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ABSTRACT Compromised node

Transmission epochs

S & i o e
Rt TOREOWE AT

In mobile ad hoc networks (MANETS), timing information is easily
available due to the use of a shared medium, even when the traffic
is encrypted. This paper addresses how such timing information can
be used for detecting packet forwarding activities in MANETS.

Our results depend in part on the previous results on unidirec- © Normalnodes W Adversary nodes
tional flow detection. We first provide further analysis for the unidi-
rectional flow detector proposed in [1], under the independent Poiq:ig_ 1: Epochs with circles, rectangles, triangles, and arrows are
son chaff assumption. Regardless of the fraction of chaff, itis Show'épochs of the flowt, y, =, and chaff, respectively. Adversaries ac-
that flows can be detected consistently, and the false alarm pmbaba'uire information thourgh the flow, and spread harmful packets via
ity decays exponentially fast as the sample size grows. the flowy.

Then, we consider the detection of packet forwarding. Our ap-
proach is based on the duality between packet forwarding and unidi.1. Related Work

rectional flows. We propose a threshold-based detector and concluq%. K . db . f b he d . f
that its performance characteristic is the same with that of the unidi- !;_wort_ Wals_ rr;otlvatt(_e f?/ a sen? cr)] E ap(te)rs a otu:jt_ g . ezﬁctlon 0
rectional flow detector. unidirectional information flows, which has been studied in the con-

text of the stepping-stone detection [2]. Especially, to deal with en-
crypted traffic, timing characteristics are used in detection. Donoho
1. INTRODUCTION et al.[3] employed a flow model with a maximum delay constraint,
and proposed a multiscale analysis for detection. Chaff noise was
Timing information of a node in a mobile ad hoc network (MANET) briefly mentioned with the claim that flows can be detected if the
is easily available to other nodes in its transmission range, even ighaff noise is independent of flows. Zhaeigal. [4] also proposed a
the case of encrypted traffic. Both detection systems and netwoiliming-based detection of flows with bounded delay and dealt with
intruders can acquire the timing information and make use of it aghe insertion of independent chaff, but they assumed that only one
needed. Especially, this paper addresses how timing information cdrode can insert chaff transmissions.
be used for detecting packet forwarding between a pair of nodes. The problem becomes more challenging if the nodes are allowed
Our objective is to detect whether there exists packet forwardto insert chaff in an arbitrary way to hide flows. Blwehal. [5] pro-
ing between a pair of nodd®; andR,. We assume that end-to-end posed a counting-based detector and modified their detector to deal
delays are uniformly bounded above by a positive real nundher With arbitrary chaff insertion, but it can handle only a limited num-
This assumption is valid if the MANET is carrying packets of a realber of chaff epochs. For arbitrary chaff insertion, [6] first preed
time application €.g, audio/video streaming or Voice over IP (VoIP) @ timing-based detector that can perform consistent detection even
application). Our detector is supposed to observe only the transmid-the amount of chaff grows linearly with the traffic size, and every
sion epochs of each node, so that it is applicable to encrypted traffi@ode can insert chaff epochs. Moreover, itis shown in [1] that there
In practice, a node can multiplex different traffic in its transmissions €Xists a threshold on the fraction of chaff below which consistent
and it can also introduce dummy transmissions to confuse a detectiél¢tection is guaranteed by a single detector and beyond which the
system. Hence, even when there exists packet forwarding betwed@ws can be completely hidden.
R1 andR,, some transmission epochs of the nodes might not belong Although there have been successful studies about detection of
to the packet forwarding, and such epochs are referredc¢ha® unidirectional flows, most of them excluded the possibility of bidi-
As illustrated in Fig. 1, adversary nodes may compromise soméectional communication which is quite common in MANETS. Hence,
nodes in a MANET and use them to acquire useful information oth0se results are not directly applicable to the detection of packet
spread harmful information to innocent nodes. Then, our detectiofPrwarding. To our best knowledge, this is the first attempt to detect
algorithm can single out the compromised nodes by detecting packB@cket forwarding in MANETS based on timing information.
forwarding between them and adversaries. On the other hand, the al-
gorithm can be employed by adversaries to gather preliminary inforl.2. Summary of Results and Organization
mation before launching attacks.

First, we show that the unidirectional flow detector proposed in [1]
Work in this paper was sponsored by National Science Foiordan- is consistent regardless of the fraction of chaff if the chalff portion of
der Contract CCF-0728872 and Army Research Office MURI Prograder (WO nodes are independent Poisson processes. Furthermorédséne fa
award W911NF-08-1-0238. The first author was partially sugabby Sam-  alarm probability decays exponentially fast as the sample size grows.
sung Scholarship. Donohoet al. [3] also claimed the detectability of flows under the




independent chaff assumption. However, their multiscale analysis i®alizations of independent procesSesandS- can be decomposed

difficult to be applied on a real-time basis. In contrast, our detectointo a flow part and a chaff part if the rate of the information flow

can operate on a real-time basis, and the behavior of error probabiis sufficiently low. Hence, for an information flow to be detected,

ties is well analyzed under the Poisson assumption. the strength of the flow needs to be strong enough. Utigrthe
Secondly, we present a threshold-based detection algorithm fatrength of a flow can be measured ¢haff-to-traffic ratio(CTR)

packet forwarding detection. There exists a duality between packetefined as follows.

forwarding and unidirectional flows. Based on the duality, we con- ) o ) )

clude that the packet forwarding detector has the same performan&€finition 3.1 [1] Given the realizations of an information flow

characteristics with the unidirectional flow detector. For arbitrary(f:)7=1 and chaff noisgw:)?_,, the chaff-to-traffic ratio(CTR) is

chaff insertion, there exists a phase transition in detectability wittflefined as

respect to the fraction of chaff. And, if the chaff portions of two

2

nodes are independent Poisson processes, then packet fogvardin Z W, N o, ¢]|
can be detected consistently regardless of the fraction of chaff. A =

The rest of the paper is organized as follows. Section 2 intro- CTR?) = 2 )
duces the notations and mathematical models employed in this paper. Z [(F: UW;) N o, #]| 2
In section 3, we study the unidirectional flow detection under inde- =1
pendent chaff assumption, and present numerical results. Section 4
introduces the packet forwarding detection problem and proposes a CTR2 limsup CTR(%)
detection scheme and its performance analysis. Finally, section 5 t—o0
concludes the paper with remarks on its contributions. To evaluate the performance of detection algorithms, we borrow

the following notion ofChernoff-consisterdetection [7].

2. MATHEMATICAL MODELS - o
Definition 3.2 [1] Let §; be a detector that uses all timing data

We model the transmission epochs of each node as a point proce$#. to time t. The detectaf; is called r-consistent(r € [0, 1])
Uppercase bold letterg g, S) denote point processes, and lower- if it is Chernoff-consistent for all the information flows with CTR
case bold lettere(g, s) denote their realizations. For a point processPounded almost surely by In other words, the false alarm proba-
S, S(i) denotes théth transmission epoch andi) denotes its real-  bility Pr(6:) and the miss probabilitys; (6:) satisfy the following:
ization. Given realizations of two point processgs,, az, ...) and

(b1, b, . ..), @ is thesuperposition operatodefined agax )32, ® 1. lim Pp(8;) = 0forany(S;)?_; underHo;
(br)521 = (ck)p2y, whereey < ¢z < ...and{ax}pe, U{bk}ie, = t—o0

{ex}72,. And, given a realizatios, we useS to denote a set of all 2. sup lim Py(6:) =0, where

epochs irs. An information flowwith a maximum delay constraint (Si)2_,ePt™>

A can be formally defined as follows [1].

Definition 2.1 An ordered pair of processé¥';, F) forms aninfor- P = {(S:)i=1 : (S:)i=1 contains an information flow,
mation flowif for every realization(fi, f>), there exists a bijection and lim sup CTR(t) < r a.s}.
g:F1 — Fasuchtha) < g(s) —s < Aforall s € Fi. t—oo

The bijection condition meansacket conservatigrandg(s) — s € 3.3. Background: Detect-Bounded-Delay

[0, A] impliescausalityandthe delay bound\.
In [1], He and Tong proposed a threshold-based detector, called

Detect-Bounded-Delay (DBD), and provided its performance anal-
ysis for arbitrary chaff insertion. DBD calculates a lower bound

fT\R(t) of the true CTR¢) and compares it with a predefined thresh-

old 7. Specifically, DBD takes the following form

3. DETECTION OF UNIDIRECTIONAL FLOWS

3.1. Problem Statement

Let S; and S» denote the transmission processeshaf and Ro,

respectively. By observin§: andS, for some timet (¢ > 0), we { declareH, if G/T:R(t) > T 3)

want to test the following hypotheses: declareH, if CTR(t) <7
Ho: S andS; are jointly independent 1) Given the realizations; ands,, the test statisti€TR(#) is cal-
Hi: (S1, S2) contains an information flow culated by the following optimization

(S1, S2) is defined tocontain an information flowif (Siﬁ:1 9

can be partitioned into an information fI(Mz"Zv)?:1 and a chaff part Z W, n o, 4|

(W;)Z_,. Note that this hypothesis testing is applicable only if there . R

can exist a flow in only one direction and the direction is known CTR(t) £ min Ca— 4)

fi,wis;=f;®dw;~H,

> IF W) no, 1]

i=1

priorly, and such conditions are unrealistic in MANETs. However,
the analysis given in this section takes an important role in solving

the packet forwarding detection problem in section 4. ) )
wheres; = f; ® w; ~ H; stands for the constraint thef, f) is a

realization of an information flow with a delay bourd

In [5], Blum et al. gave an algorithm, called Bounded-Greedy-
Using timing information alone imposes a limit in detecting unidrec-Match (BGM), that achieves the above optimization. Given the mea-
tional flows under the presence of chaff. Because, intuitively, an)surement$si)?:1, BGM works as follows:

3.2. Fundamental Limit of Timing-based Detection



1. Lets be the earliest epoch By. Matchs with the first un-  (W;)?_,. By the assumptions of the theore®WV,; and W are in-
matched epoch ifs, s + A] in 8s. dependent Poisson processes with the rates Ay and X2 — Ay,
respectively.
Consider running BGM ofiF;)%_, and(W)%_, separately un-
til time ¢, and denote the total number of the chaff epochs found in
) this way byC'(¢). Let CTRw (t) denote the resulting chaff-to-traffic
3. After the trial to match the last epo_chsrj, label all the un- atio when we run BGM ovefW,)2_, until time ¢. Because run-
matched epochs as chaff and terminate. ning BGM over the whole measurements is the optimal partitioning
to minimize the chaff portion, running BGM separately over the flow
part and the chaff part will result more number of chaff epochs. In
other words, the optimality of BGM implies thél(t) is greater than
or equal toC'(¢). In addition, since running BGM ofF;)?_, results
Theorem 3.1 [1] If S; andS; are independent Poisson processesno chaff,C(t) is the number of chaff epochs resulting from running
with rates\; and \., respectively, the€TR(#) satisfies the follow- BGM over (W;)7_, until time¢. Hence,

ing with probability one. .
C(t) < C(t) = Ne(t)(CTRw (¢)).

2. Move to the next epochin §1. Matcht¢ with the first un-
matched epoch ift, ¢t + A] in 8. Keep moving to the next
epoch in§; and finding its match based on the same rule.

For the implementation of BGM, please refer to table 3 in [1].

In [1], for two independent Poisson proces$asand S, G'I'\R(t)
was shown to converge almost surely to a certain value.

Jim CTR() Dividing both sides byV (¢) leads to
Q2 —d)(+(GPedM) 4
_ - AL 2 C(t) _ N.(t) Nc(t)/t
={  (e+r)(1—(31)eA(M1-22)) < Nel®) iotRy (1)) = Do CTRw(t)). (5)
TTAA ’ i Ay = Ao = A NG = N CTRw ) = T (CTRw (@)
Based on theorem 3.1, the following theorem states the consiél-ve have
tency of DBD under arbitrary chaff insertion. P —
y y SO _ Ry, tim Ne®/t At A =2y o
N(t) t—oo N(t)/t A1+ A2

Theorem 3.2 [1] Suppose thaBS; and S, underH, are indepen- lim CTR  CTRuo D — A Ao — A
dent Poisson processes, anddenoteslim CTR(t) under . If Jim CTRw (8) = CTRo[M = Ay, Az = As]as.

the thresholdr of DBD satisfies < 79, then DBD isr-consistent. —

In addition, the false alarm probability decays exponenentially fastvhere CTRio[x1, x| stands for the value ofim CTR(t) whenS,

as the sample size grows. andS. are independent Poisson processes with the ratesidx,,
respectively. Hence, taking the supremum limit of both sides in (5)

On the other hand, if the fraction of chaff is allowed to be greateresults in

thanty, then the nodes can hide flows by mimickihfy based on

the schedule found by BGM. lim sup CTR(t) < wig%cmm[h —Af, A2 — Af]as.
t—o0 1 2
3.4. Detectability under Independent Chaff Assumption Above, replacing CTRo[A1 — Af, A2 — A¢] with the closed-form
expression given in theorem 3.1 finishes the proof. [ |

In this section, under the assumption that chaff portions of two nodes

can be modeled as independent Poisson processes, we show that Based on lemma 3.1, the following theorem guarantees the con-

DBD is able to detect flows regardless of how high the fraction ofsistency of DBD under independent Poisson chaff assumption.

chaff is. The first step of the proof is to calculate an upper bound of ) )

lim sup CTR(t) undert; as follows. Theorem 3.3 Suppose that (i) undet{o, S1 and S, are Poisson
t—o0 processes, and (i) undér,, the chaff portions oz, and R- are

independent Poisson processes. In addition, the transmission rates
Lemma 3.1 Suppose thaB; and S, have the rates\; and )\, re- of R; and R, are \; and )z, respectively. Then, for any ¢

spectively, andS:, S2) contains an information flow with the rate (Mrm 1), there exists a proper threshokdfor DBD, such that
Ay. If the chaff portions of?2; and R2 can be modeled as indepen- MDHz e prop 8 ’

) ] ity o ' DBD is p-consistent. Especially, the followingcan be used.
dent Poisson processes, them sup CTRt) satisfies the following

. . i - t—oo A1 (34p)—Aa(1—p) _
inequality with probability one. Q2= A) U+ (Sharg=a2a=gy et P17 22))

5BFp) =21 (I—p .
if Ay # A
= r={ GGl e A
im s 14 . o
lim sup CTR(?) PESYCRIN if A= Ao = A
_ M A - A2) . .
e OHCG=xp e T ) ey £ Ao Moreover, the false alarm probability decays exponentially fast
<< GeRana—( i;:if JetA1mA2)) as the sample size grows.
A=Af .
Ay if A= Ao = A _ B _ o
AFA=A)A) P Proof: Fix p € (1317321 1), and definer as given in the theo-
1+A2

Proof: N(t), Ny(t), and N.(t) are random variables denoting the rem's statement. Them < “4% < 1. In addition, define\; to
true number 2of total epochs, information flow epochs, and chaffe the value satisfying+: = )‘li)‘j_;”‘f or equivalentlyl; =
epochs in(S;);_, until ime ¢. In addition,C(t) is a random vari- (4 x,)(1-p) In oth dsi i lh 2  the inf ion f
able denoting the number of chaff epochs found by running BGM 4 : .n ot erwor. i)l‘f ISt e+2ate 0_t e'ln ormation flow
over (S;)?_; until timet. BecausdS;)?_; contains an information ~When the fraction of chaff i§7=, and“~ < 1implies that\; > 0.

flow, it is a superposition of the flow pafF;)?_, and the chaff part ~Now, leth(z) £ AE22222 CTRyo[\ — 2, A2 — 2]. We can easily



CTR versus the number of total samples.
Fraction of Chaff under H, = 0.95.

The above is different from the problem in section 3.1 in tRatnd
02 ‘ ‘ ‘ ‘ ‘ R are allowed to have flows in either or both directions urider

0.18f : : : ] 4.2. Packet-Forward-Detect

In this section, we propose a threshold-based detector referred to as
Packet-Forward-Detect (PFD). PFD first calculates a lower bound

6 e | CTR(t) of the true CTRt). Then, it compare€TR(t) to a pre-
o ’ ' T esammas| | defined threshold and makes a decision. PFD takes the following
033 ] form,

0.12} : : :
oa1f 1 declareHo if CTR(t) > 7 ©)
01 1 5 s : L . declareH; if CTR(t) <7

the number of total samples X 10°

Given (s;)?_q, (fTVR(t) is obtained by the below optimization.

Fig. 2: CTR versus the number of total samples. = A\» = 10. 2
Fraction of chaff undet; = 0.95.A = 0.5. > Wi o, 1|
check thath(z) is strictly decreasing if0, min(A1, A2)], andr is Y rr2111n 2 =t
equal toh(Xy). F5 8w 12 g21 .
q (Ar) o (2 pwi o, DT UTTUW) N0, 1]

(i) Miss detection probability: Undek(;, consider the case that
CTR is no greater thap. If \; is the rate of the information flow,
thenh; — Quta)0=CTR _ 5 & Qui+d)(1-Gpr)/4) o 5, Wheres; = (£12 @ £2) ® w; ~ H, stands for the constraint that

2 2 (f12, £32) and(f3', f7') are realizations of information flows with

1=1

because CTR< p < 22t < £El Then, lemma 3.1 and the

o . 2 a delay bound\.
monotonicity ofh give, undert; when CTR< p, Thi above optimization can be achieved by a matching algo-
lim sup C/T\R(t) < h(Af) < h(Af) < h(j\f) —r as. rithm called Bidirectional-Bounded-Greedy-Match (BiBGM). As the
t—oo name stands, BiBGM can be understood as a bidirectional version of
Hence, if CTR < p, thj& Pr(éT\R(t) > 7) = 0, meaning the BGM. Given the measuremen(s; )7, BIBGM works as follows:
Vanishing miss detection probabmty 1. Lets be the earliest epOCh 8}1 U 82. MatChS Wlth the fil’st
(if) False alarm probability: Undekto, unmatched epoch if3, s + A] in the other node.

2. Move to the next unmatched epotln §; U 8. Matcht
with the first unmatched epoch jify ¢+ A] in the other node.
Keep moving to the next unmatched epochSinU 82 and
finding its match based on the same rule.

Jlim CTR(t) = CTRuo[A1, Xo] = h(0) > h(X;) =T as.

and theorem 6.4 in [1] imply the exponential decay of the false alarm
probability. Thus, DBD with the thresholdis p-consistent. [ |
3. After the trial to match the last unmatched epoch, label all the

For anyp less than 1, theorem 3.3 can give ug-aonsistent unmatched epochs as chaff and terminate.

detector if the chaff portions are independent Poisson processes.
The implementation of PFD is given in Table 1, and BiBGM is

3.5. Numerical Results: Independent Chaff Processes included in lines 1-12. Its computational complexity(¥|S:| +

) ) ) - _182]). In addition, if an epoch is once labeled as chaff or matched
This section presents a numerical result for the detectability under ingy another, BIBGM no longer needs the epoch for processing newly
deper;dent Poisson chaff assumptl(ﬁm)?:.l underH, and(F;);_,, incoming observations. Combined with the linear complexity, such
(W5)i—, underH, are all modeled as Poisson processes. Delays argnaracteristic makes PFD applicable on a real-time basis. To show
i.i.d. and uniformly distributed i0, A]. Fig. 2 shows the plots of e gptimality of BIBGM, we introduce the following lemma regard-
CTR(t) with respect to the number of total epochs observed. Undeing the relation between BiBGM and BGM.
'H1, the fraction of chaff was set to be 0.95, meaning that 95 percent
of epochs are chaff noise. Neverthless, we can seeQfi val-  Lemma 4.1 Running BiBGM or(s;);_; is equivalent to:
ues of two hypotheses become completely separable, as the sample 1 |ncrease all the epochs sf by A.
size grows. The dashed straight line between GIRR plots is the

thresholdr given in theorem 3.3, 2. Apply BGM with the delay constrai2\ to the modified mea-

surements.
4. DETECTION OF PACKET FORWARDING Proof: Let s be a sequence generated by increasing every epoch in
s2 by A (i.e, 52(7) = s2() + A, 1 <7 < |82]). The concrete steps

4.1. Problem Statement of BIBGM are shown in table 1. There, we can replagén) with
This section deals with timing-based detection of packet forwarding?Q(") — A, and rewrite the steps as follows.
By observingS; andS, for some time (¢ > 0), we want to test the 1. me—1,n«1.
following hypotheses. 2. If s1(m) > 82(n), n — n+ 1; else ifsy (m) + 2A < &2(n),

Ho : S1 andS, are jointly independent m < m + 1; else, matchs1 (m) with s2(n) andm « m +

Hi: (S1, S2), (S2, S1), or both contain an information flow ILn—n+L



Table 1: Packet-Forward-Detect (PFD)

PFD(sl, S2, A, 7'):
1. m=n=1,
2: whilem < |81]|andn < |8q]
3 ifsa(n) <si(m)—A
4. s2(n) is chaffin — n + 1;
5:  elseifsa(n) > si(m) + A
6: s1(m) is chaffm «— m + 1;
7 else
8: matchsi (m) with s2(n);
9: m—m-+1,n<—n+1;
10: end
11: end
12: marksi (4), s2(j) withm < i, n < j as chaff;
. ATC the number of chaff epochs
13: CTR «— —\Sllﬂégl poch
14: return{ Hi ifCTR<7
Ho 0.w;

3. Ifm < |81] andn < |82, go to step 2; otherwise, label all
the unmatched epochs as chaff and terminate.

The above steps are exactly the steps of running BGM svand
$o with the delay constrai®A (refer to table 3 in [1]). Hence, the
statement is proved. [ ]

The following theorem states the optimality of BIBGM.

Theorem 4.1 BiBGM optimally partitions the measurements into
the R1 = R flow, the R, = R; flow, and the chaff part such
that the number of chaff epochs is minimized.

Sketch of ProofThe statement results from the optimality of BG
lemma 4.1, and the fact that, farc 8, andb € S, |a — b| is less
thanA if and only if the ordered paifa, b + A) satisfies causality
and the delay constraiai®. [ |

M,

Under H,, if we increase every epoch iy by A, then the

packet forwarding portion forms unidirectional flows with delay boun

2A. Combining this and lemma 4.1, we can observe that runnin
PFD over(s;)%, to detect packet forwarding with delay bourd
is equivalent to running DBD oves; ands, to detect flows with
delay boun®A, wheres; is obtained by increasing every epoch in
s2 by A. Directly from this argument, we can conclude that PFD

has the same performance characteristic with DBD, as stated in the

following corollaries without an additional proof.

Corollary 4.1 If S; andS; are independent Poisson processes with

rates \; and Ao, respectively, theréTvI?(t) satisfies the following
with probability one.

tlim aJRt)
Ag— A1) (14(21)e2A(A1—22) )
(a2 )i £ A

=4 (eta)-(3h)e2ati=r2)
oA ifA =X =)

Note that the value is equivalenttﬂdm C/T\R(t) in theorem 3.1 with
the maximum delay constraipi\.

Corollary 4.2 Suppose tha8; and S, uldJer’Ho are independent
Poisson processes, and denotestlim CTR(t) underH,. If the

1An ordered pair(z, y) is said tosatisfy causality and the delay con-
straintaif 0 <y —z < a.

thresholdr of PFD satisfiesr < 19, then PFD isr-consistent. In
addition, the false alarm probability decays exponenentially fast as
the sample size grows.

For arbitrary chaff insertion, if the fraction of chaff is allowed to
be greater tham, then BIiBGM provides a way to schedule packet
forwarding and chaff insertion to mimig(y, thereby avoiding the
detection. The following corollary guarantees the detectability under
independent Poisson chaff assumption.

Corollary 4.3 Suppose that (i) undek,, S and S, are Poisson
processes, and (i) undét,, the chaff portions oz, and R, are
independent Poisson processes. In addition, the transmission rates
of Ry and R, are \; and \q, respectively. Then, for any €

('illiz‘, 1), there exists a proper thresholdfor PFD, such that
PFD'is p-consistent. Especially, the followingcan be used.
s s )
T= (Aztﬁ)(l—(%)ﬁA(ﬁfﬁn |
TTENIEA if A=A = A

Moreover, the false alarm probability decays exponentially fast as
the sample size grows.

5. CONCLUSION

In this paper, we studied timing-based detection of packet forward-
ing in MANETSs. As a first step, we analyzed the performance of
Detect-Bounded-Delay [1] under independent chaff assumptioen,Th
we proposed a packet forwarding detector and analyzed its perfor-
mance under various chaff assumption. Especially, when chaff por-
tions are independent Poisson processes, packet forwardingecan b
detected consistently regardless of its strength.

6. REFERENCES

[&] Ting He and Lang Tong, “Detection of Information Flows,”
IEEE Trans. Inf. Theoryol. 54, pp. 4925-4945, Nov. 2008.

gEZ] S. Staniford-Chen and L.T. Heberlein, “Holding intruders ac-

countable on the internet,” iRroc. the 1995 IEEE Symposium
on Security and PrivagyOakland, CA, May 1995, pp. 39—49.

D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, and
S. Staniford, “Multiscale stepping-stone detection: Detecting
pairs of jittered interactive streams by exploiting maximum tol-

erable delay,” in5th International Symposium on Recent Ad-

vances in Intrusion Detection, Lecture Notes in Computer Sci-
ence 25162002.

L. Zhang, A.G. Persaud, A. Johson, and Y. Guan, “Stepping
Stone Attack Attribution in Non-cooperative IP Networks,” in
Proc. of the 25th IEEE International Performance Computing
and Communications Conference (IPCCC 2Q@8)oenix, AZ,
April 2006.

[5] A. Blum, D. Song, and S. Venkataraman, “Detection of Interac-
tive Stepping Stones: Algorithms and Confidence Bounds,” in
Conference of Recent Advance in Intrusion Detection (RAID)
Sophia Antipolis, French Riviera, France, September 2004.

[6] T. He and L. Tong, “Detecting Information Flows: Improving
Chaff Tolerance by Joint Detection,” FProc. 2007 Conference
on Information Sciences and SysterBaltimore, MD, March
2007.

[7] Jun ShaoMathematical StatisticsSpringer, 2003.

(3]

(4]



