors may fail if the traffic has time-varying m8nd A. Notations and Definitions

simultaneously contains a large amount of chaff transionissi o :
. We model the transmission epochs of each node by a point
Even though Blumet al. [4] studied the nonhomogeneous
rocess on[0, co). An upper case bold lette8 denotes a

Poisson traffic case, the algorithm was analyzed only for tRE°

non-chaff case, and even the insertion of independent ch%%'m process, and(i) is th_e Zt.h point ofS_. A lower case
. . old letters denotes a realization of a point processand
may cause the algorithm to fail.

Recently, Kim and Tong [6] proposed a detection scherf?%i) is a realization ofS(¢). In addition, 8 denotes a set of

. C . . C - T~ elements in a realizatios: § = {s(i), i« > 1}. We define a
that is especially designed to deal with traffic with time- . ] ) . .
varying rates. In this paper, we further develop the idea 'Isrl#perposmomperator@ as follows: for a pair of increasing

i sequencega;)2; and (b;)72, (a:)2; @ ()72, = ()2,
[6] to study a wider range of problems. wherec¢; is theith smallest element among all the elements

B. Summary of Contributions and Organization of two sequencés

In [6], Kim and Tong proposed Adaptive Flow Detector We can formally define anidirectional flowas below.
(AFD), an algorithm for detecting a general flow in traffic Definition 2.1: An ordered pair of processé¥;, F) is a
with time-varying rates. In this paper, we extended thesaitb unidirectional flow if for every realization(f;, f), there exists
propose a more general detection scheme. Fig. 3 describes@Mijectiong : F1 — F satisfyingg(s)—s € [0,A], Vs € 1.
detection scheme for time-varying traffic. The scheme ci®isi
of three parts: detection of unidirectional flow, detectioin _ “Order all the elements ofa;)?°,; and (b;)32, in an increasing order
general flow, and estimation of flow direction. We prese ithout removing any of them; some numbers might appear multiplediif

: - o . F ey appeared multiple times in two sequences. Thens theith element
algorithms for detection of unidirectional flow and estifoat in the ordered sequence.

II. MATHEMATICAL FORMULATION



The bijection condition means packet conservation, and3) Estimation of flow direction:Suppose thas; and S,
g(s) — s € [0,A] means that each transmission satisfiestisfy the}; statement and the assumptions in the hypothesis
causality and the maximum delay constraint. Based on ttesting (2). Given the measuremerits)?_, in [0, t], we test

above definition, we define general flowas below. the following hypotheses:
Definition 2.2: A pair of processesgF,, F») is a general b '

flow, if F; can be decomposed in#6}? and F#! (i.e, F;, = Ho: Si=F oW, i=12.

F12 @ F?' i = 1, 2), such that(Fi?, Fi?) and (F3!, F%!) (F12, Fi?) is a unidirectional flow

are unidirectional flows. Hi: S;i=F1oW,, i=1,2. 3
A general flow, as the name stands, is more general in terms (F2', F?1) is a unidirectional flow 3

of directionality, compared to a unidirectional flow; it may  3,. g, = (FI2aF2l)aW,, i=1, 2.

consist of two unidirectional flows with opposite directipn (F12)2_,. (F2))L_, : unidirectional flows

or it may be just a unidirectional floin certain direction.

B. Problem Statement where

Let S; andS, denote the transmission processes of nodese F;? andF3' have non-zero rates.
Ry and Ry, respectively. In each problem, we assume the sames F}? and F3? are not independenE3' and F3' are not
marginal distributions 08, andS, for all hypotheses; in other independent.
words, one cannot make a decision relying on the marginale (F}?)%,, (F?!)/_,, W1, and W, are independent.
distribution ofS;. o Ho, and H, represent the case that the traffic contains
1) Detection of unidirectional flow:Suppose it is priorly 5 ynidirectional flow in only one directiorit, represents

known that a packet flow may exist only fromi; t0 Rz. the case that the traffic contains unidirectional flows inhbot
Given the measurements;)?_, in [0, t], we test the following jirections.

hypotheses:
Ho: S; andS; are independent I1l. DETECTION OFUNIDIRECTIONAL FLOW
Hi: S;=F,&aW,;, i=1,2. 1)

(F1, Fy) is a unidirectional flow In this section, we study detection of unidirectional flow,
the binary hypothesis test (1) in Section 1I-B1. We first
introduce the matching-based detector in [3] as a solution f
the homogeneous Poisson traffic case. Then, we present our
detection algorithm for the traffic with time-varying rates

where underH;
. F, andF, have non-zero ratés
o F; andF, are not independent.
o (F1,Fy), W1, and W, are independent.
H, represents the case that the traffic contains a unidirec- ]
tional flow, andW; denotes the chaff part &;. A. Relative Flow Rate
The listed assumptions are needed to make the probleny, (iming-based detection, chaff epochs are analogous to
well-posed; they are needed to guarantee taand ™, are pgise in signal detection problems. Undef;, similar to
disjoint. For instance, without the third assumption, ih dze signal-to-noise ratio, we use a metric calkethtive flow rate

shown that independent homogeneous Poisson proc&sses, measure the relative strength of the flow with respectéo th
and S satisfy both, andH; statements. whole traffic.

2) Dgteqtion_of general rov_vSuppose that a packet flow Definition 3.1: Suppose that a unidirectional floi#';, F5)
may exist in either or both d'll’eCtIOI’lS betweé&h and Rg. is contained in(S,)2_,. Let (£)2_, and (s;)2_, denote the
Given the measurements;)?_, in [0, t], we test the following realizations o(Fi)Z_ll_émd(Si)2_i_rlespectivelg/_.l'l'herrelative
hypotheses: flow rate of (f, fzsiis definedzas

Ho : S; andS, are independent )
Hi: S;=F,&W,;, i=1,2. (2) Z\fﬂﬁ[O, t”
(F1, Fy) is a general flow

A g Re(t) & 5+——,
where underH; (4)
« F; andF, have non-zero rates. ; 8: M [0, 4]

o F; andF, are not independent. o

o (F,Fy), Wy, andW,, are independent. Ry Sy litminf Re ()

SDefinition 2.2 implies that a unidirectional floF;, F2) is also a

1 21 . i L A
general flow, because we can &' andF3' to be empty sequences In other words, R(t) is the fraction of the unidirectional
A point processF is said to have non-zero rate i85 s.t.

liminfy oo 2200 S 5 a5 whereNg ([0, 1]) is the number of points flow epochs in the measurements up to timand R is its
of Fin [0, . limiting value ast increases to infinity.



TABLE |
BOUNDED-GREEDY-MATCH [4]

BGM(s1, s2, A):

1. m=n=1;
whilem < |81] andn < |83]
if s2(n) < s1(m)
s2(n) is chaff,n «— n + 1;
else ifsa(n) > s1(m) + A
s1(m) is chaff;m «— m + 1;
else
matchsy (m) with s2(n);
m+«—m-+1;,n<—n+1;

B. Homogeneous Poisson Traffic: Detect-Bounded-Delay |15 ong

This section introduces Detect-Bounded-Delay (DBD), g o fn”adrkSl(iL ea(d) with m < i, < g as chaff
matching-based algorithm in [3]. 13 @ . |{Matched epoch
DR e —————

S2

Fig. 4. Bounded-Greedy-Match [4]
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DBD calculates an upper bouri(t) of Rg(t), and com- e reumR [81] +182]
pares it to a threshold to make a decision. Specifically, DBD L= ™
takes the following form:
declareH, if Re(t) <7 (5) Wecan set the threshold to be slightly larger thamy (i.e.,
declare’; otherwise T = 19 + €) and make the false alarm probability reasonably

small for a larget; ¢ should be chosen carefully to balance

whereR(t) is defined as the false alarm probability and the miss detection proligbil

2 Finding suchry is nontrivial, because it requires us to infer
> IFno, ¢ the distribution ofS;. In [3], a closed-form expression faj is
max i=1 provided under the homogeneous Poisson traffic assumption.
£, wy 2 If S; andS, are homogeneous Poisson processes with pates
si =fi ®wi ~H Z (T UWi) N [0, 1] and Ao, Rf (t) underH, converges almost surely to a constant
i=1

To(A1, A2), which is a function ofA; and \,. Based on this
wheres; = f; © w; ~ H; denotes the constraint the;, f;) result, Kim and Tong [5] proved that if undét;, W; and
is a realizatiop of a unidirectional flow. W, are independent homogeneous Poisson processes, for any
To evaluateR¢(¢), DBD employs Bounded-Greedy-Matchy € (0, 1) we can find a small positive such that DBD
(BGM), a matching algorithm by Blunet al. in [4]. BGM with a thresholdr()\;, A2) + € can consistently detect any
was shown to find a maximum number of matches betweenidirectional flow with R > p.
81 ands,, that satisfy causality and the delay constraint. Given However, if the traffic is allowed to have time-varying rates
the measurements;)?_,, BGM with A operates as follows. we face a great difficulty in setting a thresheldThe analyses
1) Let!; be the earliest epoch if;. Match /; with the in [3] and [5] are entirely based on the homogeneous Poisson
earliest unmatched epoch ji, 1 + A] in 8. traffic assumption, in which one can infer the distributidn o
2) Move to the second epodb in 8;. Matchl; with the S; based on its average ra@ﬂp—?t”. However, even a small
earliest unmatched epoch jiy, I + A] in 8. Repeat deviation from the homogeneous Poisson traffic assumption
this step to find matches for all the epochsSin would make the distribution inference extremely difficult.
3) After the trial to match the last epoch 83, label all the As a simple example of traffic with time-varying rates, sup-
unmatched epochs 8, U 8, as chaff, and terminate. pose thatS; and S, are nonhomogeneous Poisson processes.
Fig. 4 illustrates the operation of BGM. BGM first tries toUnlike estimating rates in homogeneous case, estimatugj lo
find a match fort;. Sincet, is the earliest unmatched epocHntensities of nonhomogeneous Poisson processes isviahtri
in [t1, t, + A]N 8, t; is matched td,. Then, BGM searches Hence, it is difficult to infer the distribution d8,. This leads
for a match fort;. However,t, is the only epoch ints, t; + to the difficulty in estimating the behavior & (¢) underH,,
A]NS,, and it is already matched with. Hence, BGM leaves and eventually the difficulty in setting a threshold
t3 unmatched, and moves te. To overcome such limitations of DBD, in the following
The implementation of BGM is given in Table I. Its com-section we introduce an algorithm to deal with the traffichwit
putational complexity is linear with respect to the samjte s time-varying rates.
The intuition behind DBD is thaRg(¢) tends to be bigger
when (S;)?_, contains a unidirectional floty compared to C. Unsupervised Nonparametric Flow Detector:
when S; and S, are independent. If undei(y, ast grows, Unidirectional Flow

R¢(t) converges to or stay close tg with high probability, s section presents a unidirectional flow detector called

5in other words3g : 1 — T, S g(s) — s € [0, A, Vs € F1. Unsupervised Nonparametric _Flpw Detector (UNFD). The
6Note that undef; , the optimality of BGM guarantees thRk() is at  aMe represents thg characteristics of our problem._ THE pro
least greater thanRt). lem is unsupervised in the sense that without any trainita,da



measurements Ho-like traffic

we should classify the type of relation between a pair ofdran

mission processes. In addition, it is nonparametric beraus . Tﬁ T {0 T t . Mlmf
we do not assume any specific distribution on transmission RE T .y oo
processes. A T S (1 AR L S

UNFD is similar to DBD in that it compareR¢ () to certain Ws o

threShOIC_j for mak'”g _a decision. However, in contra_st to DBQig. 5. Independent Traffic Approximation [6]: Th&s-second intervalsi1,
UNFD gives a specific method to set a threshold: it generates, B1, and B2 are cut from the measurements and assembled to generate
‘“Hy-like’ traffic, and run BGM on it to calculate a threshold the Ho-like traffic.

Specifically, UNFD has the following form:

measurements

Ho-like traffic

{ declareH, if Re(t) < 7(t) + ¢ ©6) s1

declareH; otherwise

where7(t) is obtained by running BGM on thK/,-like traffic,
which will be explained soon. ~ Fig. 6. ITAh [6]: Unlike ITA, ITAh does not throw awayi2, A4, ... and
Recall that if underH,, ast increasesR¢(t) converges to B2, B4,.... Here,Al, A2, A3,...andBl, B2, B3, ... are cut from the
or stay nearr, with high probability, then we can set of measurements and assembled to genératdike traffic.
DBD to be slightly bigger thary. In UNFD, 7(t) plays a
role of an estimate ofy, and a small positive gives a slight
gap between the threshold amck).
To obtain 7(t), we first employ Independent Traffic Ap-
proximation (ITA) in [6] to generate thé{,-like traffic. ITA

The computational complexity of UNFD is linear with
respect to the sample size, because BGM and ITA, its main
components, have linear complexity.

SinceS,; is obtained by sequentially sampling subintervals
: L . , of S; and assembling them together, it is expected to retain
is a heuristic to generate thi,-like traffic based on thedseveral traffic characteristics @&; (e.g, the trend in rate

;r;ze:;l;rearzgr::]sé Itaha? tvlo Ar;at::svitggsél}g:esmt:tessI?]t\r/]vg;i&]\%nggs’ interarrival distribution, etc.) in some degFegther-
s gapy (@ = q y ?nore,Sl and S, are approximately uncorrelated. Therefore,

yvinc_;lpwg. Fig_. 5 i§ describing the procedure. ITA _relies on th8epending on the distribution ¢f;)?_,, the return value of
intuition that if «v is large enough, the8; epochs inA1 and BGM on (s:)2_,, which is 7(1) mayl;vlell approxmiateR 1)

Sg_e_pochs inB1 will .tend tq be uncorrelated, even When aunder?—(o. Hence, we suggest that UNFD would perform well
unidirectional flow exists. Given the measureme(stg}_; in

. ) on quite general network traffic, not restricted to nonhoeiog
[0, 4], ITA with (W, o) operates as follows [6]: neous Poisson traffic assumed in our consistency result.
Under the nonhomogeneous Poisson traffic assumption and
contain no epoch. some additional conditions, the below theorem states that a
2) Take the epochs af; in [0, Ws], and add them tg;. unidirectional flow with any positive rate can be considient
3) Take the epochs af; in [Ws + «, 2Ws + a], subtract detected by UNFD with propes.
Ws + « from the epochs, and add them g

1) (s;)2, denotes the resulting data. Initially; and s,

, . _ Theorem 3.1:Suppose tha®, andS, are nonhomogeneous
4) Fori=1,2,..., LWJ -1 Poisson processes. For anye (0, 1), there exists am such
a) Take the epochs af; in [2i(Ws + «), 2i(Ws + that UNFD withe can consistently detécany unidirectional
@) + W], subtracti(Ws + 2a) from the epochs, flow with Ry > w, if the following assumptions hold:
and add them t@;. « Under H;, F;, W;, and W, are nonhomogeneous
b) Take the epochs &b, in [(2i+1)(Ws + ), (2i+ Poisson processes, afth = SOr{Fy (i) + oy, i > 1}
1)(Ws+a)+Ws], subtract(Ws +2a)+(Ws+a) whereo; € [0,A] as. and{a;} L Fy, W;.
from the epochs, and add themsig o Let X(t) = (Ai(), Aa(t), As()) denote the local inten-
sities’ of S1, S, andF;. A\, A2, and \; are piecewise
constant, andX(t?k can}C tak?C values in the finiEe set
A2 QX = P AP, 1<k < M) XE)
and A are deterministic and unknown.

The sample size ofs;)?_; can be doubled by a heuristic
referred to as ITAh in [6]. Fig. 6 illustrates its operation.

Given the measurements;)?_,, UNFD with ¢ incorporates
ITA and works as follows:

1) Run BGM on(s;)%;: R¢(t) denotes the return value. ¢ Let pi(t) (1 < k < M) denote the fraction of time in

2) Run ITA with (Ws, a) (o > A) on (s;)2; to generate
(s;)2;, and run BGM on(s;)?_;: 7(t) denotes the
return value.

3) If Re(t) > 7(t) + ¢, declareH,; otherwise, declaré.

"Ws and o need to be properly adjusted for different traffic char-

[0, ¢] that X(£) = X(®). As t increasesp;(t) converges
to a constanpy, 1 < k < M.

Let ¢(¢) denote the number of times thatt) changes in
[0, t]. As t increasesgt) converges to O.

8A detector is said to beonsistentif its false alarm probability and miss

acteristics. Unless some information is available for paramsetting, we detection probability decreases to 0 as the sample size grows

recommend to sett = A andWg € [10c, 20c].

9If the measurements come frofio, thens(t) = 0, Vt.



IV. DETECTION OFGENERAL FLOW

detected by UNFD-G with propet. This is a stronger result

In this section, we study detection of general flow and esfhan the consistency result given in Theorem 3.1 in [6].

mation of flow direction, which are mathematically formelat
in Section 1I-B2 and Section II-B3.

A. Unsupervised Nonparametric Flow Detector:
General Flow

This section presents a modification of UNFD for general
flow detection®. We denote this detector by UNFD-G, where

‘G’ stands for general flow.
In this section, Definition IlI-A ofrelative flow ratewill be

extended to represent the relative strength of a general flow
R¢(t) denotes the fraction of the general flow epochs in the ,

measurements up to time and R is lim inf; . R¢(2).

For UNFD-G, we replace every BGM in the steps of UNFD

with Bidirectional-Bounded-Greedy-Match (BiBGM) [5], ¢h
bidirectional version of BGM. Similar to BGM, undek{;,
BiBGM gives the below upper bouni(¢) of R(t),

2

> 1Fin o,

i=1
max

fi,w;:

2
= b B T > IFuwW) N o,
=1
wheres; = f; ® w; ~ H; denotes the constraint théf;, f,)
is a realizatioi of a general flow.
Given the measurements;)?_,, BIBGM with A works as
follows [5]:

1) Lets be the earliest epoch ity U S,. Match s with the
first unmatched epoch ifs, s + A] in the other node.
2) Move to the next unmatched epotin $; U 85. Match
t with the first unmatched epoch i, ¢t + A] in the

Theorem 4.1:Suppose tha®, andS, are nonhomogeneous
Poisson processes. For anye (0, 1), there exists am such
that UNFD-G withe can consistently detect any general flow
with R > w, if the following assumptions hold:

. UnderHl, S, = (FZIQ D FZQI) e W,. F%2, F%l, Wi,
and W, are independent nonhomogeneous Poisson pro-
cesse¥, Fi? = sor{F12(i) + a;, i > 1} whereq; €
[0,A] a.s., andF?! = sor{F3'(i) + 3;, i > 1} where
B; €10,A] a.s..

{ai} 1 Wl, {/81} A WQ, and L {ai}, {/61}7 F%Q, F%l

Let X(£) = (A1(t), Aa(t), Ap1(t), As2(t)) denote the lo-

cal intensitie$® of S1, S, F12, andF3%. \;, A2, Af1, and

Ajo are piecewise constant, a&ﬁt) can take values in

the finite setA 2 {X(®) = (A7, A% AW AWy 1 <

k < M}. X(t) and A are deterministic and unknown.

o Let pi(t) (1 < k < M) denote the fraction of time in
[0, t] that X(t) = X(¥). As ¢ increasespy(t) converges
to a constanpy, 1 < k < M.

« Letc(t) denote the number of times thatt) changes in

[0, t]. Ast increasesftt) converges to 0.

B. Estimation of Flow Direction

This section considers estimation of flow direction, which
is mathematically formulated in Section 1I-B3. The measure
ments are assumed to contain a general flow, and our objective
is to estimate the direction of the underlying flow.

We propose an algorithm called Unsupervised Nonparamet-
ric Direction Estimator (UNDE). UNDE tests whether a uni-
directional flow exists in a specific direction. In other weyd
UNDE tests{Hy, H2} versusH; for a unidirectional flow

other node. Keep moving to the next unmatched epo@iom R, to Ry, and{H, H.} versusH, for a unidirectional

in 8; U8, and finding its match based on the same rulfiow from R, to R;. The specific steps to estimate directions
3) After the trial to match the last unmatched epoch, labate as follows:

all the unmatched epochs as chaff and terminate.

For the detailed description of BIBGM, see [5]. Given the

measurementgs;)?_,, UNFD-G with ¢ works as follow [6]:

1) Run BiBGM withA on (s;)7_;: R¢(t) denotes the return

value.

2) Run ITA with (Wg,a) (o > A) on (s;)%, to generate
(si)2_,, and run BiBGM on(s;)Z;: 7(t) denotes the
return value.

3) If Re(t) > 7(t) + ¢, declareH;; otherwise, declaré,.

1) Run UNDE to tes{Hy, H2} versusH;: if the decision
is H1, declareH; and terminate; otherwise, go to 2.
2) Run UNDE to tes{’H,, H} versusH,: if the decision
is Ho, declareH,; otherwise, declaré,.
Suppose we want to tegtH,, Ho} versusH;. Given the
measurementss;)?_, in [0, t, UNDE with e executes the
following steps:
1) Increase all the epochs & by %.
2) Divide the observation interval int@-second subinter-
vals. LetA; denote theith subinterval,(5 (i — 1), 5]

Under the nonhomogeneous Poisson traffic assumption and) AssembleA;s to generate four data: fdr=1:1 : 4,

some additional conditions, the following theorem implies
that a general flow with any positive rate can be consistently

10we already presented this algorithm in [6] as Adaptive Floatetor.
To better describe its connection with UNFD, we will illuestie this algorithm
as a modification of UNFD.

Hin other words f; can be partitioned intd}2 and 2! such that there
exist bijectionsg; : F12 — F12 andg, : F31 — F21 satisfyingg (s)—s €
[0, A], Vs € F12 andga2(s) — s € [0, A], Vs € F3L.

assemblg Ay, 1k, n > 0} to generate(sgk))le. (Refer
to Fig. 7)
4) Fork =1:1:4, run ITA with (Ws,a) (o > £) on
(s?)2_, to generates*)2_, .

K2

12Either F12 or F2! may have zero rate if the underlying general flow is
a unidirectional flow.
13If the measurements come frofio, then s (t) = Ag2(t) = 0, Vt.



o Pr(a; €[§ —z, A—z]) andPr(3 € [§ — 2, A —2))
are constant for z € [0, £].
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V. NUMERICAL RESULTS
A. Simulation Results: Synthetic Poisson Traffic

S1 i 1
L)/ i i i
® I j A (VAR We first tested the performance of UNFD using the synthetic
o b L nonhomogeneous Poisson trafff§; and S, are set to be
A1 A2 'As Ay A Ag A7 A nonhomogeneous Poisson processes with piecewise constant

Lo v Lo ! rates\; (t) andAx(t). UnderH, we generated a unidirectional
S<11)4:_:L._.% 5(12)4;-_3-_?* 553)4-4—:% S<14) :

flow (Fy, F3) from R; to R,. F; is a nonhomogeneous
| X ; j / P b Poisson process with a piecewise constant pgig). F, is
RO TN 8 'S S N S IO B O B generated by adding i.i.d. random delays to the epochs of
oA TP Ay T AgAr P AAy F,; delays are uniformly distributed if0, A]. W; and W

Fig. 7. Steps of Unsupervised Nonparametric Direction Egtmesome are also generated as in_dependent nonhomogeneous Poisson
of the matches (blue arrows pointing downward) correspantbrthe packet processes, and they are independent of the flow part. In each
flow from Ry to Ry survives in(sﬁ’“))?:l,,k’ =1,...,4, but the matches measurements(\;(t), A2(t), Af(t)) is piecewise constant,
S;eldafg‘;‘l’;’sre'[r’ﬁc')’\‘gég upward) corresponding to the packet flom 12 0 54 it changes twice; it takes different values for the first
' third, the second third, and the last third of the measurésnen
5) Fork=1:1:4, run BIBGM with % on (sgk))?d and N ea(?h measurement&él%(t)_, A2 (t), Ap(t)) ta_k_es one of the
(gl(_k))%=1; R%k) (t) and () (¢) denote the return Values.fourdlfferent rate chang . with equal probability. Fof, S, .
andS, are generated as independent nonhomogeneous Poisson

‘ it F_Qék)(f) S 7R (1) dec _ processes whose rates change in the same mannerts in
6) | ] + e declarey; Fig. 8 shows the ROC curves of UNFD. ROC curves are
otherwise, declar¢™,, Ho}. obtained by increasing of UNFD from O to 1 by 0.01, and

Fig. 7 illustrates the first three steps of UNDE, which arplotting the false alarm probability (x-axis) and the déitaT
aimed at removing the packet flow frofy, to R, if it exists. probability (y-axis) of each case. The curves with circles a
Suppose thats (i) — s1(i1) € [0,A] and s1(j1) — s2(j2) € ROCs for the case that UNFD employs ITAh, and the curves
[0, A]. Then, once the epochs i are all increased byy, with rectangles are ROCs when UNFD employs ITA. It is
sa(in) — s1(i1) € [-5, 5] and s1(j1) — s2(j2) € [5,28]. evident from the plot that ITAh, a heuristic to double the
Hence, after the chopping; (i1) and s2(i2) may belong to sample size of(s;)7_,, gives better ROCs. For comparison,
the sameA;, but s1(j1) and sa2(j2) will belong to different UNFD-G was also tested on the same data assuming no prior
intervals A; and A; with |i — j| € {1,2,3}. This implies that, information about flow direction is available. The curveshwi
after assembling, the matches corresponding to the paoket fblus signs are ROCs of UNFD-G with ITAh. It requires much
from Ry to R, may survive in(sgk))f:l, k=1,...,4, with larger sample size to obtain a similar ROC curve with UNFD,
some probability, but the matches corresponding to thegiacklue to the lack of direction information. In all cases, as the
flow from Ry to R; are completely removed. In addition, ifsample size grows, ROC curves move closer to the upper
a match(a, b) corresponding to the packet flow frof; to left corner implying better detection performance. In dher
Ry survives in(sl(."’))fz1 for somek, it satisfies|a — b| < %_ numerical results to be presented, the algorithms employed
Therefore, we can detect the unidirectional flow frdta to  ITAh instead of ITA, unless otherwise specified.

R, by detecting the general flow with delay constra%ltin For testing UNDE,S; and S, are generated to satisfy one
(s!)2_, k= 1,...,4; this is the objective of the step 4, 5,0f the three hypothesest(, 7, and; in (3)) with equal
and 6. probability. In every hypothesig\;(t), \2(t)) is (8, 8) for

Under the nonhomogeneous Poisson traffic assumption 4R first half of the measurements, afd, 10) for the second
some additional conditions, the following consistencyutes half of the measurements. In each hypothesis, a unidiretio

implies that if a unidirectional flow with any positive rateflow ((Fi*, F3%) or (F3', F3')) with the constant rate is
exists in a specific direction, then UNDE with propeon 9enerated in the same way as in the simulation for UNFD. We

that direction can Consistenﬂy detect its presence. ran UNDE on both directions to make a decision. F|g 9 shows

_ the plots of the error probability versus the sample ‘Sifer

Theorem 4.2:Suppose tha, ands; are nonhomogeneousdiﬁerent)\fs_ As expected, the biggev; results in a smaller
Poisson processes. For anye (0, 1), there exists ar such
that UNDE with e on a SpeCifiC direction can ConSiStently 14 uniform distribution on0, A] satisfies this condition.
detect the presence of a unidirectional flow with R w in 151. (10, 10, 6) — (10, 20, 6) — (20, 20, 6).
that direction, if the following assumptions hold: 2.(6, 10, 5) — (10, 10, 5) — (12, 12, 7).

. . ) 3. (25, 20, 15) — (20, 20, 15) — (20, 16, 15).

o All the assumptions listed in Theorem 4.1 hold. 4. (15, 10, 5) — (25, 20, 15) — (25, 25, 15).

o {a;} is an i.i.d. sequence3;} is an i.i.d. sequence. 6An error occurs if our decision is different from the true bipesis.



RS o TABLE I
o= ------T*v*" e UNFD oN MSN VOIP TRAFFIC: Wg = 2, = A = 0.15, ¢ = 0.05.
- NUMBER OF EXPERIMENTS 160, 80,AND 40 FOR SAMPLE SI1ZE5000,
10000,AND 20000,RESPECTIVELY
TOTAL TRAFFIC RATES: A1 = 26.80, A2 = 34.93. FTPDATA RATE: 11.11.

o= Z. —©— 500 (UNED:ITAh) UNFD DBD
& = © = 1000 (UNFD:ITAR) sample size P, Py, P, Py,
o} el 500 | oorse [ oorse]| o | s
04 T oot o 10000 0 0.0625 || 0 1
0.7 20000 0 0.0250 0 1
0.
o a0z 004 a6 a08 o1 UNFD resulted in reasonably small error probabilities. For
e A in UNFD, we used 150ms, which is the upper bound of
Fig. 8. ROC curves of UNFD and UNFD-G for different sample size acceptable end-to-end delays of VolP packets, recommended
Ws =2, a= A =0.1, 10000 Monte Carlo runs. by ITU-T recommendation G.114 [7]. For comparison, we

Error probabity versus sample size. also tested Detect-Bounded-Delay (DBD) [3] while using the
R HHHE Poisson thresholf. The results clearly show that UNFD
outperforms DBD. DBD with the Poisson threshold does not
work for our experimental data. The results support ounclai
that UNFD may perform well on traffic with more general
distribution than Poisson process.

—e—A\=3
—a—\ =4

VI. CONCLUSION

In this paper, we considered timing-based detection of
packet flows in traffic with time-varying rates. Assuming &m
varying traffic, we studied three different problems: detet
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sample size of unidirectional flow, detection of general flow, and estiima
Fig. 9. Error probability of UNDEWs = 2, o = A = 0.1, 10000 Monte of flow direction. For each problem, a timing-based algonith
Carlo runs. with linear complexity was presented with a consistency

result under the nonhomogeneous Poisson traffic assumption

decay as the sample size grows. traffic and the synthetic nonhomogeneous Poisson traffie. Th
) _ test results are promising.
B. Experimental Results: MSN VolIP Traffic Even though the algorithms were analyzed under the non-

UNFD was tested using the real-world MSN VolIP traffichomogeneous Poisson traffic assumption, the intuitionrigehi
which is a representative example of traffic with an end-téhe algorithms suggests that they would perform well orfitraf
end delay constraint. As illustrated in Fig. 2, we locate@ orwith more general distribution; our experimental resuksg
laptop (P;) in a room covered by the access poitit, and the MSN VoIP traffic support this claim.
two laptops £, and P;) in a different room covered bys.
We measur¥ the transmission epochs & (s;) and those of | S. Staniford-Ch 4 L. Heberlein “Holding intrud b

. . . . anirora-Chen an . Heberlein, “Ho INng Intruaexscountable on
Ay (52)' and our Obj('E'Ctlve is to detect the VolP call betweeH the internet,” inProc. the 1995 IEEE Symposium on Security and Privacy
P, and any laptop in the area covered By. Under H, Oakland, CA, May 1995, pp. 39-49.
P; has an MSN \WoIP call withP,, and P; downloads a [2] D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, anct@niford,
. . s “Multiscale stepping-stone detection: Detecting pairgittééred interac-
file from an FTP_ server with 20kB/s rate limit. Undef,, tive streams by exploiting maximum tolerable delay,5ih International
P, and P, have independent MSN VoIP calls, arf$} does Symposium on Recent Advances in Intrusion Detection, teeblotes in
the same job as irH;. Hence,s; consists of transmission $0Hmpute£ EC'$nce 2%1$00t_2- f Information FIowsIEEE T -
. He and L. Tong, “Detection of Information Flows rans. Inf.
epochs pf \olP packet's :?md control/management packets, heory vol. 54, pp. 4925-4945, Nov. 2008.
so consists of transmission epochs of VoIP packets By [4] A. Blum, D. Song, and S. Venkataraman, “Detection of Inttie
FTP packets foP;, and control/management packets (except Stepping dStones: Algorithms and Confi?encepB(r)]undsC:dm;‘erence o;‘]
. : . Recent Advance in Intrusion Detection (RAIBpphia Antipolis, Frenc
beacon packetsk; ands, displayed t|_me-vary|ng.rates. We Riviera, France, September 2004.
evaluated the average rates 9f@ s, in consecutive 1000- [5] J. Kim and L. Tong, “Timing-based Detection of Packet Farding

second intervals, and the average rate dynamically flusduat iA”d MANET_S"’V\}D IllthC'“tema“Pnf’%' NVg)fkskhOF% C”vfl‘ Sig”a'JProcggsligg
vances in Wireless CommunicatipMarrakech, Morocco, June .

between 46 and 71 epochs/sec. . . [6] ——, “Detection of Time-varying Flows in Wireless NetwaK in IEEE
Table 1l shows the false alarm probability and the miss  wilitary Communications Conferenc&an Jose, CA, November 2010.

detection probability of UNFD for different sample sizes[7] ITU-T Recommendation G.114, “One way transmission time.”
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