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Abstract—The problem of detecting the presence of time-
varying flows in multi-hop wireless networks is considered. In
particular, from transmission timing measurements, a test is
constructed to determine whether there is a flow of data packets
between a pair of nodes. It is assumed that the packet flows may
have time-varying (piecewise constant) flow rates.

First, a timing-based detector is proposed to detect a flow in the
given measurements, and its performance analysis follows. Then,
based on the detector, a sliding window technique is proposed for
continuous monitoring. The techniques are tested using the MSN
Voice over IP (VoIP) traffic and the synthetic Poisson traffic.

I. I NTRODUCTION

This paper considers the problem of detecting the presence
of time-varying flows in a multi-hop wireless network. In
a wireless network, suppose that we record transmission
timings (epochs) of nodesR1 and R2, and R1 and R2 may
have time-varying (piecewise constant) transmission rates. The
transmission epochs ofR1 andR2 may correspond to different
scenarios: Some of these epochs may correspond to a packet
flow1 from R1 to R2, or vice versa. The flows betweenR1

and R2 may be bidirectional. It is also possible that there is
no flow betweenR1 and R2, and the transmission epochs at
these two nodes represent independent transmissions to their
corresponding neighboring nodes. Our objective is to detect
the presence of a flow betweenR1 andR2.

This problem has a number of practical applications. In
intrusion detection, the interactive stepping stone attack has
the property that a sequence of nodes (stepping stones) in
the attack path relay packets back and forth. For surveillance
applications, using simple monitoring devices, one may be
able to figure out the networking configurations, routes, and
possibly the roots of multicasting trees. Fig. 1 illustrates a
specific application to network security, where transmission
epochs of a wireless device (R1) and an access point (R2) are
recorded. By detecting the flow betweenR1 andR2, one can
see whetherR1 is injecting packets into the area covered by
the access pointR2.

Using timing for flow detection is nontrivial, partly because
we do not assume any information from packet headers;
only the timing of transmission is used. Of course, header
information may be available in many cases. Such information
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1If R2 is relaying some packets received fromR1 to its neighboring
node, the transmission epochs of those packets atR1 andR2 correspond to
the flow fromR1 to R2.
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Fig. 1. R1 is sending packets toR3 that is in the area covered byR2, thereby
forming a packet flow fromR1 to R2; the epochs of the packets are marked
with circles. Besides the flow,R1 and R2 may have other transmissions
(marked with arrows): control/management packets, and other data packets.

should then be incorporated into the detection scheme, which
is beyond the scope of this paper. In addition, when there
exists a flow betweenR1 andR2, some of their transmission
epochs might not correspond to the flow. Such epochs are
referred to aschaff epochs. Chaff epochs can originate from
various sources. A node might multiplex the transmissions of
intersecting flows, and it can also add dummy transmissions
to confuse the detection system.

In the absence of any header information, we need to impose
certain constraint on how nodes relay packets that belong
to a certain flow. A practical constraint is that, if a node
forwards a flow packet, it must forward the packet within
a deadline∆. Such a delay constraint is essential for time-
sensitive applications such as VoIP, video streaming, etc..

A. Related Work

Our work was motivated by a series of previous works
on timing-based detection of two-hop unidirectional flows,
which has been actively studied in the context of stepping-
stone detection [1]. To deal with encrypted traffic, re-
searchers restricted the observations to the timing measure-
ments. Donohoet al. [2] were the first to employ the flow
model with a maximum delay constraint. Their multiscale
analysis was shown to be able to detect a flow if the flow
lasts for a sufficiently long time. Following their seminal work,
many practical algorithms were proposed to detect flows with
a maximum delay constraint (see references in [3]). Donohoet
al. [2] also mentioned about the chaff insertion with the claim
that their algorithm can detect a flow if the chaff portion is
independent of the flow. The independent chaff insertion was
also considered by Zhanget al. [4] with the assumption that
only one node is allowed to insert chaff transmissions.

The flow detection becomes more challenging if arbitrary
chaff insertion is allowed. For arbitrary chaff insertion,Blum et



al. [5] proposed the counting-based algorithm, and analyzed
the tradeoff between the sample size and the error probabili-
ties. He and Tong [6] also considered arbitrary chaff insertion
and proposed a matching-based algorithm. Under the Poisson
traffic assumption, a thresholdτ was shown to exist such that
if the fraction of chaff is less thanτ , the flow is detectable;
otherwise, the flow can be hidden by proper chaff insertion.

However, since the aforementioned studies on unidirectional
flow detection were done in the context of stepping-stone
detection, they excluded the possibility of the presence of
bidirectional flows which are common in wireless networks2.
Hence, their algorithms need to be adjusted for use in wireless
networks. Kim and Tong [7] modified the algorithm in [6] to
detect a flow in wireless networks. In this paper, we improve
the algorithm in [7] so that it can deal with the traffic with
varying rates.

B. Summary of Contributions and Organization

First, to detect a flow in the traffic with varying rates,
we improve Bidirectional Flow Detector (BFD)3, the flow
detector presented in [7]. Our detection algorithm has several
advantages over BFD: (i) Our algorithm can detect a flow even
though it is contained in the traffic with varying rates. (ii)BFD
needs an accurate threshold that heavily depends on the traffic
characteristic, but our algorithm does not require it. (iii) Our
algorithm can be used as a heuristic to detect a flow in the
traffic with unknown characteristics.

For continuous monitoring of flows, we propose a sliding
window technique in which we repeatedly run our detection
algorithm over the fixed number of most recent samples,
while removing old samples as new samples are collected.
We present numerical performance analysis for our techniques,
using the MSN VoIP traffic and the synthetic Poisson traffic.
Overall, the numerical results are promising, and the moni-
toring algorithm was able to detect a flow with a reasonably
small detection delay and a low false alarm frequency.

The rest of the paper is organized as follows. In Section II,
we introduce notations employed throughout the paper, and
formulate the flow detection problem. Section III and Sec-
tion IV present the flow detection algorithm and the monitor-
ing algorithm, respectively. Then, supporting numerical results
follow in Section V. Finally, Section VI concludes the paper
with remarks.

II. M ATHEMATICAL FORMULATION

We model the transmission timings of each node as a
point process. Uppercase bold letters (e.g., S) denote point
processes, and lowercase bold letters (e.g., s) denote their
realizations.S(i) is a random variable representing theith
transmission epoch, ands(i) is its realization. In addition,S
denotes the set of all epochs in the realizations. We define a

2Most studies on stepping-stone detection observe timings ofa pair of
incoming and outgoing streams at a point. Hence, a flow cannot exist in the
direction of from the outgoing stream to the incoming stream.

3The original name of the detector is Packet-Forward-Detect,but we
rename it to better describe its purpose.

superposition operator
⊕

for a pair of increasing sequences:
given (a1, a2, . . .) and (b1, b2, . . .), (ai)

∞
i=1 ⊕ (bi)

∞
i=1 =

(ci)
∞
i=1, where ci is the ith smallest element among the

elements of two sequences4. Then, we mathematically define
a flow between a pair of nodes as follows.

Definition 2.1: A pair of processes (F1,F2) forms aflow
if for every realizationf1 and f2, fi can be partitioned into
f
12
i and f

21
i (fi = f

12
i ⊕ f

21
i ), such that there exist bijections

g1 : F12
1 → F12

2 and g2 : F21
2 → F21

1 satisfying0 ≤ g1(s) −
s ≤ ∆, ∀s ∈ F

12
1 , and0 ≤ g2(s) − s ≤ ∆, ∀s ∈ F

21
2 .

(f12
1 , f

12
2 ) and (f21

2 , f
21
1 ) correspond to packet flows in

F1 → F2 andF2 → F1 directions, respectively. The bijection
condition means packet conservation, andgi(s) − s ∈ [0, ∆]
ensures that every transmission satisfies causality and thedelay
bound∆. We define that a pair of point processesS1 andS2

contain a flowif they can be partitioned into the flow part
(Fi) and the chaff part (Wi) such that(F1, F2) is a flow and
Si = Fi ⊕ Wi.

The flow detection is formulated as follow. LetS1 andS2

denote the transmission processes ofR1 andR2, respectively.
Given the measurements(si)

2
i=1 in the time interval[0, t], we

test the following hypotheses:

H0 : S1 andS2 are independent
H1 : S1 andS2 contain a flow

(1)

III. F LOW DETECTION: TRAFFIC WITH VARYING RATES

A. Fundamental Limit of Timing-based Detection

Under H0, intuitively, any pair of S1 and S2 can be
partitioned into the flow part and the chaff part, if the flow
rate is sufficiently low. This implies that if a flow rate is low
and a large amount of chaff transmissions are allowed, then
R1 andR2 can hide a flow between them by mimickingH0.
Hence, a flow is detectable only if its strength is strong enough
compared to the chaff portion. UnderH1, the flow strength can
be measured by therelative flow ratedefined as below.

Definition 3.1: Let (si)
2
i=1 be the realization of(Si)

2
i=1

underH1, and(fi)
2
i=1 and (wi)

2
i=1 denote the realizations of

the flow part and the chaff part, respectively. Then, therelative
flow rate is defined as

Rf(t) ,

2∑

i=1

|Fi ∩ [0, t]|

2∑

i=1

|(Fi ∪ Wi) ∩ [0, t]|

,

Rf , lim inf
t→∞

Rf(t)

(2)

Therefore, Rf(t) is the fraction of flow epochs in the
observations up to timet, and high Rf(t) means that the flow
strength is strong compared to the chaff portion.

4If the same element appears multiple times (totaln) in (a1, a2, . . .)
and (b1, b2, . . .), then it also appearsn times in (c1, c2, . . .).
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Fig. 2. The illustration of BiBGM operation.

B. Background: Bidirectional Flow Detector

This section introduces an existing timing-based algorithm
for flow detection, Bidirectional Flow Detector (BFD)5 pro-
posed in [7]. BFD calculates an upper bound on the actual
Rf(t), denoted bȳRf(t), and compares it to a predetermined
thresholdτ to make a decision. Specifically, BFD takes the
following form.

{
declareH0 if R̄f(t) < τ

declareH1 if R̄f(t) ≥ τ
(3)

Given (si)
2
i=1, R̄f(t) is obtained by the below optimization.

max
fi, wi :

si = fi ⊕wi ∼ H1

2∑

i=1

|Fi ∩ [0, t]|

2∑

i=1

|(Fi ∪ Wi) ∩ [0, t]|

wheresi = fi ⊕wi ∼ H1 means the constraint that(f1, f2) is
a realization of a flow with a maximum delay constraint∆.

Hence,R̄f(t) is obtained by optimally partitioning(si)
2
i=1

into the flow part and the chaff part such that the flow part is
maximized. In [7], a matching algorithm called Bidirectional-
Bounded-Greedy-Match (BiBGM) was proposed and proved
to achieve this optimal partitioning by finding a maximum
number of valid matches. Given(si)

2
i=1, BiBGM works as

follows.
1) Initially, all the epochs inS1 ∪ S2 are unmatched.
2) Let s be the earliest epoch inS1 ∪S2. Matchs with the

first unmatched epoch in[s, s + ∆] in the other node.
3) Move to the next unmatched epocht in S1 ∪ S2. Match

t with the first unmatched epoch in[t, t + ∆] in the
other node. Keep moving to the next unmatched epoch
in S1∪S2 and finding its match based on the same rule.

4) After the trial to match the last epoch inS1 ∪ S2, label
all the unmatched epochs as chaff and terminate.

Fig. 2 illustrates the operation of BiBGM. BiBGM first tries
to find a match fort1, which is the earliest epoch inS1 ∪ S2.
Sincet2 is the first unmatched epoch in[t1, t1 + ∆] ∩ S2, t1
is matched witht2. Next, BiBGM looks for a match fort3.
However, there is no unmatched epoch in[t3, t3 + ∆] ∩ S2.
Thus, BiBGM markst3 as chaff. Then, BiBGM moves tot4
and searches for an unmatched epoch in[t4, t4 + ∆] ∩ S1.

The implementation of BiBGM is given in Table. I. Its
computational complexity isO(|S1| + |S2|), which is linear
with respect to the sample size.

5For better description, we rename Packet-Forward-Detect [7] to BFD.

TABLE I
BIDIRECTIONAL-BOUNDED-GREEDY-MATCH (BIBGM) [7]

BiBGM(s1, s2, ∆):

1: m = n = 1;
2: while m ≤ |S1| andn ≤ |S2|
3: if s2(n) < s1(m)−∆
4: s2(n) is chaff; n← n + 1;
5: else ifs2(n) > s1(m) + ∆
6: s1(m) is chaff; m← m + 1;
7: else
8: matchs1(m) with s2(n);
9: m← m + 1; n← n + 1;
10: end
11: end
12: marks1(i), s2(j) with m ≤ i, n ≤ j as chaff;
13: R̄f ←

the number of matched epochs
|S1|+|S2|

;

14: returnR̄f

Under the Poisson traffic assumption, the performance of
BFD was analyzed in [7]. UnderH0, R̄f(t) converges almost
surely to a constantτ0, which depends on the rates ofS1

and S2. For any positive numberǫ (ǫ < τ0), BFD with the
thresholdτ0 + ǫ is shown to be consistent6 if Rf underH1 is
greater thanτ0+ǫ. In addition, when the chaff parts ofS1 and
S2 are independent Poisson processes, a flow can be detected
by BFD consistently, regardless of its strength.

C. Adaptive Flow Detector

In this section, we present Adaptive Flow Detector (AFD),
a detection algorithm aimed at detecting a flow in the traffic
with varying rates.

The motivation for AFD stems from the following limita-
tions of BFD. To set a proper thresholdτ of BFD, we need
to know the details of the traffic characteristics, including
the interarrival distribution and the traffic rates. However,
estimation of such information generally requires a long time
and a large number of samples. Furthermore, some traffic
characteristics (e.g., traffic rates) might vary in the middle of
the observation interval. Hence, we need an adaptive scheme
that can detect a flow even though the traffic characteristics
are unknown and time-varying.

Instead of a predetermined threshold, AFD employs an
adaptive threshold that is obtained based on the measurements
as follows. As a first step, AFD assumes temporal indepen-
dence to approximate theH0 traffic using the measurements.
Fig. 3 describes the approximation procedure, referred to
as Independent-Traffic Approximation (ITA). ITA has two
parameters, the synthesis window widthWS and the gapα
(α ≥ ∆) between subsequent windows. The intuition behind
ITA is that if α is large enough, then the epochs ofS1 in A1
and the epochs ofS2 in B1 will tend to be uncorrelated, even
when a flow exists. Given the measurements(si)

2
i=1 in [0, t],

ITA works as follows:

1) (s̄i)
2
i=1 denotes the resulting data. Initially,s̄1 and s̄2

contain no epoch.
2) Take the epochs ofs1 in [0, WS ], and add them tōs1.

6A detector is said to beconsistentif both the miss detection and the
false alarm probabilities vanish as the sample size grows.
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Fig. 3. ITA: TheWS -second intervalsA1, A2, B1, andB2 are cut from
the measurements and assembled to approximate theH0 traffic.

TABLE II
ADAPTIVE FLOW DETECTOR(AFD)

AFD(s1, s2, ∆, t, WS , α, ǫ):

1: R̄f ← BiBGM(s1, s2, ∆)
2: s̄1 ← (), s̄2 ← ()
3: for i = 0 : 1 : ⌊ t

WS
⌋ − 1

4: a1 ← s1 ∩ [2i(WS + α), 2i(WS + α) + WS ]
5: a2 ← a1 − i(WS + 2α)
6: s̄1 ← s̄1 ⊕ a2

7: a1 ← s2 ∩ [(2i + 1)(WS + α), (2i + 1)(WS + α) + WS ]
8: a2 ← a1 − i(WS + 2α)− (WS + α)
9: s̄2 ← s̄2 ⊕ a2

10: end
11: τ̄ ← BiBGM(s̄1, s̄2, ∆)

12: return

{
H1 if R̄f ≥ τ̄ + ǫ

H0 o.w.;

∗ si ∩ [t1, t2] is a subsequence ofsi consisting of the epochs in[t1, t2].
∗ For a sequence(xi)

∞
i=1 and a real numberr, (xi)

∞
i=1−r , (yi)

∞
i=1 where

yi = xi − r, ∀i.

3) Take the epochs ofs2 in [WS + α, 2WS + α], subtract
WS + α from the epochs, and add them tos̄2.

4) For i = 1, 2, . . . , ⌊ t
2(WS+α)⌋ − 1:

a) Take the epochs ofs1 in [2i(WS + α), 2i(WS +
α) + WS ], subtracti(WS + 2α) from the epochs,
and add them tōs1.

b) Take the epochs ofs2 in [(2i+1)(WS +α), (2i+
1)(WS+α)+WS ], subtracti(WS+2α)+(WS+α)
from the epochs, and add them tos̄2.

Given (si)
2
i=1 in [0, t], AFD employs ITA and operates as

follows:

1) Run BiBGM on(si)
2
i=1, and letR̄f(t) denote the result-

ing R̄f .
2) Run ITA on(si)

2
i=1 to generate(s̄i)

2
i=1, and run BiBGM

on (s̄i)
2
i=1. Let τ̄(t) denote the resultinḡRf .

3) If R̄f(t) ≥ τ̄(t) + ǫ, declareH1; otherwise, declareH0.

If H0 is true, R̄f(t) and τ̄(t) are expected to be close.
Instead of a predetermined thresholdτ , AFD uses an adaptive
thresholdτ̄(t)+ǫ, whereǫ is added to allow a small difference
between̄Rf(t) andτ̄(t) underH0. If H1 is true and the relative
flow rate is high enough,̄Rf(t) is expected to be greater then
τ̄(t). Implementation of AFD is given in Table. II. It contains
ITA in the lines 2-10. The computational complexity of AFD
is O(|S1| + |S2|).

In ITA, the number of epochs in(s̄i)
2
i=1 is at most a

half of that of the original measurements. Fig. 4 describes
a heuristic (which we refer to as ITAh) to double the number
of epochs in(s̄i)

2
i=1. Although no further analysis is provided,

numerical results in Section V show that this heuristic leads
to a better performance of AFD. In the upcoming analysis and
the simulations in Section V, AFD employs ITA, not ITAh,
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Fig. 4. ITAh: Unlike ITA, we do not throw awayA2, A4, . . . and
B2, B4, . . .. Here,A1, A2, A3, . . . andB1, B2, B3, . . . are cut from the
measurements and assembled to approximateH0 traffic.

unless otherwise specified.
In the rest of this section, we present a theorem stating the

performance of AFD for a sufficiently larget. Suppose that
S1 andS2 are Poisson processes. UnderH1, let Fi andWi

denote the flow and chaff part ofSi respectively, and suppose
the following7 are true:

1) F1 and F2 are built by two independent Poisson pro-
cesses (F12

1 , F21
2 ) and two sequences of delay8 variables

((αi)
∞
i=1, (βi)

∞
i=1), whereF1 = F

12
1 ⊕ sort({F21

2 (i) +
βi, i = 1, 2, . . .}) and F2 = F

21
2 ⊕ sort({F12

1 (i) +
αi, i = 1, 2, . . .}).

2) W1, W2, F
12
1 , andF

21
2 are independent.

3) (αi)
∞
i=1 andW1 are independent,(βi)

∞
i=1 andW2 are

independent, and(αi)
∞
i=1, (βi)

∞
i=1, F

12
1 , and F

21
2 are

independent.

Under these assumptions, the below theorem states the
consistency of AFD when there are rate changes during the
observation interval.

Theorem 3.1:Let ρ1, . . . , ρm ∈ (0, 1) be m fixed
constants satisfying

∑m

i=1 ρi = 1. Suppose that in
[(
∑k−1

i=1 ρi)t, (
∑k

i=1 ρi)t], S1 andS2 have the ratesλ(k)
1 and

λ
(k)
2 respectively, andλ(k) ,

λ
(k)
1 +λ

(k)
2

2 . Suppose that, under
H1, Rf is greater thanσ + ǫ a.s., where

σ ,

∑m

i=1 λ(i)ρiγi∑m

i=1 λ(i)ρi

and

γi ,





2λ
(i)
1 λ

(i)
2 (e

2∆λ
(i)
2 −e

2∆λ
(i)
1 )

(λ
(i)
2 +λ

(i)
1 )(λ

(i)
2 e

2∆λ
(i)
2 −λ

(i)
1 e

2∆λ
(i)
1 )

if λ
(i)
1 6= λ

(i)
2

2λ∆
1+2λ∆ if λ

(i)
1 = λ

(i)
2 = λ.

Then, if t goes to infinity, the miss detection probability of
AFD with ǫ vanishes and its false alarm probability decays
exponentially fast.

Sketch of Proof:Let t̃ denote the time length of(s̄i)
2
i=1.

Then, t̃ = ⌊ t
2(WS+α)⌋WS . Due to the traffic assumptions,S̄1

and S̄2 are independent nonhomogeneous Poisson processes,
regardless of the true hypothesis. In addition, for sufficiently
large t, the rates ofS̄1 and S̄2 in [(

∑k−1
i=1 ρi)t̃, (

∑k

i=1 ρi)t̃]

7The performance of AFD depends on how well(S̄i)
2
i=1 approximate

H0 traffic. However, underH1, the fact that a flow exists does not give
enough detail about the correlation betweenS1 and S2, which affects the
quality of theH0 approximation. Hence, to assess the performance of AFD,
we impose more assumptions to further specify the correlation.

8αi, βi ∈ [0, ∆] a.s., ∀i.



areλ
(k)
1 andλ

(k)
2 respectively9. Therefore, corollary 4.1 in [7]

implies10 that τ̄(t) converges toσ a.s..
(i) False alarm probability: The false alarm probability is11

PF (t) = P0(R̄f(t) ≥ τ̄(t) + ǫ)
≤ P0(R̄f(t) ≥ σ + ǫ

2 ) + P0(R̄f(t) < σ + ǫ
2 , R̄f(t) − ǫ ≥ τ̄(t))

≤ P0(R̄f(t) ≥ σ + ǫ
2 ) + P0(σ − ǫ

2 > τ̄(t)))

By following the proof procedure of theorem 6.4 in [3],
Sanov’s theorem [8] can be used to show that both terms in
the last line decay exponentially fast.

(ii) Miss detection probability: UnderH1, the optimal-
ity of BiBGM implies that R̄f(t) ≥ Rf(t) a.s.. Therefore,
lim inf
t→∞

R̄f(t) ≥ Rf > σ + ǫ a.s.. In addition,̄τ(t) converges to
σ a.s.. Hence, the miss detection probability

PM (t) = P1(R̄f(t) < τ̄(t) + ǫ)

vanishes ast goes to infinity.

Corollary 4.1 in [7] implies that ifS1 andS2 are indepen-
dent Poisson processes with ratesλ

(i)
1 and λ

(i)
2 respectively,

then limt→∞ R̄f(t) = γi. Note thatσ is the weighted mean
of γis, where the weight ofγi is the ratio of the number of
epochs in theith interval to the number of total epochs.

IV. M ONITORING ALGORITHM

For continuous monitoring, we propose a sliding window
technique utilizing AFD as its building block, which we
refer to as Adaptive Flow Monitor (AFM). AFM has two
integer parameters, the sliding window size (W ) and the test
period (β). AFM repeatedly executes AFD over theW most
recent samples, which we refer to as theobservation window,
whenever newβ samples arrive. AFM is aimed at detecting
the presence of a flow in the observation window.

At every β sample arrivals, AFM executes the following:

1) Update(si)
2
i=1 by adding newβ epochs, and update

(s̄i)
2
i=1 accordingly using ITA.

2) Run BiBGM over the updated portion of(si)
2
i=1 and

(s̄i)
2
i=1 to find new matches.

3) Based on matches, calculateR̄f using only the epochs
in the observation interval. Calculatēτ using only the
epochs in(s̄i)

2
i=1 whose original epochs before ITA are

in the observation interval.
4) DeclareH1 if Rf ≥ τ̄ + ǫ; otherwise, declareH0.

The computational complexity of AFM is linear with respect
to the number of all the monitored samples.

V. NUMERICAL RESULTS

A. Numerical Results: AFD

We first use the synthetic Poisson traffic with varying rates
to test the performance of AFD. In the first half of samples,S1

andS2 have the ratesλ(1)
1 andλ

(1)
2 , and in the other half, the

9In general, there exists small intervals (with length less thanWS ) around
(
∑(k)

i=1
ρi)t̃, k = 1, . . . , m − 1, in which the rates will disagree with this

statement. However, their effect vanishes ast increases.
10Note thatĈTR(t) in [7] is equivalent to1 − R̄f(t).
11Pi denotes the probability measure conditioning on thatHi is true.

TABLE III
AFD ON MSN VOIP TRAFFIC: WS = 2, α = ∆ = 0.15, ǫ = 0.05.

NUMBER OF EXPERIMENTS: 160, 80,AND 40 FOR SAMPLE SIZE5000,
10000,AND 20000,RESPECTIVELY.

TOTAL TRAFFIC RATES: λ1 = 26.80, λ2 = 34.93. FTPDATA RATE : 11.11.

sample size PF (ITA) PM (ITA) PF (ITAh) PM (ITAh)

5000 0.1000 0.1500 0.0875 0.1063

10000 0.0375 0.0625 0.0375 0.075

20000 0 0.075 0 0.025

rates areλ(2)
1 andλ

(2)
2 . For H0 traffic, we generated the real-

izations of two independent Poisson processes. ForH1 traffic,
Si = F

12
i ⊕Wi: W1, W2, andF

12
1 are independent Poisson

processes, andF12
2 = sort({F12

1 (i)+αi, i = 1, 2, . . .}) where
delays (αi) are i.i.d. and uniformly distributed over[0, ∆]. The
fraction of chaff12 (fc) is 0.4 and 0.7 for the first half samples
and the second half samples, respectively.

Fig. 5 shows the ROC curves of AFD. The ROC curves are
obtained by plotting the false alarm probability (x axis) and the
detection probability (y axis) of AFD with ǫ, while increasing
ǫ from 0 to 1 by 0.01. We tested two different approximation
procedures, ITA (solid line) and ITAh (dashed line). The ROC
curves imply that ITAh results in a better performance. In
AFD, τ̄(t) plays a role of an estimate of the thresholdτ in
BFD, and it is obtained by running BiBGM over(s̄i)

2
i=1.

Compared to ITA, ITAh uses twice more samples to obtain
τ̄(t), so it is natural to expect that ITAh would give a better
performance. As the sample size increases, the ROC curves
moves to the upper left corner implying a better detection
performance.

We also test AFD using the MSN VoIP traffic, which is a
representative example of traffic with a delay constraint. As
described in Fig. 1, we located one laptop (R1) in one room
and two laptops (R3, R4) in another room.R1 is connected
to a wireless LAN via the access pointR0, andR3 and R4

are connected to a wireless LAN via the access pointR2,
where two access points are using different channels. Under
H1, R1 has an MSN VoIP call withR3, andR4 downloads
a file (with 20kB/s rate limit) from an FTP server in our
laboratory. UnderH0, R1 and R3 make independent VoIP
calls, andR4 downloads a file from the same server. We
recorded13 the transmission epochs ofR1 (s1) and those of
the access pointR2 (s2). s1 consists of MSN VoIP packets
and control/management packets, ands2 consists of MSN
VoIP packets forR3, FTP data packets forR4, and con-
trol/management packets (except beacon packets). Table III
shows the result of the experiment. The result implies that
AFD works reasonably well for the MSN VoIP traffic, and
it works well as a heuristic to detect a flow in traffic with
unknown characteristics.

12fc , chaff transmission rate
total traffic rate .

13Window Live Messenger 2009 (14.0.8089.726) was used for MSNVoIP
calls, and Wireshark (ver 1.2.6) network protocol analyzerwas used to collect
the timing measurements.
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Fig. 6. AFM on Poisson traffic:W = 12000, β = 10, α = ∆ = 0.1,
WS = 2, ǫ = 0.04. Until the 2000th sample,λ1 = λ2 = 2. At the 2000th
sample, chaff rates of both nodes decrease by 1, and a flow with rate 9 appears
((λ1, λ2) = (10, 10), fc = 0.1). At the 5000th sample,R1 increases the
chaff transmission rate by 5 ((λ1, λ2) = (15, 10), fc = 0.28). At the 8000th
sample, the flow rate decreases by 5 ((λ1, λ2) = (10, 5), fc = 0.47).

B. Numerical Results: AFM

In Fig. 6, the sample paths of̄Rf , τ̄ , andR̄f − τ̄ are given to
visualize how these statistics of AFM change when the traffic
characteristics change dynamically. When there is no flow,R̄f
and τ̄ are almost same. However, once a flow appears, they
begin to diverge from each other.

We looked at two metrics to measure the performance of
AFM. First, we consider the average number of samples (TF )
that AFM observes until it generates the first false alarm
when it is run over theH0 traffic. TF can tell us how often
AFM would generate false alarms. Second, we look at the
average of the detection delay (TD) which is defined as the
number of samples that AFM observes to detect a flow14.
To numerically obtainTF , we generated the realizations of
independent Poisson processesS1 and S2 with ratesλ1 and
λ2, and ran AFM on them. With a period of 1000 sample
arrivals, (λ1, λ2) rotates among(10, 10), (10, 20), (20, 20),
and (20, 10). For TD, we first generated the realizations of

14If the flow appears at theith sample, and AFM detects it by observing
until īth sample, then̄i − i is a detection delay.

TABLE IV
AFM ON POISSON TRAFFIC: WS = 2, α = ∆ = 0.1, ǫ = 0.04, β = 10.

MONTE CARLO RUNS: 10000FOR TD , 1000FOR TF .

W TF TD (fc = 0.2) TD (fc = 0.6)

2000 5217.4 532.2 1180.5

4000 37111.0 1156.9 2778.7

8000 923330 2476.2 5961.9

independent Poisson processes withλ1 = λ2 = 12. Then,
we made a flow to appear at a certain time (λ1 = λ2 = 20,
fc = 0.2 or 0.6), and measured the detection delay.

Table IV contains the result. The increase infc or W

results in longerTD. This is reasonable because such changes
makes AFD, the building block of AFM, less sensitive to the
appearance of a flow. AsW increases,TF also increases,
and it increases much faster thanTD. Such fast increasement
of TF seems to agree with the exponential dacay of AFD’s
false alarm probability (as the sample size grows). When
W = 8000, TF is 923330, and it means that AFM takes
30778 seconds (8.55 hours) to generate the first false alarm
on average.

VI. CONCLUSION

This paper studied timing-based detection of time-varying
flows in wireless networks. We proposed a practical algorithm
to detect a flow contained in the traffic with varying rates
and unknown characteristics. Then, we presented a sliding
window technique for continuous monitoring. Our algorithms
require only the transmission timings of nodes, which are
easily available in wireless networks. We tested the algorithms
using the MSN VoIP traffic and the synthetic Poisson traffic,
and the results are encouraging.
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