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Transmission timings

Abstract—The problem of detecting the presence of time-
varying flows in multi-hop wireless networks is considered. In Rlﬁu?@
particular, from transmission timing measurements, a test is Rzﬂi Pt 1?
constructed to determine whether there is a flow of data packets
between a pair of nodes. It is assumed that the packet flows may
have time-varying (piecewise constant) flow rates.

First, a timing-based detector is proposed to detect a flow in the
given measurements, and its performance analysis follows. Then, JO0| wireless devices
based on the detector, a sliding window technique is proposed for
continuous monitoring. The techniques are tested using the MSN
Voice over IP (VolP) traffic and the synthetic Poisson traffic.

8 access points

Fig. 1. R; is sending packets tB3 that is in the area covered s, thereby
forming a packet flow fromR; to Rs; the epochs of the packets are marked
with circles. Besides the flowR; and R2 may have other transmissions
[. INTRODUCTION (marked with arrows): control/management packets, and otiier ghckets.

This paper considers the problem of detecting the presence
of time-varying flows in a multi-hop wireless network. Inshould then be incorporated into the detection scheme,hwhic
a wireless network, suppose that we record transmissiGnbeyond the scope of this paper. In addition, when there
timings (epochs) of node®&, and R,, and R, and R, may exists a flow betweem; and Ry, some of their transmission
have time-varying (piecewise constant) transmissiorsratee €pochs might not correspond to the flow. Such epochs are
transmission epochs dt; and R, may correspond to different referred to ahaff epochs. Chaff epochs can originate from
scenarios: Some of these epochs may correspond to a pa¥Réious sources. A node might multiplex the transmissidns o
flow! from R; to R, or vice versa. The flows betwedR, intersecting flows, and it can also add dummy transmissions
and R, may be bidirectional. It is also possible that there it confuse the detection system. _ .
no flow betweenR; and R,, and the transmission epochs at In t'he absenc.e of any header information, we need to impose
these two nodes represent independent transmissionsito thgrtain constraint on how nodes relay packets that belong
corresponding neighboring nodes. Our objective is to detd@ a certain flow. A practical constraint is that, if a node
the presence of a flow betwedty and R;. forwards a flow packet, it must forward the packet within

This problem has a number of practical applications. [ deadlineA. Such a delay constraint is essential for time-
intrusion detection, the interactive stepping stone kttams Sensitive applications such as VoIP, video streaming, etc.
the property that a sequence of nodes (stepping Stor_]es)A'.nRelated Work
the attack path relay packets back and forth. For survedan o K ) 4 b ) ‘ ) K
applications, using simple monitoring devices, one may be ur _worb Wa:js dmotlvgte fy a sherles o_d_pre\_/lousi }llvor s
able to figure out the networking configurations, routes, ar?d;_t'?wg' sse eFec;uon Od' t\g/o_- or|]o uni |rect|ofna oS,
possibly the roots of multicasting trees. Fig. 1 illustsate WNICN Nas been actively studied in the context of stepping-

specific application to network security, where transnoissi SN detection [1]. To deal with encrypted traffic, re-
epochs of a wireless devic&() and an access poink() are searchers restricted the observations to the timing measur
recorded. By detecting the flow betwe@h and R, one can ments. Donohcet al. [2] were the first to employ the flow

see whethei?; is injecting packets into the area covered b odeI_W|th a maximum delay constraint. Their multlscale
the access poinks. nalysis was shown to be able to detect a flow if the flow

Using timing for flow detection is nontrivial, partly becaus lasts for a s_uff|C|entIy_ long time. Following their seminabi, .
we do not assume any information from packet header[Q,"’lny p ractical algorlthms_were proposed to Qetect flows with
only the timing of transmission is used. Of course, head@fnaximum delay constraint (see references in [3]). Doreiho

information may be available in many cases. Such informatié'" [2] al_so men_tloned about the chaff Insertion with the_clal_m
that their algorithm can detect a flow if the chaff portion is

Work in this paper was sponsored by Army Research Office MUF\jndepend?m of the flow. The indep(_andent chaff in;ertion was
Program under award W911NF-08-1-0238. The first author wasiaip also considered by Zhargf al. [4] with the assumption that

supported by Samsung Scholarship. ~ _ only one node is allowed to insert chaff transmissions.
If Ro is relaying some packets received froRy to its neighboring

node, the transmission epochs of those packef3;aand Ro correspond to Th(_e ﬂOW. de.teCtion becomes more Cha“?nging if arbitrary
the flow from R; to Ra. chaff insertion is allowed. For arbitrary chaff inserti@ium et



al. [5] proposed the counting-based algorithm, and analyzedperposition operato€p for a pair of increasing sequences:
the tradeoff between the sample size and the error probabgiiven (a1, as,...) and (by, ba,...), (@), ® (b:)2, =
ties. He and Tong [6] also considered arbitrary chaff ingert (c¢;)2,, where ¢; is the ith smallest element among the
and proposed a matching-based algorithm. Under the Poisstements of two sequendesThen, we mathematically define
traffic assumption, a threshotdwas shown to exist such thata flow between a pair of nodes as follows.
if the fraction of chaff is less tham, the flow is detectable; Definition 2.1: A pair of processesK;, F5) forms aflow
otherwise, the flow can be hidden by proper chaff insertionif for every realizationf; and f,, f; can be partitioned into
However, since the aforementioned studies on unidireatiorf!? and f?! (f; = f!? @ f?!), such that there exist bijections
flow detection were done in the context of stepping-stong : 712 — F12 and g, : F3! — F?! satisfying0 < g, (s) —
detection, they excluded the possibility of the presence of< A, Vs € F12, and0 < ga(s) — s < A, Vs € F3L.
bidirectional flows which are common in wireless netwdrks (F12, £12) and (£2', £2!) correspond to packet flows in

Hence, their algorithms need to be adjusted for use in véiselep, _, ¥, andF, — F, directions, respectively. The bijection
networks. Kim and Tong [7] modified the algorithm in [6] tocondition means packet conservation, antk) — s € [0, A
detect a flow in wireless networks. In this paper, we improvg,syres that every transmission satisfies causality arsktag
the algorithm in [7] so that it can deal with the traffic withyoundA. We define that a pair of point processsand S,
varying rates. contain a flowif they can be partitioned into the flow part
(F;) and the chaff partW;) such thatF,, F) is a flow and
First, to detect a flow in the traffic with varying rates, The flow detection is formulated as follow. L8 andS,
we improve Bidirectional Flow Detector (BFB)the flow genote the transmission processesiofand R,, respectively.
detector presented in [7]. Our detection algorithm hasrsévegjyen the measurements;)2_, in the time interval0, ¢], we
advantages over BFD: (i) Our algorithm can detect a flow evegst the following hypotheses:
though it is contained in the traffic with varying rates. BiffD
needs an accurate threshold that heavily depends on tfie traf Ho : Sy andS, are independent
characteristic, but our algorithm does not require it) @iur H,: S; andS, contain a flow
algorithm can be used as a heuristic to detect a flow in the
traffic with unknown characteristics.
For continuous monitoring of flows, we propose a sliding Il1l. FLow DETECTION: TRAFFIC WITH VARYING RATES
window technique in which we repeatedly run our detectio’&. Fundamental Limit of Timing-based Detection
algorithm over the fixed number of most recent samples, o ]
while removing old samples as new samples are collectedUnNder Ho, intuitively, any pair of S, and S, can be
We present numerical performance analysis for our teclesiguPatitioned into the flow part and the chaff part, if the flow
using the MSN VolIP traffic and the synthetic Poisson trafficate is sufficiently low. This implies that if a flow rate is low
Overall, the numerical results are promising, and the mord @ large amount of chaff transmissions are allowed, then
toring algorithm was able to detect a flow with a reasonabfy! @nd 2 can hide a flow between them by mimickifig.
small detection delay and a low false alarm frequency. Hence, a flow is detectable_ only if its strength is strong gmou
The rest of the paper is organized as follows. In Section ﬁpmpared to the chaff portion. Undf;, the flow strength can

we introduce notations employed throughout the paper, afig Measured by thelative flow ratedefined as below. |
formulate the flow detection problem. Section Il and Sec- Definition 3.1: Let (s;);_, be the realization of(S;);_,

tion IV present the flow detection algorithm and the monitodNders, and (f)7_, and (w;)7_, denote the realizations of
ing algorithm, respectively. Then, supporting numeriesiuits the flow part and the chaff part, respectively. Then,rilative

follow in Section V. Finally, Section VI concludes the papefloW rateis defined as

B. Summary of Contributions and Organization

1)

with remarks. 2
S 1300, 1]
[I. MATHEMATICAL FORMULATION Re(t) 2 Py
We model the transmission timings of each node as a =2 ' @
point process. Uppercase bold letteesg( S) denote point Z [(F; UW;) N[0, ¢

processes, and lowercase bold letteegy,(s) denote their =1

realizations.S (i) is a random variable representing thth Re 2 lim inf Ry ()
transmission epoch, andi) is its realization. In addition§ f = e

denotes the set of all epochs in the realizatoive define a  1harefore R(t) is the fraction of flow epochs in the

2Most studies on stepping-stone detection observe timings péir of observatl_ons up to timé and hlgh R(t) means. that the flow
incoming and outgoing streams at a point. Hence, a flow cannst iexthe ~ Strength is strong compared to the chaff portion.
direction of from the outgoing stream to the incoming stream.

3The original name of the detector is Packet-Forward-Detegt, we 4If the same element appears multiple times (totplin (a1, az,...)
rename it to better describe its purpose. and (b1, ba,...), then it also appears times in(c1, c2,...).



chaff TABLE |

s ty t3 ts BIDIRECTIONAL-BOUNDED-GREEDY-MATCH (BIBGM) [7]
BiBGM(Sl7 So, A)
1. m=n=1;
2: whilem < [8;] andn < [82]
S2 3 if sa(n) < si(m) — A
ty 4: sa(n) is chaff,n «— n + 1,
5. elseifsa(n) > s1(m) + A
6: s1(m) is chaff;m «— m + 1;
Fig. 2. The illustration of BiIBGM operation. 7:  else
8: matchsy (m) with ss(n);
.. . 9: m++—m-+1;,n+<—n+1,
B. Background: Bidirectional Flow Detector 10:  end
. . . .. .. . 11: d
This sectlonllntrod_uges an existing timing-based algorith | 75 fnnarksl i), s2(j) with m < i, n < j as chaff;
for flow detection, Bidirectional Flow Detector (BFDpro-  |13: Ry « heumerornached cpochs
posed in [7]. BFD calculates an upper bound on the actuat rewmkg

Re(t), denoted byR;(t), and compares it to a predetermined
thresholdr to make a decision. Specifically, BFD takes the

following form Under the Poisson traffic assumption, the performance of

BFD was analyzed in [7]. Undek,, R¢(¢) converges almost
{ declareHy if Re(t) <7 3) surely to a constanty, which depends on the rates 8f
declareH; if Re(t) > 7 and S,. For any positive numbet (¢ < 7p), BFD with the
thresholdr, + ¢ is shown to be consistéhif R¢ underH, is
greater thamy +e. In addition, when the chaff parts 8f and
2 S, are independent Poisson processes, a flow can be detected
Z |F: N[0, t]| by BFD consistently, regardless of its strength.
=1
f;,w; 2

A D 1FuW) N o, ]
i=1

wheres; = f; & w; ~ H; means the constraint théf, f5) is
a realization of a flow with a maximum delay constraikt h ation f ; he following limi
Hence,R¢(t) is obtained by optimally partitioningsi)?zl The motivation for AFD stems from the following limita-

into the flow part and the chaff part such that the flow part fons of BFD. To set a proper threshoidof BFD, we need
maximized. In [7], a matching algorithm called Bidirectin to know the details of the traffic characteristics, inclgdin
Bounded-Greedy-Match (BiBGM) was proposed and provéHe interarrival distribution and the traffic rates. Howeve

to achieve this optimal partitioning by finding a maximun?Stimation of such information generally requires a lomgeti
number of valid matches. Givefs;)?_,, BIBGM works as and a large number of samples. Furthermore, some traffic
follows. = characteristicsd.g, traffic rates) might vary in the middle of

Y iy, o e cpochs 5, v unmacne, 1 SEneaton nenal enc, e noed o adatve sohene
2) Lets be the earliest epoch iy US,. Match s with the W ev ug ! ISt

first unmatched epoch ifs, s + A] in the other node. are unknown and tlme—varylng.
3) Move to the next unmatched epotin $; U S,. Match Instead of a predetermined threshold, AFD employs an
¢ with the first unmatched epoch ift, ¢ + A] in the adaptive threshold that is obtained based on the measurgmen

other node. Keep moving to the next unmatched epo@ﬁ follows. As a first step, AFD. assumes temporal indepen-
in 8; U8z and finding its match based on the same rulg?nce to approximate theo tra}fflc using the measurements.
4) After the trial to match the last epoch & U S,, label Fig. 3 describes thg approxmatlo.n procedure, referred to
all the unmatched epochs as chaff and terminate. as Independent-Traffic Appr_ommatlo_n (ITA). ITA has two
Fig. 2 illustrates the operation of BIBGM. BiBGM first triesparameters, the synthesis Wmd(.)w widt an_d th_g gap
to find a match fort;, which is the earliest epoch gy U 8. (a 2 A) bgnNegn subsequent windows. The mtumqn behind
Sincet, is the first unmatched epoch [y, t1 + A] N S5, £, ITA is that if « is Iarge enough, then the epochsSfin A1l
is matched witht,. Next, BIBGM looks for a match fots. and the epochs &, in B1 will tend to be uncorrelated, even

: : a2
However, there is no unmatched epochlf £ + A] N Ss. when a flow exists. Given the measuremefsts’_; in [0, ¢],

Thus, BiBGM markst; as chaff. Then, BIBGM moves tt, ITA works as follows:

and searches for an unmatched epocftint, + AN S;. 1) (8:)7-, denotes the resulting data. Initially; and s,
The implementation of BiBGM is given in Table. I. Its contain no epoch.

computational complexity i€)(|S;| + |S2|), which is linear ~ 2) Take the epochs af; in [0, W], and add them ts;.

with respect to the sample size.

Given (s;)7_,, R¢(t) is obtained by the below optimization.

max .
C. Adaptive Flow Detector

In this section, we present Adaptive Flow Detector (AFD),
a detection algorithm aimed at detecting a flow in the traffic
with varying rates.

6A detector is said to beonsistentif both the miss detection and the
SFor better description, we rename Packet-Forward-Detgdb[BFD. false alarm probabilities vanish as the sample size grows.
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Fig. 3. ITA: The Wg-second intervalsA1, A2, B1, and B2 are cut from Fig. 4. ITAh: Unlike ITA, we do not throw awayA2, A4,... and

the measurements and assembled to approximaté(therafic. B2, B4,.... Here, A1, A2, A3,... andB1, B2, B3,... are cut from the
measurements and assembled to approxirhaeraffic.
TABLE Il

ADAPTIVE FLOW DETECTOR(AFD)

: unless otherwise specified.
AFD(s1, s2, A, t, Wg, «, €): X X .
1 Re — BIBGM(sy, 52, A) In the rest of this section, we present a theorem stating the
2 a — ()82 — 0 performance of AFD for a sufficiently large Suppose that
if fori=0: ;:2L‘%J;1) s W S, andS, are Poisson processes. Undér, let F; and W,
5 e o 7[1'(leer P9 o)+ Wl denote the flow and chaff part & respectively, and suppose
6: Ss1—Si1®ax _ the following’ are true:
7 ap —s2N[(2i+1)(Ws + @), (2i + 1)(Ws + «) + Wg] . . .
8  az — a1 —i(Ws +20a) - (Ws +a) 1) F; and F, are built by two independent Poisson pro-
2:0: oa s B cessesK}2, F2') and two sequences of defayariables
11: 7 — BBGM(31, 52, A) ()2, (Bi)2,), whereFy = Fi2 @ sort({F3!(i) +
if >T+e . .
12: return{ g; 'O\Ef 27T+ Bi, z = 1,2,...}) and Fy = F%l ® SOTt({FF(z) +
x s; M [t1, t2] is a subsequence &f; consisting of the epochs ift1, t2]. a;, 1=1,2, 12}) 21 .
* For a sequencér; )52, and a real number, (z;)52, —r £ (y;)52, where 2) Wi, Wy, Fi#, andF3" are independent.
Yyi =@~ Vil 3) (a;)52, and W are independen{,3;):2, and W are
independent, anda;)2,, (3:)%2,, Fi2, and F3! are

3) Take the epochs of; in [Ws + «, 2Wg + «], subtract independent. )

Ws + a from the epochs, and add themgg quer these assumptions, the below theorem sta'tes the
4) Fori=1,2,..., Lz(W;M)J 1 consistency of AFD when there are rate changes during the

a) Take the epochs &f; in [2i(Ws + «), 2i(Ws + observation interval. )
a) + Wg], subtracti(Ws + 2a) from the epochs, ~ Theorem 3.1:Let py,..., p, € (0,1) be m fixed
and add them t@; . constants satisfying>..", p; = 1. Suppose that in
b) Take the epochs af in [(2i +1)(Ws +a), (2i+ (01 pi)t, (5, pi)t], S1 andS; have the rates{" and

. (k) (k)
1)(Ws+a)+Ws], subtract(Ws+2a)+(Ws+a) A" respectively, and\¥) £ 2722 suppose that, under

from the epochs, and add themig H1, Ry is greater thaw + € a.s., where
Given (s;)?_, in [0, t], AFD employs ITA and operates as m (@)
follows: N Zi?& A (‘,)Oz‘%'
1) Run BiBGM on(s;)7,, and letR¢(¢) denote the result- 2= AVpi
ing Ry. and

2) RunITA on(s;)%, to generatés;)?_,, and run BiBGM
on (§;)7_,. Let 7(¢) denote the resulting. A P ) RN O
3) If Re(t) > 7(t) + ¢, declareH,; otherwise, declarét,. '~ (Az(z;Aﬂg NP2 AN O 0
If Ho is true, R¢(t) and 7(t) are expected to be close. T+2AA AT =A" = A
Instead of a predetermined thresheldAFD uses an adaptive  Then, if ¢ goes to infinity, the miss detection probability of
thresholdr(¢) +¢, wheree is added to allow a small differenceAFD with e vanishes and its false alarm probability decays
betweerR¢(t) and7(t) underH,. If H; is true and the relative exponentially fast.
flow rate is high enoughR;(¢) is expected to be greater then gyetch of Proofliet 7 denote the time length ofs;)2_;.
7(t). Implementation of AFD is given in Table. Il. It containsthen 7 — I =

. . _ _ mjws. Due to the traffic assumptionS;
:;F%I(TStTTIgeT) 2-10. The computational complexity of AFD,y S, are independent nonhomogeneous Poisson processes,
1 20)-

regardless of the true hypothesis. In addition, for suffitye

In ITA, the number of epochs ins;)%; is at most a & a k—1 N7 RN
half of that of the original measurements. Fig. 4 describtle%rget’ the rates ofS; and Sy in [ iy i)t (Liza £i)1]
a heuristic (which we refer to as ITAh) to double the number 71ne performance of AFD depends on how we;)2_, approximate
of epochs in(s;)?_,. Although no further analysis is provided,Ho traffic. However, underH;, the fact that a flow exists does not give
numerical results in Section V show that this heuristic feagnoudh detail about the correlation betwegn and S, which affects the
. . quality of theHo approximation. Hence, to assess the performance of AFD,
to a better performance of AFD. In the upcoming analysis ag@ impose more assumptions to further specify the correlation.

the simulations in Section V, AFD employs ITA, not ITAh, 8, 8; € [0, A] as., Vi.

R (i) ()
QAEI)Aél)(ezAAQ _e2any

if A(D £ A0




. . TABLE I
are)\gk) and Aék) respectively. Therefore, corollary 4.1in [7]  AED on MSN VoIP TRAFFIC: Ws =2 a=A=0.15 = 0.05.

impliest? that 7(¢) converges tar a.s.. NUMBER OF EXPERIMENTS 160, 80,AND 40 FOR SAMPLE SIZE5000,

: ITY it 10000,AND 20000,RESPECTIVELY
(I) False alarm probablllty. The false alarm probab|I|t§7 1S TOTAL TRAFFIC RATES. A1 = 26.80, Ao = 34.93. FTPDATA RATE: 11.11.
Pr(t) = Po(Rs(t) > 7(t) +¢)

< Poy(Re(t) > o + &) + Po(Re(t) < o + &, Re(t) — e > 7(t)) sample size[| Pr (ITA) | Pas (ITA) || Pr (ITAh) | Pas (ITAh)
< Po(Rf (t) >0+ %) + Po(O' _ % > f(t))) 5000 0.1000 0.1500 0.0875 0.1063
10000 0.0375 0.0625 0.0375 0.075
By following the proof procedure of theorem 6.4 in [3], 20000 0 0.075 0 0.025

Sanov’s theorem [8] can be used to show that both terms in
the last line decay exponentially fast.

(i) Miss detection probability: UnderH,, the optimal- @) @) ]
ity of BIBGM implies that Re(t) > R¢(t) a.s.. Therefore, rates are\;” and\;”. For H, traffic, we generated the real-

liminf R (t) > Rf > o + ¢ a.s.. In addition7(¢) converges to izations of two independent Poisson processesHrotraffic,
t—o0 - . . - S; =F12aW;: W, Wy, andF}2 are independent Poisson
o a.s.. Hence, the miss detection probability ’ v ' ' ' 1

processes, anBli? = sort({F1?(i)+ay, i = 1,2,...}) where
Py (t) = Pr(Rg(t) < 7(t) +¢) delays ¢;) are i.i.d. and uniformly distributed ové, A]. The
fraction of chaft? (f.) is 0.4 and 0.7 for the first half samples
and the second half samples, respectively.

Corollary 4.1 in [7] implies that ifS, and ?5 are indepen- g 5 shows the ROC curves of AFD. The ROC curves are
dent Poisson processes with rated and\;” respectively, qpiained by plotting the false alarm probabilityxis) and the
thenlim; .. R¢(t) = ;. Note thato is the weighted mean getection probabilityy axis) of AFD withe, while increasing
of v;s, where the weight of;; is the ratio of the number of . fom 0 to 1 by 0.01. We tested two different approximation
epochs in theth interval to the number of total epochs.  yrocedures, ITA (solid line) and ITAR (dashed line). The ROC

IV. MONITORING ALGORITHM curves imply that ITAh results in a better performance. In
. . .- .. AFD, 7(t) plays a role of an estimate of the threshaldn
For continuous monitoring, we propose a sliding WmdovféFD and it is obtained by running BIBGM ovefs;)2_,.

:szgmguz ULILI:IZ&IIH% eAFFI?O as,vll;sn_tt; l:IIdESMbIOXE’MW;gCh tWOeCompared to ITA, ITAh uses twice more samples to obtain
' S piv W itor ( ): s W 7(t), so it is natural to expect that ITAh would give a better

m:rai%(cejr (gfr}iﬁfﬂtif’;gfa;“dg]fex?:sov/zpsﬁ \),(;ntdméh;éi?t performance. As the sample size increases, the ROC curves
P ' P y moves to the upper left corner implying a better detection

recen mpl which we refer rvation win
ecent samples, ch we refer to as timservatio dow gperformance.

whenever news samples arrive. AFM is aimed at detectin . ) L
the presence of a flow in the observation window. We also test AFD using the MSN VoIP traffic, which is a
At every 3 sample arrivals, AFM executes the following: representative example of traffic with a delay constrairg. A

. described in Fig. 1, we located one laptap;} in one room
)2
b gp)%ate;izggémb); al?g'nng#iwﬁ epochs, and Updateand two laptops B3, R4) in another room.R; is connected
2) I;ar::éiBGM ovgrythe ug datéd ortion @6;)2_, and to a wireless LAN via the access poifity, and R3 and Ry
(s1)2_, to find new matcEes P 1=l are connected to a wireless LAN via the access péint
Si)i=1 = . where two access points are using different channels. Under
3) .Based on matc.hes., calculzg using only the epochs ‘Hi, Ry has an MSN \oIP call withR3;, and R, downloads
in the ObS?I’VZatIOH mterva_l. _Calculafeusmg only the a file (with 20kB/s rate limit) from an FTP server in our
_epochs 'n(si)i:.l wr_lose original epochs before ITA areIaboratory. UnderHy, Ry and R3; make independent VolP
4 'Setgzrggfeﬁlit'oi I[]t—ir\/'agtherwise declaré( calls, and R, downloads a file from the same server. We
LERf =776 e 0 recorded® the transmission epochs @, (s;) and those of
The computational comple>§|ty of AFM is linear with respecfhe access poinR, (s2). s, consists of MSN VoIP packets
to the number of all the monitored samples. and control/management packets, and consists of MSN
V. NUMERICAL RESULTS VOI|7 packets forRj3, ETP (data pakc):kets f0R4,kano)I conb-I
. ) trol/management packets (except beacon packets). Table II
A Numerlcal Results: AFP _ o _ shows the result of the experiment. The result implies that
We first use the synthetic Poisson traffic with varying rategFD works reasonably well for the MSN VoIP traffic, and
to test the performance-lof AFD, In the first half of samp®s, it works well as a heuristic to detect a flow in traffic with
andS, have the rates)ﬁ ) and )\é ), and in the other half, the ynknown characteristics.

vanishes ag goes to infinity.

9In general, there exists small intervals (with length lessifV5) around

O pi)i, k=1,..., m — 1, in which the rates will disagree with this 127, 2 chaff wansmission rate
statement. However, thew ef.fect V?I‘]IShGSt ascreases. B3window Live Messenger 2009 (14.0.8089.726) was used for NBIR
ONote thatCTR(t) in [7] is equivalent tol — R¢(t). calls, and Wireshark (ver 1.2.6) network protocol analyzas used to collect

11p; denotes the probability measure conditioning on tHatis true. the timing measurements.



TABLE IV
AFM ON POISSON TRAFFIC Wg =2, = A = 0.1, ¢ = 0.04, § = 10.

ROCs

=
09 - MONTE CARLO RUNS: 10000FORTp, 1000FORT .
0.8
w Tr Tp (fe =0.2) | Tp (fe=0.6)
o7 2000 || 5217.4 532.2 11805
08 4000 37111.0 1156.9 2778.7
‘]E 0.5% 8000 923330 2476.2 5961.9
- —o6— 500 (ITA)
04 —&— 1000 (ITA)
—A—— 2000 (ITA)
0.3 — -©— 500 (ITAh) q
o T2 couman | independent Poisson processes wWith= \, = 12. Then,
ot we made a flow to appear at a certain timg & Ao = 20,
_ ‘ ‘ ‘ ‘ fe = 0.2 or 0.6), and measured the detection delay.
0 0.02 0.04 0.06 0.08 0.1

h, Table IV contains the result. The increase fp or W

_ @ ) results in longefl'p. This is reasonable because such changes
Flg, o ROC curves of AFDIs =2, o= 8 = 0.1, A, =2 ° =10, makes AFD, the building block of AFM, less sensitive to the
A=Ay =20, fe ' =04, fe" = 0.7, 10000 Monte Carlo runs. appearance of a flow. A$V increasesT also increases,
and it increases much faster th@p. Such fast increasement

of Tr seems to agree with the exponential dacay of AFD’s
false alarm probability (as the sample size grows). When
W = 8000, T is 923330, and it means that AFM takes
30778 seconds (8.55 hours) to generate the first false alarm

on average.

VI. CONCLUSION

This paper studied timing-based detection of time-varying
flows in wireless networks. We proposed a practical algorith

b = ] to detect a flow contained in the traffic with varying rates
, and unknown characteristics. Then, we presented a sliding
-0.1 L L L L L y . . . . . .

200 400 600 800 1000 1200 window technique for continuous monitoring. Our algoritim

(number of samples)/10

require only the transmission timings of nodes, which are
Fig. 6. AFM on Poisson trafficiV = 12000, 8 = 10, « = A = 0.1, easily available in wireless networks. We tested the allgos

Wgs = 2, € = 0.04. Until the 2000th sample); = A2 = 2. At the 2000th : : . . :
sample, chaff rates of both nodes decrease by 1, and a flowatél®rappears using the MSN VoIP traffic and the Synthetlc Poisson traffic,

(A1, X2) = (10,10), f. = 0.1). At the 5000th sampleR; increases the and the results are encouraging.
chaff transmission rate by $X1, A2) = (15, 10), fe = 0.28). At the 8000th
sample, the flow rate decreases by(%i( A2) = (10,5), fo = 0.47). REFERENCES
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