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a b s t r a c t

The problem of detecting the presence of possibly bidirectional and time-varying informa-

tion flows through two nodes in a network is considered. Only the transmission timing

measurements are used in the detection. The proposed technique assumes no parametric

flow model and requires no training data. The consistency of the detector is established for a

class of non-homogeneous Poisson traffic. The proposed detector is tested in a simulation

using LBL TCP traces (Paxson and Floyd, 1995 [24]) and an experiment involving MSN VoIP

sessions.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

We consider the problem of detecting information
flows through a pair of monitored nodes as illustrated in
Fig. 1. In particular, given the measurements of transmis-
sion timings from the monitored nodes, we are interested
in determining whether the two monitored nodes are
engaged in relaying packets of certain information flows
(the alternative hypothesis), or they are merely transmit-
ting independently (the null hypothesis). The network of
our interest can be either wireless or wired as long as
transmission timings can be measured.

The generic problem of flow detection arises from a
number of practical applications, especially in the context
of information forensics, network surveillance, and anon-
ymous networking. For example, in the so-called stepping-
stone attack [1] in a network, an adversary may attack a node
ll rights reserved.
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by compromising a sequence of nodes that serve as stepping
stones. When the attacker is involved in an interactive
session (e.g., SSH), a flow of packets travel through a chain
of stepping stones. By detecting the presence of unexpected
flows through monitored nodes, the network owner can alert
the possibility of an attack. Other applications include the
detection of wormhole attack [2] in which a set of colluding
nodes divert a valid network flow through a ‘‘wormhole
tunnel.’’ Understanding the problem of flow detection is also
valuable for the design and assessment of anonymous net-
works [3,4].

In this paper, we restrict ourselves to the use of timing
measurements only. Such a restriction is of course unne-
cessary because there are often other information available
such as source–destination addresses, packet statistics, etc.;
a detector should incorporate such side information. We
choose to focus exclusively on the use of timing information
for two reasons. First, timing can only be distorted but
cannot be hidden by the transmitter, and its measurements
can be obtained by simple devices. In contrast, source–
destination addresses and packet characteristics can be
masked using standard techniques in anonymous network-
ing [4]. Second, timing is a fundamental traffic characteristic.
It is therefore useful to understand the extent that timing
reveals the presence of information flows. Furthermore, any
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Fig. 1. In the above wireless network, the transmission timings of two nodes, N1 and N2, are recorded. The horizontal axis is the time axis, and arrows

represent packet transmissions at different time points. As illustrated, packets of certain information flows may travel through N1 and N2.
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side information, when incorporated properly, will enhance
the performance of techniques based solely on timing
information.

Even though transmission timings of nodes can be
easily monitored, detecting information flows based on
timing is non-trivial, partly because of non-stationary
traffic characteristics: transmission timings of nodes often
have time-varying intensities, and they may be bursty
when interactive users are involved. Moreover, in general,
it is difficult to obtain an accurate parametric model for the
monitored traffic, especially when there is no prior knowl-
edge about the nature of the traffic and no training data
available. The presence of noise-like epochs is another
source of difficulty. When an information flow travels
through two nodes, the two nodes may have transmissions
that do not belong to the flow. They may multiplex
transmissions of other flows that go through only one of
the two nodes, or intentionally superpose dummy trans-
missions to avoid detection. We refer to the epochs of such
transmissions as chaff epochs.

It is easy to see that, if a node can arbitrarily delay
packets in a flow, timing information is insufficient for
detection. For latency-sensitive applications such as VoIP,
multimedia streaming, etc., however, packets must satisfy
certain end-to-end delay constraints, which make the pre-
sence of such flows detectable. For instance, VoIP applica-
tions require end-to-end delays to be bounded above by
150 ms [5]. This paper will consider the constraint that flow
packets should satisfy the end-to-end delay constraint of
D seconds.

1.1. Related works

Detection of information flows has been studied in the
context of intrusion detection, especially in the detection of
interactive stepping-stone attacks [1]. The use of timing
only measurement for detection is motivated by the fact
that packets involved in an attack can be easily encrypted.
Donoho et al. [1] were among the first to consider the flow
model with a uniform delay bound. Following their model,
many algorithms have been proposed to detect a flow with
a delay constraint. As an active detection scheme, Wang
et al. [6] proposed a watermark-based detector which
embeds watermarks by slightly adjusting transmission tim-
ings of a node; if the same watermarks are detected in
another node, two nodes are claimed to have flows between
them. Their work was followed by a large number of
watermark-based detectors [7–14]. The insertion of water-
marks, however, requires the ability of the detector to
modify traffic at different locations of the network, which
may not be possible in practical situations.
If the network traffic cannot be modified to facilitate
detection, the problem is referred to as passive flow detec-
tion. Zhang et al. [15,16] proposed matching-based algo-
rithms. However, they assumed that only one of two nodes
can insert chaff transmissions, and their algorithms are
vulnerable to chaff insertion at both nodes. Donoho et al.
[1] proposed a wavelet analysis with a claim that it can
detect a flow in chaff if the chaff part is independent of the
flow part and the sample size is sufficiently large. Blum et al.
[17] presented a counting-based method which was shown
to be able to detect a flow in chaff if the fraction of chaff is
small enough. Under the Poisson traffic assumption, they
characterized the sufficient sample size for satisfying a given
false alarm probability constraint. However, their method
may result in high miss detection probability if chaff
transmissions are bursty. He and Tong [18] proposed a
matching-based detector with better chaff tolerance and
characterized the maximum tolerable fraction of chaff under
the homogeneous Poisson traffic assumption. Their approach
requires choosing a detection threshold which is a function
of the parameter of the underlying Poisson traffic. When the
traffic deviates from the Poisson model, the detection algo-
rithm is not always robust. The approach in [18] can be
applied to the general traffic if a training data with a
sufficiently long time span is available. Coskun and Memon
[19,20] presented detectors based on random projection of
transmission processes. Similar to [18], their methods also
require choosing an appropriate detection threshold, which
can be successful only if a large volume of training data or an
accurate parametric model is available.

Statistical inference on timing measurements has been
studied in various other fields. In communication via
timing channels [21,22], a transmitter embeds a message
into its packet transmission timings, and a receiver infers
the message based on its packet arrival timings. In
neuroscience, spike train observations of neurons form
sequences of timings, and they are analyzed to infer
causal relations among neurons [23].

1.2. Summary of results and organization

The main results of this paper include three parts: a
nonparametric flow detection algorithm for unidirectional
or bidirectional flows, the related performance analysis,
and experiments with synthetic and real data. In devel-
oping an algorithm, our main contribution is a new
nonparametric technique that does not rely on knowledge
of traffic distribution; nor does it require a training data
for either hypothesis. The key idea lies in a particular
transformation of the measurements that leads to distinct
statistical behaviors under two different hypotheses. The



Fig. 2. Every packet transmission of a unidirectional flow is assumed to satisfy packet conservation, causality, and the delay constraint D.

1 In other words, if Nf i
ðtÞ denotes the number of epochs of Fi in ½0,t�,

there exists d40 such that lim inf t-1Nf i
ðtÞ=tZd almost surely, i¼ 1;2.
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proposed detector does not assume stationarity of traffic
and hence is applicable in time-varying traffic conditions.
Furthermore, it is memory-efficient and has linear com-
putational complexity with respect to the sample size
thereby making real-time inference feasible.

In algorithm analysis, we aim to give theoretical justifi-
cations for the proposed approach. To this end, we establish
the consistency property of the proposed detector for a class
of non-homogeneous Poisson traffic. Even though the
detector is analyzed only for non-homogeneous Poisson
traffic, the intuition behind it suggests that it may perform
well on the traffic with more general distribution.

The performance of our detector is evaluated using
synthetic Poisson traffic, LBL TCP traces [24], and real-world
measurements from MSN VoIP sessions, and comparison
with other passive detectors is provided. The use of syn-
thetic data allows us to examine the trade-offs between
miss detection and false alarm probabilities using Monte
Carlo simulations. LBL TCP traces and MSN VoIP traces are of
course not guaranteed to satisfy the assumptions made in
our algorithm analysis, and our results indicate a level of
robustness.

The rest of the paper is organized as follows. Section 2
gives the notations and definitions employed throughout
the paper and formulates flow detection as a binary
composite hypothesis testing problem. In Section 3, we
consider the simpler case where the parametric model of
the traffic is available. Then, Section 4 presents a non-
parametric flow detection algorithm and its consistency
property. Theorems are stated with proofs presented in
the Appendix. In Section 5, the proposed detector is
evaluated using synthetic Poisson traffic, LBL TCP traces,
and MSN VoIP traffic. Finally, Section 6 concludes the
paper with remarks.

2. Mathematical formulation

This section introduces notations and definitions and
formulates flow detection as one of binary composite
hypothesis testing.

2.1. Notations and flow models

Transmission timings of each node are modeled as a
point process on ½0,1Þ, and detectors begin recording the
timings at time 0. Bold upper-case letters (e.g., S) denote
point processes, and bold lower-case letters (e.g., s) denote
their realizations. S(i) represents the ith epoch (i.e., the time
of the ith transmission) of S, and s(i) is its realization. The
upper-case script letter S denotes the set of epochs in the
realization s : S9fsðiÞ, iZ1g. In addition, we define a super-

position operator �: given two increasing sequences ðaiÞ
1
i ¼ 1

and ðbiÞ
1
i ¼ 1, ðaiÞ

1
i ¼ 1 � ðbiÞ

1
i ¼ 1 ¼ ðciÞ

1
i ¼ 1, where ci is the ith
element of the sequence of all the elements of ðaiÞ
1
i ¼ 1 and

ðbiÞ
1
i ¼ 1 ordered in the increasing order.
First, we define a unidirectional flow as follows.

Definition 2.1. An ordered pair of point processes ðF1,F2Þ

forms a unidirectional flow, if for any realization ðf1,f2Þ

there exists a bijection g : F 1-F 2 satisfying gðsÞ�s 2

½0,D� for all s 2 F 1.

As illustrated in Fig. 2, when packets of an information
flow travel through node N1 and node N2, F1 and F2 can be
interpreted as the transmission timings of the flow pack-
ets at N1 and N2 respectively. The bijection condition of g

means packet conservation; every flow packet sent by N1

is received and forwarded by N2. The condition gðsÞ�s 2

½0,D� means that every flow packet transmission satisfies
causality and the delay constraint D. Based on the above
definition, we define a bidirectional flow as a superposition
of two unidirectional flows with opposite directions.

Definition 2.2. A pair of point processes ðF1,F2Þ forms a
bidirectional flow, if Fi can be decomposed into F12

i and F21
i

(i.e., Fi ¼ F12
i � F21

i ) such that ðF12
1 ,F12

2 Þ and ðF21
2 ,F21

1 Þ are
unidirectional flows.

We allow ðF12
1 ,F12

2 Þ and ðF21
2 ,F21

1 Þ to have zero rate, so that
a unidirectional flow is a special case of a bidirectional flow.

2.2. Problem statement

We formulate detection of bidirectional flow as a binary
composite hypothesis testing problem. Let S1 and S2 denote
the transmission processes of N1 and N2, respectively. Given
the measurements ðsiÞ

2
i ¼ 1 in ½0,t�, we test the following

hypotheses:

H0 : S1 and S2 are independent;

H1 : Si ¼ Fi �Wi, i¼ 1;2, and

ðF1,F2Þ forms a bidirectional flow:

We further assume that, under H1,
1.
 F1 and F2 are point processes with non-zero rates.1
2.
 F1 and F2 are not independent.

3.
 ðF1,F2Þ, W1, and W2 are independent.

H0 corresponds to the scenario that N1 and N2 have
independent transmissions. H1 corresponds to the sce-
nario that N1 and N2 relay packets of information flows in
either or both directions: ðFiÞ

2
i ¼ 1 and ðWiÞ

2
i ¼ 1 represent

the flow part and the chaff part, respectively. Note that



Fig. 3. Bidirectional-bounded-greedy-match.

Table 1
Bidirectional-bounded-greedy-match.

BiBGM ðs1 ,s2 ,DÞ:
1: m¼ n¼ 1;

2: while mr9S19 and nr9S29
3: if s2ðnÞos1ðmÞ�D
4: s2ðnÞ is chaff; n’nþ1;

J. Kim, L. Tong / Signal Processing 92 (2012) 2577–25932580
under both hypotheses, no restriction is imposed on the
marginal distributions of Si, Fi, and Wi.

The assumptions under H1 are imposed to make two
hypotheses disjoint. The first assumption implies that the
bidirectional flow should have positive rate. The second
assumption means that the flow parts of N1 and N2 should
not be independent, and this assumption is expected to
hold in general due to the delay constraint D. The third
assumption implies that the chaff parts of N1 and N2 are
independent, and they are also independent of the flow
part. We note here that the third assumption is more
restrictive than that used in earlier works [17,18].

We employ the notion of Chernoff consistency [25] to
evaluate the asymptotic performance of detectors.

Definition 2.3. For j¼ 0;1, Pj denotes the set of all possible
distributions of ðSiÞ

2
i ¼ 1 under Hj. A detector dððsiÞ

2
i ¼ 1,tÞ is a

function of the epochs of ðsiÞ
2
i ¼ 1 in ½0,t�, which is equal to j if

the decision is Hj. dððsiÞ
2
i ¼ 1,tÞ is said to be consistent if
5: else if s2ðnÞ4s1ðmÞþD
6: s1ðmÞ is chaff; m’mþ1;

7: else
1.
 8 Q0 2 P0, limt-1Q0ðdððSiÞ
2
i ¼ 1,tÞ ¼ 1Þ ¼ 0, and
8: match s1ðmÞ with s2ðnÞ; m’mþ1; n’nþ1;
2.
 8Q1 2 P1, limt-1Q1ðdððSiÞ
2
i ¼ 1,tÞ ¼ 0Þ ¼ 0.
9: end

10: end

11:
return

9fMatched epochsg9
In other words, a detector is consistent if its false alarm

9S19þ9S29
and miss detection probabilities vanish as t grows under all

possible distributions in P0 and P1. In the following
sections, we will reduce P0 and P1 to the sets of distribu-
tions satisfying certain additional conditions, and prove the
consistency of our detection algorithms.

Intuitively, the greater the amount of chaff epochs, the
harder the flow detection becomes. To measure the
relative strength of the flow part with respect to the chaff
part, we introduce the following definition of flow fraction.

Definition 2.4. Under H1, suppose that ðSiÞ
2
i ¼ 1 consists of

the bidirectional flow ðFiÞ
2
i ¼ 1 and the chaff part ðWiÞ

2
i ¼ 1.

Given a realization ðsiÞ
2
i ¼ 1, where si ¼ fi �wi, i¼ 1;2, the

flow fraction of ðsiÞ
2
i ¼ 1 is defined as

RðtÞ9

P2
i ¼ 1 9F i \ ½0,t�9P2
i ¼ 1 9Si \ ½0,t�9

, R9 liminf
t-1

RðtÞ ð1Þ

where 9F i \ ½0,t�9 is the number of flow packet transmis-
sions at Ni in ½0,t�, and 9Si \ ½0,t�9 is the number of total
transmissions at Ni in ½0,t�.

In other words, RðtÞ is the fraction of the flow epochs in
the measurements up to time t, and R is its limiting value.
2 In other words, f i can be partitioned into two subsequences f12
i

and f21
i such that there exist bijections g1 : F 12

1 -F12
2 and g2 : F 21

2 -F21
1

satisfying g1ðsÞ�s 2 ½0,D�, 8s 2 F12
1 and g2ðsÞ�s 2 ½0,D�, 8s 2 F21

2 .
3. Parametric flow detection

We begin with an easier case where an accurate para-
metric model for traffic is available. The main result in this
section is a simple algorithm that computes, for measure-
ments ðsiÞ

2
i ¼ 1, the maximum schedulable flow fraction (R)

as our decision statistic. The flow detection algorithm is a
threshold decision rule based on R. The computation of the
threshold, however, requires the knowledge of the traffic
distribution under H0, which we assume available at the
moment; this assumption is removed in Section 4.
3.1. Decision statistic: maximum schedulable flow fraction

Under both hypotheses, given a realization ðsiÞ
2
i ¼ 1 in

½0,t�, its maximum schedulable flow fraction RðtÞ is defined as

RðtÞ9 max
ðf i,wiÞ

2
i ¼ 1 :

si ¼ f i �wi �H1

P2
i ¼ 1 9F i \ ½0,t�9P2
i ¼ 1 9Si \ ½0,t�9

where si ¼ f i �wi �H1 denotes the constraint that
si ¼ f i �wi, i¼ 1;2, and ðf1,f2Þ is a realization2 of a bidirec-
tional flow. In other words, we schedule a maximum number
of bidirectional flow transmissions between s1 and s2 in ½0,t�,
and denote the fraction of the flow part by RðtÞ.

To effectively evaluate RðtÞ, we propose a matching
algorithm called Bidirectional-Bounded-Greedy-Match
(BiBGM). To achieve its goal, BiBGM starts with the first
epoch in S1 [ S2, and subsequently finds the earliest one-
to-one matches satisfying causality and the delay con-
straint. We explain below the operation of BiBGM using
an example in Fig. 3 accompanied by a pseudocode
implementation in Table 1:
1.
 At the beginning, all the epochs in S1 [ S2 are unmatched.
Start with the earliest epoch in S1 [ S2, and go to MATCH
to find its match.
2.
 MATCH: Let t denote the epoch for which we want to
find a match. For i¼ 1;2, if t 2 Si, search for the earliest
unmatched epoch in ½t,tþD� \ Sð3�iÞ and match it with
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t; if there is no unmatched epoch in the interval, label t

as chaff (an epoch is said to be checked if it is either
matched with another epoch or labeled as chaff). Go to
MOVE.
3.
3 By rates, we mean that limt-1NiðtÞ=t ¼ li a.s., where Ni(t) denotes

the number of epochs of Si in ½0,t�.
4 In other words, if the distributions of ðSiÞ

2
i ¼ 1 under H0 and H1

satisfy (i)–(iii), and RZZ a.s., then under all those distributions, the false

alarm and miss detection probability vanish as t increases (as in

Definition 2.3).
MOVE: If every epoch in S1 [ S2 is checked, terminate.
Otherwise, move to the next unchecked epoch in S1 [

S2 and go to MATCH to find its match.

For the example in Fig. 3, BiBGM starts with t1. Since
t1 2 S1, we search for the earliest unmatched epoch in
½t1, t1þD� \ S2, which is t2. Hence, t1 is matched with t2.
Then, we move to the next unchecked epoch, t3 of S1.
Because t2 is the only epoch in ½t3,t3þD� \ S2 and it is
already matched with t1, we label t3 as chaff. Next, we
move to the next unchecked epoch (t4 of S2) and searches
for the earliest unmatched epoch in ½t4,t4þD� \ S1. BiBGM
continues until the last epoch of S1 [ S2 is checked.

From Table 1, it can be easily seen that BiBGM has linear
computational complexity with respect to the sample size
(i.e., the total number of observed epochs). The following
theorem states that BiBGM indeed achieves the optimal
scheduling such that the flow part is maximized.

Theorem 3.1. Suppose we run BiBGM on ðsiÞ
2
i ¼ 1 in ½0,t�.

Then, the fraction of the matched epochs is equal to RðtÞ.

Proof. See Appendix.

3.2. Parametric flow detection under Poisson models

In this section, we assume the knowledge of the under-
lying parametric model for transmission processes and
propose a detection algorithm called Bidirectional Flow
Detector (BFD). BFD is a threshold decision rule based on
RðtÞ. Specifically, BFD with a threshold t takes the follow-
ing form:

If RðtÞZt declare H1

otherwise declare H0

(

If ðSiÞ
2
i ¼ 1 contains a bidirectional flow, RðtÞ is, by defini-

tion, an upper bound on RðtÞ and will tend to be greater
compared to the case that ðSiÞ

2
i ¼ 1 is an independent pair;

this is the intuition behind declaring H1 when RðtÞ is
greater than t.

Under H1, since RðtÞZRðtÞ, BFD with t can detect any
flow with RðtÞZt, and a smaller t makes BFD capable of
detecting a larger set of flows. However, a smaller t results
in a higher false alarm probability. Hence, there exists a
trade-off between the detectability of BFD and its false
alarm probability, and we need to consult the parametric
model for ðSiÞ

2
i ¼ 1 under H0 to find out how small t should

be. Specifically, if under H0, as t increases RðtÞ converges to
or stays close to a certain constant t0 with high probability,
we can set t slightly greater than t0 and make the false
alarm probability become negligible as t grows. For homo-
geneous Poisson traffic, the following convergence result
gives a guidance for setting t.

Theorem 3.2. Under H0, if S1 and S2 are homogeneous

Poisson processes with rates l1 and l2 respectively, then as t
grows to infinity, RðtÞ converges almost surely (a.s.) to

fðl1 ,l2Þ
¼

2l1l2ð1�e2Dðl1�l2ÞÞ

ðl1þl2Þðl2�l1e2Dðl1�l2ÞÞ
if l1al2

2lD
1þ2lD

if l1 ¼ l2 ¼ l

8>>><
>>>:

Proof. See Appendix.

Especially, if ðSiÞ
2
i ¼ 1 under H0 and ðWiÞ

2
i ¼ 1 underH1 are

homogeneous Poisson processes, the following theorem
states that any bidirectional flow with a positive rate is
detectable regardless of the amount of chaff epochs.

Theorem 3.3. Suppose that (i) under H0, S1 and S2 are

homogeneous Poisson processes, (ii) under H1, W1 and W2

are homogeneous Poisson processes, and (iii) under both

hypotheses, the rates3 of S1 and S2 are l1 and l2, respec-

tively. Then, for any Z 2 ð0;1Þ, there exists a proper threshold

t, such that BFD with t can consistently detect4 any bidirec-

tional flow with RZZ a.s., with the false alarm probability

decaying exponentially fast as the sample size grows. Espe-

cially, for Z 2 ð0;2 minfl1,l2g=ðl1þl2ÞÞ, the following t can

be used:

2l1�2l2
l1ð4�ZÞ�l2Z
l2ð4�ZÞ�l1Ze

2Dðl1�l2Þ

ðl2þl1Þ 1�l1ð4�ZÞ�l2Z
l2ð4�ZÞ�l1Z

e2Dðl1�l2Þ

� � if l1al2,

Zþ2lð2�ZÞD
2þ2lð2�ZÞD if l1 ¼ l2 ¼ l:

8>>>>><
>>>>>:

Proof. See Appendix.

It can be shown that the suggested t in Theorem 3.3 is
a strictly increasing function of Z, and as Z decreases to 0,
it decreases to fðl1 ,l2Þ

in Theorem 3.2. This means that
to detect a larger set of flows, t should be closer to
limt-1RðtÞ under H0.

Instead of the knowledge of the parametric model,
training data can also be used to set t. If a large set of
different realizations of H0 traffic is available, we can run
BiBGM over each realization in the training data set,
estimate the statistical behavior of RðtÞ under H0, and set
t such that the probability that RðtÞZt under H0 (i.e., false
alarm probability) becomes reasonably small as t grows.
However, if neither a parametric model nor training data is
available, it is non-trivial how to determine an appropriate
t; this is the case in many practical applications.
4. Nonparametric flow detection

In this section, we assume that neither a parametric
model nor a training data set is available, and present a
novel nonparametric flow detector.



Fig. 4. The structure of our nonparametric detection algorithm.
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4.1. Algorithm structure

We begin by introducing the structure and the main
intuition of our detection algorithm. Fig. 4 is describing its
structure. A key component of our algorithm is a transfor-
mation of measurements ðsiÞ

2
i ¼ 1, which we refer to as

Independent Traffic Approximation (ITA). As the name
suggests, ITA produces an approximately independent pair
of transmission processes ðs iÞ

2
i ¼ 1 such that s i has similar

traffic characteristics (e.g., normalized intensity function,5

interarrival distribution) with si. After ðs iÞ
2
i ¼ 1 is generated,

we compare the statistical characteristics of ðsiÞ
2
i ¼ 1 and

ðs iÞ
2
i ¼ 1. If the true hypothesis is H0, both ðsiÞ

2
i ¼ 1 and ðs iÞ

2
i ¼ 1

are independent pairs with similar traffic characteristics. On
the other hand, ifH1 is true, ðsiÞ

2
i ¼ 1 and ðsiÞ

2
i ¼ 1 have similar

traffic characteristics, but ðsiÞ
2
i ¼ 1 is a correlated pair con-

taining a flow while ðs iÞ
2
i ¼ 1 approximates an independent

pair. Thus, we attempt to infer the true hypothesis by
exploiting the gap between the statistical characteristics
of ðsiÞ

2
i ¼ 1 and ðs iÞ

2
i ¼ 1: the larger the gap, the more the

probable H1 is.

4.2. Nonparametric bidirectional flow detector

This section presents our detection algorithm, referred
to as Nonparametric Bidirectional Flow Detector (NBFD).
Here, we simply assume that ITA generates an output
ðs iÞ

2
i ¼ 1 with desired properties: (i) ðsiÞ

2
i ¼ 1 approximates

an independent pair of transmission processes, and (ii) its
normalized intensity function and interarrival distribu-
tion resemble that of ðsiÞ

2
i ¼ 1. The detail about ITA is

delayed to the next section, and here we focus on the
operation of NBFD.

As described in Fig. 4, NBFD first runs ITA on ðsiÞ
2
i ¼ 1 to

generate ðs iÞ
2
i ¼ 1. The next step is to compare the statis-

tical characteristics of ðsiÞ
2
i ¼ 1 and ðsiÞ

2
i ¼ 1. It was shown in

Theorem 3.3, although stated under the homogeneous
Poisson traffic assumption, that the maximum schedul-
able flow fraction RðtÞ can be effectively used to distin-
guish whether the measurements are from a flow-
containing pair or an independent pair. Moreover, RðtÞ

can be easily evaluated by running BiBGM; hence, NBFD
employs RðtÞ. NBFD runs BiBGM separately on ðsiÞ

2
i ¼ 1 and

ðs iÞ
2
i ¼ 1 and compares the fractions of the matched epochs

in the two cases, denoted by RðtÞ and tðtÞ respectively.
If the true hypothesis is H0, both ðSiÞ

2
i ¼ 1 and ðS iÞ

2
i ¼ 1 are

independent pairs, and they have similar normalized
5 The normalized intensity function of Si represents the overall

trend of its intensity change in the whole observation interval ½0,t�. More

specifically, assuming the existence of lðxÞ9limd-0þEfNi½x,xþdÞg=d for

all x 2 ½0,t�, where Ni½a,bÞ denotes the number of Si epochs in ½a,bÞ, the

normalized intensity function of Si is defined as the time-scaled

intensity function lðxÞ9lðtxÞ,x 2 ½0;1�.
intensity functions and interarrival distributions; this implies
that RðtÞ and tðtÞ are expected to be close under H0. On the
other hand, whenH1 is true, ðSiÞ

2
i ¼ 1 and ðS iÞ

2
i ¼ 1 have similar

normalized intensity functions and interarrival distributions,
but ðSiÞ

2
i ¼ 1 contains a flow while ðSiÞ

2
i ¼ 1 approximates an

independent pair; hence, RðtÞ is expected to be greater than
tðtÞ. Based on the above intuition, given ðsiÞ

2
i ¼ 1 in ½0,t�, NBFD

with E works as follows:
1.
 Run ITA on ðsiÞ
2
i ¼ 1 in ½0,t� to generate ðs iÞ

2
i ¼ 1.
2.
 Run BiBGM on ðsiÞ
2
i ¼ 1 and ðs iÞ

2
i ¼ 1: RðtÞ and tðtÞ denote

the fractions of the matched epochs for ðsiÞ
2
i ¼ 1 and

ðs iÞ
2
i ¼ 1 respectively.
3.
 If RðtÞZtðtÞþE, declare H1; otherwise, declare H0.

where E is a positive number added to tðtÞ to allow small
difference between RðtÞ and tðtÞ under H0. tðtÞ can also be
seen as an estimate of what RðtÞ would be under H0.
Therefore, recalling the discussion of setting t of BFD in
Section 3.2, NBFD can be alternatively interpreted as BFD
with a measurement-dependent threshold tðtÞþE.

It is evident from the form of NBFD that a smaller E will
lead to the decrease in the miss detection probability.
However, the decrease in E will increase the false alarm
probability. Because of the trade-off regarding the choice
of E and the nonparametric characteristic of our problem, it
is difficult to claim that certain E value is the best choice.
The experimental results in Section 5 suggest that setting
E� 0:05 generally results in satisfactory performance.
4.3. Independent traffic approximation

In this section, we present how ITA approximates an
independent pair of transmission processes that has the
similar normalized intensity function and interarrival
distribution with ðSiÞ

2
i ¼ 1.

Fig. 5 is illustrating the operation of ITA. ITA has two
parameters: the sampling window width w and the gap a
(aZD) between neighboring sampling windows. As
described in Fig. 5, ITA samples the epochs in the
w-second windows separated by a-second gaps, shifts
them properly, and assembles them to approximate
independent traffic. The intuition behind ITA is that if
the gap a between two sampling windows is sufficiently
large, the epochs in different windows will tend to be
approximately uncorrelated. Note that when ðSiÞ

2
i ¼ 1 con-

tains a bidirectional flow, ITA disassembles the flow part
and significantly reduces the flow-induced correlation. In
addition, since we use a sequence of sampled intervals of
Si for generating Si, S i and Si are expected to share some
common characteristics.

To illustrate how the normalized intensities of Si and Si

are related, Fig. 6 describes the intensity change of ðSiÞ
2
i ¼ 1

and ðS iÞ
2
i ¼ 1 for the case that S1 and S2 are non-homo-

geneous Poisson processes with two possible intensity
levels. As observed in Fig. 6, if the average time that the
intensity of Si stays in one level is much longer than
2ðwþaÞ seconds, the normalized intensity function of Si is
similar to that of Si. About interarrival distribution, if w is
sufficiently large so that a w-second sampling window is



Fig. 5. ITA samples w-second intervals fA1 ,A2 , . . .g and fB1 ,B2 , . . .g from ðsiÞ
2
i ¼ 1 and assemble them to generate ðs iÞ

2
i ¼ 1.

Fig. 6. S1 and S2 are non-homogeneous Poisson processes, and l1ðxÞ and l2ðxÞ denote their local intensities at time x respectively. l1ðxÞ and l2ðxÞ can only

take values from fm1 ,m2g (m1am2). The figure describes the intensity change of S1, S2, S1, and S2 using two types of bars. The bars filled with slant lines

represent the intervals in which liðxÞ ¼ m1, and the blue bars represent the intervals in which liðxÞ ¼ m2. The numbers above or below the intervals

describe the correspondence between the sampled intervals in Si and the intervals in S i . (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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likely to contain a large number of points, the interarrival
distribution of Si will resemble that of Si. Moreover, if the
interarrival distribution of Si varies slowly over time, as in
the example of Fig. 6, the interarrival distribution of S i

will also change over time with the similar trend, even
though the time scale is different due to the sampling
procedure of ITA. Note that resampling from the empirical
interarrival distributions (i.e., generating i.i.d. interarrival
times of Si from the empirical interarrival distribution
of Si, for i¼ 1;2) can also produce an independent pair
of point processes. However, unlike ðS iÞ

2
i ¼ 1 of ITA, when

ðSiÞ
2
i ¼ 1 is non-stationary, the results of such resampling

approaches may have a totally different dynamics from
ðSiÞ

2
i ¼ 1; they may not capture the patterns of intensity

change or interarrival distribution change in ðSiÞ
2
i ¼ 1.

Now, we will check whether ðSiÞ
2
i ¼ 1 can approximate

an independent pair. When S1 and S2 are independent, it
directly follows that S1 and S2 are independent. On the
other hand, if ðSiÞ

2
i ¼ 1 contains a bidirectional flow, S1 and

S2 are not necessarily independent. However, assuming
that correlation across time is weak and the gap a is
much larger than D, the epochs in different windows are
expected to be approximately uncorrelated: i.e., in Fig. 5,
the epochs in each Ai will be approximately uncorrelated
with the epochs in

S
jZ1Bj. This implies that when

temporal correlation is weak, ðS1, S2Þ is expected to
approximate an independent pair. The following example
illustrates a case where ðSiÞ

2
i ¼ 1 has weak temporal corre-

lation. Suppose S1 is a Poisson process and S2 is such that
S2ðiÞ ¼ S1ðiÞþDi, 8i, where Di’s are independent random
delays bounded by D a.s.: i.e., ðSiÞ

2
i ¼ 1 is a unidirectional

flow with a delay constraint D. The memoryless property
of Poisson processes implies that epochs in an interval are
correlated with epochs in another disjoint interval only if
the gap between the two intervals is less than D seconds.
Hence, if aZD, epochs in different sampling windows
of ITA are independent, implying that ðS iÞ

2
i ¼ 1 is an

independent pair.
Under H0, NBFD requires ðSiÞ

2
i ¼ 1 to be an independent

pair having the similar traffic characteristics with ðSiÞ
2
i ¼ 1,

because RðtÞ and tðtÞ have to be close under H0. However,
under H1, NBFD does not necessitate the independence of
S1 and S2, even though the independent case is ideal.
Under H1, NBFD wants tðtÞ to be less than RðtÞ, and this
can be achieved by making ðSiÞ

2
i ¼ 1 very unlikely to

contain a flow. Because, as can be inferred from the
discussion in Section 3.2, the maximum schedulable flow
fraction (e.g., RðtÞ and tðtÞ of NBFD) tends to be higher
when the measurements come from a flow-containing
pair. Note that ITA does make ðS iÞ

2
i ¼ 1 unlikely to contain

a flow by tearing apart the flow part of ðSiÞ
2
i ¼ 1 in its

sampling procedure.



J. Kim, L. Tong / Signal Processing 92 (2012) 2577–25932584
Given the measurements ðsiÞ
2
i ¼ 1 in ½0,t�, ITA with ðw,aÞ

generates ðs iÞ
2
i ¼ 1 as follows:
1.
Tab
Ind

IT

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

n F

yi ¼
Initially, s1 and s2 contain no epoch.

2.
 For i¼ 0, 1, . . . ,bt=2ðwþaÞc�1:

(a) Take the epochs of s1 in ½2iðwþaÞ,2iðwþaÞþw�,
subtract iðwþ2aÞ from the epochs, and add them
to s1.

(b) Take the epochs of s2 in ½ð2iþ1ÞðwþaÞ, ð2iþ1Þ
ðwþaÞþw�, subtract iðwþ2aÞþðwþaÞ from the
le 2
epen

A ðs1

:

:

:

:

:

:

:

:

:

0:

1:

2:

3:

4:

5:

or a

xi�r
epochs, and add them to s2.
The implementation of ITA is given in Table 2. As can be
seen from Table 2, ITA has linear computational complex-
ity with respect to the sample size.

One drawback of ITA is that it throws away more than a
half of the measurements during the sampling procedure,
thereby restricting the sample size of ðs iÞ

2
i ¼ 1 to be at most a

half of that of ðsiÞ
2
i ¼ 1. ðsiÞ

2
i ¼ 1, together with ðsiÞ

2
i ¼ 1, is used

to calculate the decision statistic of NBFD, so a large sample
size is desirable. Therefore, we suggest a modification of ITA,
referred to as ITA-double (ITAd), to double the sample size
of ðsiÞ

2
i ¼ 1. The operation of ITAd is illustrated in Fig. 7. In

ITAd, when S1 and S2 are independent, so are S1 and S2.
However, if ðSiÞ

2
i ¼ 1 contains a flow, ðSiÞ

2
i ¼ 1 is not an

independent pair, because the epochs in Aiþ1 and those in
Bi are correlated due to the presence of the flow. However,
ðSiÞ

2
i ¼ 1 is a concatenation of w-second intervals, in each of

which the epochs of S1 and S2 are approximately uncorre-
lated. We believe that this property is enough for NBFD to
sense the difference in statistical characteristics between
ðSiÞ

2
i ¼ 1 and ðSiÞ

2
i ¼ 1 under H1, especially when w is large.

Although we have no analytical proof for the superiority of
ITAd over ITA, the use of ITAd in NBFD instead of ITA
consistently resulted in a better performance in all our
simulations and experiments in Section 5.

4.4. Performance analysis

This section provides the analysis of algorithmic effi-
ciency and consistency of NBFD.
dent traffic approximation.

,s2 ,t,w,aÞ:
s1’ðÞ; s2’ðÞ; a1’ðÞ; a2’ðÞ; j¼1; k¼1;

for i¼ 0 : 1 :
t

2ðwþaÞ

� �
�1

while s1ðjÞo2iðwþaÞ, j’jþ1; end

while s1ðjÞr2iðwþaÞþw

a1’a1 � s1ðjÞ; j’jþ1;

end

while s2ðkÞoð2iþ1ÞðwþaÞ, k’kþ1; end

while s2ðkÞrð2iþ1ÞðwþaÞþw

a2’a2 � s2ðkÞ; k’kþ1;

end

a1’a1�iðwþ2aÞ; s1’s1 � a1;

a2’a2�ðiðwþ2aÞþwþaÞ; s2’s2 � a2;

a1’ðÞ; a2’ðÞ;

end

return ðs iÞ
2
i ¼ 1.

sequence ðxiÞiZ1 and a real number r, ðxiÞiZ1�r9ðyiÞiZ1 where

, 8i.
NBFD is efficient in terms of computation and memory
requirement. Because its main components, ITA and BiBGM,
have linear complexity, NBFD also has linear computational
complexity with respect to the sample size. In addition,
assuming that NBFD with ðw,a,EÞ is executed in real-time
over transmission processes of two nodes, it only requires to
save the most recent BiBGM matches of ðsiÞ

2
i ¼ 1 and ðs iÞ

2
i ¼ 1

and the timing measurements in the most recent 2ðwþaÞ-
second interval; they are all the information needed to
continue running ITA and BiBGM over the future timing
measurements.

For a class of non-homogeneous Poisson traffic, NBFD has
a consistency property as stated in the following theorem.

Theorem 4.1. Assume that w and a are any positive numbers

with aZD. For any Z 2 ð0;1Þ, there exists an E 2 ð0;1Þ such

that, for any E 2 ð0,E�, NBFD with ðw,a,EÞ consistently detects

any bidirectional flow with RZZ a.s., if the distributions of

ðSiÞ
2
i ¼ 1 under H0 and H1 satisfy the following assumptions6:
�

sati

all t

NBF

the

den
Under both hypotheses, S1 and S2 are non-homogeneous

Poisson processes. In addition, under H1, Si ¼ ðF
12
i � F21

i Þ

�Wi. F12
1 , F21

2 , W1, and W2 are independent non-homo-

geneous Poisson processes, F12
2 is7 sortfF12

1 ðiÞþ ai, iZ1g,
and F21

1 is sortfF21
2 ðiÞþbi, iZ1g where fai, iZ1g and

fbi,iZ1g are random variables satisfying ai,bi 2 ½0,D� a.s.

Furthermore, fai, iZ1g ?W1, fbi, iZ1g ? W2, and8

? fai, iZ1g, fbi, iZ1g,F12
1 ,F21

2 .

�
 Let l1ðtÞ, l2ðtÞ, lf 1ðtÞ, and lf 2ðtÞ denote the local inten-

sities of S1, S2, F12
1 , and F21

2 respectively. There exist two

finite sets L09fm
!ðjÞ9ðmðjÞ1 ,mðjÞ2 Þ, 1r jrM0g and L19

f l
!ðkÞ

9ðlðkÞ1 ,lðkÞ2 ,lðkÞf 1 ,lðkÞf 2 Þ, 1rkrM1g with mðjÞi 40,lðkÞi 40,

i¼ 1;2, 8j,k. Under H0, ðl1ðtÞ,l2ðtÞÞ can only take values

in L0. Under H1, l
!
ðtÞ9ðl1ðtÞ,l2ðtÞ,lf 1ðtÞ,lf 2ðtÞÞ can only

take values in L1.

�
 Under H0, if c(t) denotes the number of times that

ðl1ðtÞ,l2ðtÞÞ changes its value in ½0,t�, then limt-1cðtÞ=

t¼ 0. Similarly, under H1, if c(t) denotes the number of

times that l
!
ðtÞ changes its value in ½0,t�, then limt-1

cðtÞ=t¼ 0.

�
 Under H0, if rkðtÞ ð1rkrM0Þ denotes the fraction of the

time in ½0,t� that ðl1ðtÞ,l2ðtÞÞ ¼ m!
ðkÞ

, then as t increases,
each rkðtÞ converges. Similarly, under H1, if rkðtÞ

ð1rkrM1Þ denotes the fraction of the time in ½0,t� that

l
!
ðtÞ ¼ l

!ðkÞ
, then as t increases, each rkðtÞ converges.

Proof. See Appendix.

The first assumption means that under H1, ðSiÞ
2
i ¼ 1 is a

superposition of three independent parts: the unidirectional
6 In other words, if the distributions of ðSiÞ
2
i ¼ 1 under H0 and H1

sfy the listed assumptions (including RZZ a.s. under H1), then under

hose distributions, the false alarm and miss detection probabilities of

D with ðw,a,EÞ vanish as t grows (as in Definition 2.3).
7 For a countable set A of real numbers, sortfAg is the sequence of

elements of A ordered in the increasing order.
8 For random processes Ai ’s, A1 ? A2 means A1 and A2 are indepen-

t, and ? A1 , . . . ,An means A1 , . . . ,An are independent.



Fig. 7. ITA-double (ITAd): The sample size of ðs iÞ
2
i ¼ 1 doubles compared to ITA. Unlike ITA, ITAd does not throw away fA2 ,A4 , . . .g or fB2 ,B4 , . . .g; it

assembles all of fA1 ,A2 , . . .g and fB1 ,B2 , . . .g to generate ðs iÞ
2
i ¼ 1.
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flow from S1 to S2, the unidirectional flow from S2 to S1, and
the chaff parts. ai and bi represent packet delays of the two
unidirectional flows, and they satisfy certain independence
relationships involving the flow parts and the chaff parts.
The first assumption is sufficient to guarantee that the
output of ITA, ðS iÞ

2
i ¼ 1, is an independent pair under H1.

The second assumption implies that the local intensities of
the total traffic and flows can only take a finite number of
different values. The third assumption implies that the
number of intensity changes in ½0,t� grows as o(t). Finally,
the last assumption means that the fraction of the time that
the intensity vector assumes a specific value converges as
the observation time increases. Under these assumptions,
Theorem 4.1 states that a bidirectional flow with any
positive rate can be consistently detected by NBFD if E is
properly set. Note that the assumptions do not restrict
traffic to be stationary.

As pointed out by Paxson and Floyd [24], a Poisson
process is not always a good model for network arrival
processes. Several network traces (e.g., Ethernet and
World Wide Web traffic) have been experimentally
proved to display self-similarity [26–28], which Poisson
processes do not show. To test the performance of NBFD
over non-Poisson traffic, we will evaluate NBFD in the
following section using LBL TCP traces, which were used
in [24] to invalidate Poisson modeling, and real-world
measurements from MSN VoIP sessions.
(footnote continued)

However, given a fixed observation duration, using too large scale can

cause the sample size of the correlation coefficient estimation (i.e., the

number of wavelet coefficients) to be very small. To prevent this, in our

experiments, the sample size is fixed to be 100, and the scale is set to be

(the observation duration)/100.
10 In [17], pD is defined to be a uniform upper bound on the number

of epochs of a node (S1 or S2) in any D-second interval. However, none of

our test traces guarantees such a uniform upper bound. Hence, we tried

DAC with various pD values, which include large enough numbers to

bound the number of epochs in any D-second interval with high

probability.
5. Numerical results

NBFD was tested using the synthetic Poisson traffic,
LBL TCP traces, and the real-world measurements from
MSN VoIP sessions. Comparison with other passive flow
detectors is also provided: the wavelet analysis in [1],
Detect-Attack-Chaff (DAC) in [17], and the random pro-
jection method in [20].

The wavelet analysis [1] calculates the wavelet coeffi-
cients of N1ðtÞ and N2ðtÞ using the mother Haar wavelet
with a sufficiently large scale, where Ni(t) is the number of
epochs of Si in ½0,t�. Then, it calculates Pearson’s correla-
tion coefficient between the wavelet coefficients of N1ðtÞ

and that of N2ðtÞ, and declares H1 if the correlation coeffi-
cient is greater than a predetermined threshold k; otherwise,
it declares H0. The intuition of the algorithm is based on
their analysis under the Poisson traffic assumption: the
correlation coefficient converges to a positive constant as
the scale9 grows to infinity if ðSiÞ

2
i ¼ 1 contains a flow.
9 Since the wavelet analysis relies on the convergence of the

correlation coefficient as the scale grows, a large scale is desired.
DAC [17] is based on the intuition that as t increases
9N1ðtÞ�N2ðtÞ9 tends to grow large when S1 and S2 are
independent, whereas it tends to stay small if ðSiÞ

2
i ¼ 1

contains a flow with a much higher rate than the chaff
part. DAC with a parameter10 pD monitors 9N1ðtÞ�N2ðtÞ9.
At every 8ðpDþ1Þ2 packet transmissions, both N1 and N2

are set to be zero and new counting begins. It declares H0

if 9N1ðtÞ�N2ðtÞ9 grows larger than a threshold 2pD. If
9N1ðtÞ�N2ðtÞ9 stays less than 2pD during the whole obser-
vation duration, DAC declares H1. Note that under H1, if
bursty chaff transmissions occur in either node,
9N1ðtÞ�N2ðtÞ9 may suddenly grow larger than 2pD thereby
resulting in a miss detection. Hence, DAC is vulnerable to
bursty chaff insertion.

The random projection method in [20], which we
denote by RP, is based on the idea of measuring the
distance between S1 and S2 after random projection. It
first partitions the observation interval into the time slots
with length LTS, and counts the number of epochs in each
time slot. The number of epochs of Si in the jth time slot is
denoted by Vi(j), i¼ 1;2, 1r jrT . Then, RP generates a set
of K random basis vectors fBk 2 f�1;1gT , 1rkrKg, where
each Bk(j) (1r jrT) is either 1 or �1 with an equal
probability.11 After that, Vi is projected on fBk,1rkrKg:
CiðkÞ9

P
jV iðjÞBkðjÞ, i¼ 1;2, 1rkrK . Finally, RP obtains a

K-dimensional binary vector C i, where C iðkÞ91fCiðkÞ40g,
referred to as the binary sketch of Si. The decision statistic
of RP is the Hamming distance between C 1 and C 2. If the
distance is less than a threshold th, RP declares H1;
otherwise, H0 is declared.

5.1. Simulation results: Poisson traffic and LBL traces

We first performed Monte Carlo simulations using the
synthetic non-homogeneous Poisson traffic. In the simu-
lations, S1 and S2 are Poisson processes with intensity
11 About the parameters of RP, we used LTS ¼ 0:5 s, as recommended

in [20]. As explained in [20], large K is desired since it will allow us to

extract more information from Si . We used K¼4096, which we believe is

sufficiently large (four times the maximum K used in [20]).
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functions l1ðtÞ and l2ðtÞ respectively. Under H1, ðSiÞ
2
i ¼ 1 is a

superposition of two independent parts, the unidirectional
flow ðFiÞ

2
i ¼ 1 and the chaff part ðWiÞ

2
i ¼ 1. F1 is a Poisson

process with intensity function lf ðtÞ, and F2 is generated by
adding a random delay to each epoch of F1. Random delays
are independent and identically distributed (i.i.d.) and uni-
formly distributed in ½0,D�, where D¼ 0:1 s. W1 and W2 are
independent Poisson processes with intensity functions
l1ðtÞ�lf ðtÞ and l2ðtÞ�lf ðtÞ, respectively. In each run of the
simulation, ðl1ðtÞ,l2ðtÞ,lf ðtÞÞ is piecewise constant, and it
takes different values in the first third, the second third, and
the last third of the observation duration. Specifically, it
follows one of the below change scenarios with equal
probability:
1.
Fig
DAC

w¼
ð15;15,5Þ-ð15;15,12Þ-ð15;15,7Þ.

2.
 ð25;10,8Þ-ð10;10,8Þ-ð10;25,8Þ.

3.
 ð25;25,20Þ-ð12;12,7Þ-ð8;8,3Þ.

4.
 ð21;15,14Þ-ð12;6,5Þ-ð12;24,5Þ.
Under H0, S1 and S2 are independent Poisson processes,
and in each run of the simulation, ðl1ðtÞ,l2ðtÞÞ follows one
of the above change scenarios (with no lf part) with equal
probability. In real world, such changes in intensity may
correspond to the beginning of new sessions, the end of
old sessions, the rate change of existing sessions, and so
on. All change scenarios have the same average rates, but
each scenario displays a different dynamics. By this
simulation setting, we aimed at testing the performance
of detectors over the non-stationary traffic displaying
possibly a different dynamics at each observation interval.

Fig. 8 shows the ROC curves of NBFD (with ITAd), NBFD
(with ITA), the wavelet analysis, DAC, and RP. To obtain
the ROC curves, we increased E of NBFD and k of the
wavelet analysis from 0 to 1 with an increment of 0.01, pD
of DAC from 4 to 100 with an increment of 2, and th of RP
from 0 to K (K¼4096) with an increment of 1 while
plotting ðPF ,1�PMÞ of each case, where PF and PM denote
the false alarm probability and miss detection probability
respectively. When we further increased the sample size,
. 8. ROC curves of NBFD (ITAd), NBFD (ITA), the wavelet analysis,

, and RP for different observation durations: NBFD parameters are

2 s and a¼D¼ 0:1 s, and the number of Monte Carlo runs is 10 000.
the ROC curves of NBFD (ITAd), NBFD (ITA), and the
wavelet analysis approached the upper left corner imply-
ing that perfect detection is possible if the thresholds are
properly set. On the other hand, DAC and RP resulted in
non-negligible error probabilities in every case, and their
ROC curves did not improve much from the curves in
Fig. 8, even when we further increased the observation
duration to 160 s. By comparing the ROC curves of NBFD
(ITAd) and NBFD (ITA), we can observe that ITAd, the
heuristic to double the sample size of ðs iÞ

2
i ¼ 1, resulted in a

better detection performance than ITA. In all our simula-
tions and experiments, ITAd consistently showed better
results than ITA. In the rest of this section, NBFD is
assumed to employ ITAd and will be compared with other
detectors.

To test the performance of detectors over non-Poisson
traffic, we generated synthetic traffic based on the TCP
packet timestamps in LBL-PKT-3 (2 hour), LBL-PKT-4
(1 hour), and LBL-PKT-5 (1 hour) in [24]. These traces
were measured at the Lawrence Berkeley Laboratory’s
wide-area Internet gateway, and each trace was gathered
at a different date in January 1994. For the detail, refer to
[24]. From each data set, we extracted timestamps of TCP
packets that originated from specific users, and used them
for traffic generation. For the flow part of H1 traffic,
timestamps of one user in LBL-PKT-3 were used as F1,
and F2 was generated by adding a delay to each epoch in
F1. The delays are i.i.d. and uniformly distributed in ½0,D�,
where D¼ 0:1 s. For the chaff part, timestamps of one user
in LBL-PKT-4 were used as W1, and those of one user in
LBL-PKT-5 were used as W2. For H0 traffic, S1 is generated
by superposing traces of two users in LBL-PKT-4, and S2 is
similarly generated with two users in LBL-PKT-5. Using
different sets of users for the traffic generation, we were
able to create the 4-hour long test traffic.

We tested DAC with various pD ranging from 10 to 400,
but its miss detection probability was higher than 0.38 in
every case. This is not surprising because DAC is vulner-
able to bursty chaff transmissions and LBL TCP traces
were shown to be bursty in [24]. Table 3 shows the error
probabilities of NBFD, the wavelet analysis, and RP. For
NBFD, we used E¼ 0:05. For the wavelet analysis and RP,
assuming the absence of a parametric model and training
data, we have no clear standard to set their thresholds.
Hence, we tried all values from 0 to 1 with an increment
of 0.01 for k of the wavelet analysis and all values from
0 to 4096 with an increment of 1 for th of RP, and found
Table 3
Performance over LBL TCP traces: NBFD parameters are w¼ 2 s,

a¼D¼ 0:1 s, and E¼ 0:05. The numbers of experiments are 180, 90,

and 45 for observation duration 80 s, 160 s, and 320 s, respectively.

Under H0, the average traffic rate is ðl1 ,l2Þ ¼ ð36:4,36:1Þ. Under H1,

ðl1 ,l2Þ ¼ ð36:1,36:8Þ. The fraction of chaff in H1 traffic is 0.37.

Time (s) NBFD Wavelet RP

PF PM k PF PM th PF PM

80 0 0.100 0.19 0.034 0.056 762 0.101 0.144

160 0 0.057 0.20 0.034 0.056 793 0.112 0.133

320 0 0.022 0.19 0.023 0.067 774 0 0.089



Fig. 9. If P1 has a VoIP conversation with either P2 or P3, the VoIP packets should depart from P1 and travel through A2.

Table 4
The MSN VoIP experiment: NBFD parameters are w¼ 2 s, a¼D¼ 0:15 s,

and E¼ 0:05. The numbers of experiments are 162, 81, and 40 for

observation duration 80 s, 160 s, and 320 s, respectively. Under H0 and

H1, the average rate is ðl1 ,l2Þ ¼ ð26:8,34:9Þ. The fraction of chaff in H1

traffic is 0.18.

Time (s) NBFD Wavelet RP

PF PM k PF PM th PF PM

80 0.086 0.056 0.14 0.093 0.093 949 0.086 0.099

160 0 0.049 0.17 0.012 0.012 989 0.049 0.074

320 0 0 0.23 0 0 1005 0.075 0.050
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their crossover error rates and the corresponding thresh-
olds, which are listed in Table 3. NBFD and the wavelet
analysis outperformed RP, and for long observation dura-
tions (160 s and 320 s), NBFD performed better than the
wavelet analysis.

5.2. Experimental results: MSN VoIP traffic

We tested the detectors using three-and-a-half-hour
long real-world traffic involving the MSN VoIP application,12

which is a representative example of latency-sensitive
applications. Fig. 9 is illustrating the experimental setup.
The laptop P1 is located in the place covered by the wireless
access point A1, and two other laptops, P2 and P3, are
located in the different places covered by the wireless access
point A2, which is controlled to serve only P2 and P3.
Suppose it is known that P1 is engaged in a VoIP conversa-
tion. By measuring the wireless transmission epochs of P1

and A2, our objective is to detect whether P1 is having a
VoIP conversation with any device served by the access
point A2. In practice, there may be additional information
available: packet sizes, protocol types (TCP or UDP), desti-
nation addresses, and so on. However, here we assume that
we have no access to such information due to encryption or
other countermeasures employed by the network adminis-
trator, and only the timing measurements are available.

Let S1 and S2 denote the transmission processes of P1

and A2 respectively. Under H1, P1 has a VoIP conversation
with P2, and P3 downloads a file from a distant FTP server
with 20 kB/s rate. Since A2 transmits packets for both P2

and P3, its transmission timings of FTP packets, destined
for P3, form the chaff part of S2. Under H0, P1 and P2

engage in independent VoIP conversations while P3 does
the same job as in H1. Hence, VoIP packet timings in S1

and those in S2 are independent under H0. Under both
hypotheses, the timings of network control/management
packets from P1 and A2 (except beacon frames of A2) are
also included in S1 and S2.

We assumed that D is 150 ms, which is the upper bound
of acceptable end-to-end delays of VoIP packets recom-
mended by ITU-T recommendation G.114 [5]. We first tested
DAC with various pD ranging from 10 to 400. Similar to the
result on LBL TCP traces, the miss detection probability was
higher than 0.55 in every case due to the bursty chaff
transmissions (i.e., bursty FTP transmissions from A2 to P3).
12 Windows Live Messenger 2009 (14.0.8089.726) was used for MSN

VoIP calls, and Wireshark network protocol analyzer (ver 1.2.6.) with the

AirPcap classic adaptor was used to record the timings of wireless

transmissions.
Table 4 shows the error probabilities of NBFD, the wavelet
analysis, and RP. As in the test using LBL traces, we used
E¼ 0:05 for NBFD; for the wavelet analysis and RP, the
crossover error rates and the corresponding thresholds are
listed in the table. NBFD and the wavelet analysis out-
performed RP, and they displayed vanishing error probabil-
ities as the observation duration increases.

In all the tests we executed, NBFD and the wavelet
analysis consistently outperformed DAC and RP. Even
though the wavelet analysis performed well over most
traces, we need to recall that the results in Tables 3 and 4
were possible because its threshold k was set a posteriori to
minimize its error probabilities. If neither a training data set
nor a parametric model is available, we have no clear
standard to set k. For the further comparison of NBFD and
the wavelet analysis, Fig. 10 shows PF and PM of NBFD and
the wavelet analysis with various thresholds. We can
observe that the optimal k of the wavelet analysis varies
significantly for different observation durations and differ-
ent test traces. For instance, in the test result for synthetic
Poisson traffic, k� 0:25 gave the best performance when
the observation duration is 80 s, but it resulted in PM � 0:85
for the 20 s case. In addition, for the fixed observation
duration of 80 s, the optimal k for the Poisson traffic
(� 0:25) and that for the VoIP traffic (� 0:15) are quite
different. In contrast, for NBFD, it can be observed that
E¼ 0:05 results in almost optimal performance in every
case. Especially, in every test, its false alarm probability
vanished as the observation duration increases. This sug-
gests that under H0, the difference between RðtÞ and tðtÞ of
NBFD is well bounded by E¼ 0:05.

6. Conclusion

In this paper, we studied timing-based detection of
information flows in a network. We formulated flow



Fig. 10. False alarm and miss detection probabilities of the wavelet analysis and NBFD with various thresholds. (a) Synthetic Poisson traffic, (b) LBL TCP

traces, (c) MSN VoIP experiment.
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detection as a binary composite hypothesis testing pro-
blem and presented a detection algorithm that requires
neither a parametric model nor a training data set. The
detection algorithm is memory-efficient, and it has linear
computational complexity with respect to the sample
size. We proved the consistency of the algorithm for a
class of non-homogeneous Poisson processes. In addition,
the algorithm was tested using the synthetic Poisson
traffic, LBL TCP traces, and the real-world measurements
from the MSN VoIP experiment. Our detector was super-
ior to other passive detection schemes in terms of detec-
tion performance and suitability for the nonparametric
and unsupervised setting. Notably, the test results for LBL
TCP traces and the MSN VoIP traffic suggest that our
detector may perform well over the traffic with more
general distribution than a Poisson process.
Acknowledgments

This work was sponsored by National Science Foundation
under Contract CCF-0728872 and Army Research Office
MURI Program under award W911NF-08-1-0238. The first
author was partially supported by Samsung Scholarship. Part
of this work was presented at 2010 11th International
Workshop on Signal Processing Advances in Wireless Com-
munications, 2010 Military Communications Conference, and
2010 48th Annual Allerton Conference on Communication,
Control, and Computing.

Appendix A. Proof of Theorem 3.1

We use the following lemma about the relation
between BiBGM with D and Bounded-Greedy-Match



J. Kim, L. Tong / Signal Processing 92 (2012) 2577–2593 2589
(BGM) [17] with 2D (for the detail of BGM, refer to Section
4.A of [18]).

Lemma A.1. Running BiBGM on ðsiÞ
2
i ¼ 1 with D is equivalent

to the following:
1.
F1

lim
Increase all the epochs of s2 by D.

2.
 Apply BGM with the delay constraint 2D to the modified

measurements.

Proof. Let ŝ2 be a sequence generated by increasing every
epoch in s2 by D (i.e., ŝ2ðiÞ ¼ s2ðiÞþD,1r ir9S29). Then,
replacing s2ðnÞ with ŝ2ðnÞ�D in Table 1 results in exactly
the same pseudocode with BGM with 2D on ðs1,ŝ2Þ (see
Table 3 in [18] for the pseudocode). &

Note that ða,bÞ 2 S1 � S2 and 9a�b9oD if and only if
ða,bþDÞ 2 S1 � Ŝ2 and bþD 2 ½a,aþ2D�. Hence, the opti-
mal partitioning of ðsiÞ

2
i ¼ 1 is equivalent to partitioning

ðs1,ŝ2Þ into the unidirectional flow part (with the delay
constraint 2D) and the chaff part such that the flow part is
maximized; BGM with 2D was proved in [17] to achieve
the optimal partitioning of ðs1,ŝ2Þ. Thus, Lemma A.1
implies the result.

Appendix B. Proof of Theorem 3.2

Let Ŝ2 denote the point process with Ŝ2ðiÞ ¼

S2ðiÞþD, iZ1. Theorem 4.2 in [18] showed that if we
run BGM with 2D on ðS1,Ŝ2Þ, the fraction of the matched
epochs in total epochs converges a.s. to the following:

2l1l2ð1�e2Dðl1�l2ÞÞ

ðl1þl2Þðl2�l1e2Dðl1�l2ÞÞ
if l1al2

2lD
1þ2lD

if l1 ¼ l2 ¼ l

8>>><
>>>:

Therefore, Lemma A.1 implies the result.

Appendix C. Proof of Theorem 3.3

We first introduce the following lemma about the
statistical behavior of RðtÞ under H1.

Lemma C.1. Suppose that the distributions of ðSiÞ
2
i ¼ 1 under

H1 satisfy the conditions that (i) S1 and S2 have rates l1 and

l2 respectively, (ii) ðF1,F2Þ is a bidirectional flow with rate13

lf , and (iii) W1 and W2 are homogeneous Poisson processes.

Then, under every distribution in H1, lim inf t-1RðtÞZ

yðl1 ,l2 ,lf Þ
a.s., where yðl1 ,l2 ,lf Þ

is defined as

2l1�2l2
l1�lf

l2�lf

� �
e2Dðl1�l2Þ

ðl2þl1Þ 1�
l1�lf

l2�lf

� �
e2Dðl1�l2Þ

� � if l1al2

lf þ2lðl�lf ÞD
lð1þ2ðl�lf ÞDÞ

if l1 ¼ l2 ¼ l

8>>>>>><
>>>>>>:
13 If N1ðtÞ, N2ðtÞ, and NF(t) denote the number of epochs of S1, S2, and

in ½0,t�, respectively, then limt-1NiðtÞ=t ¼ li a.s. for i¼ 1, 2, and

t-1NF ðtÞ=t¼ lf a.s.
Proof. Let N(t), Nf(t), and Nc(t) denote the number of
epochs of ðSiÞ

2
i ¼ 1, ðFiÞ

2
i ¼ 1, and ðWiÞ

2
i ¼ 1 in ½0,t�, respectively.

M(t) denotes the number of the matched epochs found by
running BiBGM over ðSiÞ

2
i ¼ 1 in ½0,t�.

Consider running BiBGM on ðFiÞ
2
i ¼ 1 and ðWiÞ

2
i ¼ 1 sepa-

rately in ½0,t�: M̂ðtÞ denotes the sum of the number of the

matched epochs in ðFiÞ
2
i ¼ 1 and that in ðWiÞ

2
i ¼ 1, and RwðtÞ

denotes the fraction of the matched epochs in ðWiÞ
2
i ¼ 1.

Theorem 3.1 implies that running BiBGM on ðSiÞ
2
i ¼ 1

results in a greater or an equal number of matched epochs

than running BiBGM on ðFiÞ
2
i ¼ 1 and ðWiÞ

2
i ¼ 1 separately.

Therefore,

MðtÞZM̂ðtÞ ¼Nf ðtÞþNcðtÞRwðtÞ

and

MðtÞ

NðtÞ
Z

Nf ðtÞ

NðtÞ
þ

NcðtÞ

NðtÞ
RwðtÞ ¼

Nf ðtÞ=t

NðtÞ=t
þ

NcðtÞ=t

NðtÞ=t
RwðtÞ

We have MðtÞ=NðtÞ ¼ RðtÞ, limt-1ðNf ðtÞ=tÞ=ðNðtÞ=tÞ ¼ 2lf =

ðl1þl2Þ a.s., limt-1ðNcðtÞ=tÞ=ðNðtÞ=tÞ ¼ ðl1þl2�2lf Þ=

ðl1þ l2Þ a.s., and limt-1RwðtÞ ¼fðl1�lf ,l2�lf Þ
a.s., where f

is defined as in Theorem 3.2. Thus,

lim inf t-1RðtÞZ
2lf

l1þl2
þ
l1þl2�2lf

l1þl2
fðl1�lf ,l2�lf Þ

a:s:

It can be shown that the right hand side is yðl1 ,l2 ,lf Þ
. &

Let Z be any fixed number in ð0;2 minfl1,l2g=ðl1þl2ÞÞ

and t be the suggested threshold for Z. Then, there exists
a positive l̂f such that l̂f =ðl1þl2Þ ¼ Z=4. Let hðxÞ9
yðl1 ,l2 ,xÞ. It can be checked that h(x) is strictly increasing
in ½0,minfl1,l2g�, and hðl̂f Þ is equal to t.
(i)
 Miss detection probability: Suppose H1 is true and
RZZ a.s. Then, R¼ 2lf =ðl1þl2Þ and lf ¼ ððl1þl2Þ=

2ÞR4lf93ðl1þl2ÞZ=84 l̂f , because RZZ43Z=44
Z=2. Lemma C.1 and the monotonicity of h give

lim inf t-1RðtÞZyðl1 ,l2 ,lf Þ
¼ hðlf Þ4hðlf Þ4hðl̂f Þ ¼ t a:s:

Hence, limt-1PrðRðtÞotÞ ¼ 0.

(ii)
 False alarm probability: Under H0,

lim
t-1

RðtÞ ¼fðl1 ,l2Þ
¼ hð0Þohðl̂f Þ ¼ t a:s:

and thus limt-1PrðRðtÞZtÞ ¼ 0. Furthermore, Lemma
A.1 and Theorem 6.4 in [18] imply the exponential
decay of the false alarm probability.
Appendix D. Proof of Theorem 4.1

We first introduce a useful lemma.

Lemma D.1. Suppose that S1 and S2 are non-homogeneous

Poisson processes, and their local intensities always stay

in ½lmin,lmax�, where lmin40. As illustrated in Fig. 11, we

partition ½0, 1Þ into a countable number of subintervals: Ii

denotes the ith subinterval, Ti is the length of Ii, and d(t)
denotes the number of Ii’s with Ii 	 ½0,t�. Suppose dðtÞ=t

decreases to 0 as t grows.



Fig. 11. In this example, M¼2, a1;1 ¼ 1, a1;2 ¼ 3, a1;3 ¼ 5, a2;1 ¼ 2, and a2;2 ¼ 4. We ran BiBGM on ðSiÞ
2
i ¼ 1 and marked the matches by the arrows. Some

matches consist of epochs in two different partitions, and they are marked by the dashed arrows. The matches consisting of epochs in a single partition

are marked by the solid arrows. One can observe that each solid arrow in ðSiÞ
2
i ¼ 1 can be found either in ðSð1Þi Þ

2
i ¼ 1 or ðSð2Þi Þ

2
i ¼ 1.
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Let M be a finite natural number and suppose we partition

fIi, iZ1g into M subsets fIak;i
, iZ1g, 1rkrM, where

ðak;iÞiZ1, 1rkrM, are subsequences of ð1;2,3, . . .Þ. For

1rkrM, we use the epochs of ðSiÞ
2
i ¼ 1 in ðIak;i

ÞiZ1 to

generate point processes ðSðkÞi Þ
2
i ¼ 1, as described in Fig. 11:
1.
 Initially, SðkÞ1 and SðkÞ2 have no epoch.

2.
 For nZ1, for i¼ 1;2, subtract

Pak;n�1
j ¼ 1 Tj from all the

epochs of Si in the interval Iak;n
, add

Pn�1
j ¼ 1 Tak;j

to them,

and add these epochs to SðkÞi .
Let N(t) denote the number of epochs of ðSiÞ
2
i ¼ 1 in ½0,t� and

ðkÞ ðkÞ 2
N ðtÞ denote the number of epochs of ðSi Þi ¼ 1, whose

original epoch in ðSiÞ
2
i ¼ 1 is in ½0,t�; by definition, NðtÞ ¼PM

k ¼ 1 NðkÞðtÞ. We run BiBGM on ðSiÞ
2
i ¼ 1 and let RðtÞ denote

the fraction of the matched epochs in the total epochs in ½0,t�.

In addition, we run BiBGM on ðSðkÞi Þ
2
i ¼ 1 separately for each k,

and NðkÞf ðtÞ denotes the number of the matched epochs among

the earliest NðkÞðtÞ epochs of ðSðkÞi Þ
2
i ¼ 1. And, we define R̂ðtÞ asPM

k ¼ 1 NðkÞf ðtÞ=NðtÞ.

Then, limt-1RðtÞ�R̂ðtÞ ¼ 0 almost surely.

Proof. Let Nf(t) denote the number of BiBGM-matched

epochs of ðSiÞ
2
i ¼ 1 in ½0,t�. Then, by definition, RðtÞ ¼Nf ðtÞ=

NðtÞ. Let di denote the time that the ith division occurs; in
other words, di is the time that the ith jump of d(t) occurs.
Formally, we say that a BiBGM match ðt1,t2Þ, where ti is an

epoch of Si, is broken if t1 2 Ia, t2 2 Ib, and aab. Let ~Nf ðtÞ

denote the number of epochs of the unbroken BiBGM
matches in ½0,t�. As described in Fig. 11, if an unbroken
BiBGM match ðt1,t2Þ in ½0,t� is such that t1 and t2 are
included in a single partition Iak;i

, then its shifted version

can be found in the ½0,trkðtÞ� interval of ðSðkÞi Þ
2
i ¼ 1, where

rkðtÞ is the fraction of ð
S

iZ1Iak;i
Þ \ ½0,t� in ½0,t�. In addition,

Theorem 3.1 implies that NðkÞf ðtÞ is no less than the

number of epochs belonging to the shifted unbroken

matches in ½0,trkðtÞ� of ðSðkÞi Þ
2
i ¼ 1 (i.e., solid arrows in

Fig. 11). Therefore,
PM

k ¼ 1 NðkÞf ðtÞZ
~Nf ðtÞ.
For j¼ 1;2, let Xj(i) denote the number of epochs of Sj in
½maxfðdi�1þdiÞ=2,di�Dg,minfðdiþdiþ1Þ=2,diþDgÞ, where
d09�d1. The number of epochs of the broken matches
in ½0,t� is bounded above by

PdðtÞ
i ¼ 1 X1ðiÞþ

PdðtÞ
i ¼ 1 X2ðiÞ.

Hence,

~Nf ðtÞZNf ðtÞ�
XdðtÞ
i ¼ 1

X1ðiÞ�
XdðtÞ
i ¼ 1

X2ðiÞ

There exist sequences of i.i.d. Poisson random variables

ðX 1ðiÞÞiZ1 and ðX 2ðiÞÞiZ1 with mean 2lmaxD such that

XjðiÞrX jðiÞ a.s. for iZ1, j¼ 1;2. Hence,

XM
k ¼ 1

NðkÞf ðtÞZNf ðtÞ�
XdðtÞ
i ¼ 1

X 1ðiÞ�
XdðtÞ
i ¼ 1

X 2ðiÞ,

RðtÞ�R̂ðtÞr
PdðtÞ

i ¼ 1 X 1ðiÞ

NðtÞ
þ

PdðtÞ
i ¼ 1 X 2ðiÞ

NðtÞ
:

For j¼ 1;2, we have

lim supt-1

dðtÞ=t

NðtÞ=t

PdðtÞ
i ¼ 1 X jðiÞ

dðtÞ
¼ 0 a:s:

Hence,

lim supt-1ðRðtÞ�R̂ðtÞÞr0 a:s:

Similarly, we can partition ðSðkÞi Þ
2
i ¼ 1 at time points

ðdk;iÞiZ1, where dk;i9
Pi

j ¼ 1 Tak;j
, and use the number of

unbroken BiBGM matches of ðSðkÞi Þ
2
i ¼ 1 in ½0,trkðtÞ�,

1rkrM, to obtain a lower bound on the number of

BiBGM matches of ðSiÞ
2
i ¼ 1 in ½0,t�. Then, based on the

similar argument, we can derive lim inf t-1ðRðtÞ�R̂ðtÞÞZ0

a.s. Hence, we have limt-1ðRðtÞ�R̂ðtÞÞ ¼ 0 a.s. &

The proof consists of two parts: one for proving
the vanishing false alarm probability under H0, and the
other for proving the vanishing miss detection probability
under H1.

D.1. False alarm probability

Suppose that H0 is true and the distribution of ðSiÞ
2
i ¼ 1

satisfies the assumptions of the theorem. S1 and S2 are



J. Kim, L. Tong / Signal Processing 92 (2012) 2577–2593 2591
independent non-homogeneous Poisson processes, and so
are the output of ITA, S1 and S2. Suppose we run BiBGM
on ðSiÞ

2
i ¼ 1 and let RðtÞ denote the fraction of the matched

epochs in the total epochs in ½0,t�. We also run BiBGM on
ðSiÞ

2
i ¼ 1 and let T ðtÞ denote the fraction of the matched

epochs in the total epochs in ½0,bt=2ðwþaÞcw�. In the
following, we will show that RðtÞ�T ðtÞ converges a.s. to 0.

Because limt-1cðtÞ=t¼ 0, there are at most a counta-
ble number of intensity changes. Let ðciÞiZ1 denote the

increasing sequence of the time points at which

ðl1ðtÞ,l2ðtÞÞ changes. We partition ½0,1Þ into a countable

number of subintervals fIi9½ci�1,ciÞ,iZ1g. For 1rkrM0,
ðak;iÞiZ1 denotes the increasing sequence of all the indices

of Ii’s in which ðl1ðtÞ,l2ðtÞÞ ¼ m!
ðkÞ

. For each k, we use the

epochs of ðSiÞ
2
i ¼ 1 in ðIak;i

ÞiZ1 to generate a pair of point

processes ðSðkÞi Þ
2
i ¼ 1, as described in Lemma D.1.

Let N(t) denote the number of epochs of ðSiÞ
2
i ¼ 1 in ½0,t�.

Suppose we run BiBGM on ðSðkÞi Þ
2
i ¼ 1 separately for 1rk

rM0. NðkÞðtÞ denotes the number of epochs of ðSðkÞi Þ
2
i ¼ 1 in

½0,trkðtÞ�, and NðkÞf ðtÞ denotes the number of BiBGM-

matched epochs among those NðkÞðtÞ epochs. Then,

Lemma D.1 implies limt-1ðRðtÞ�
PM

k ¼ 1 NðkÞf ðtÞ=NðtÞÞ ¼ 0

a.s. And,

PM0

k ¼ 1 NðkÞf ðtÞ

NðtÞ
¼

t

NðtÞ

XM0

k ¼ 1

rkðtÞ
NðkÞðtÞ

trkðtÞ

NðkÞf ðtÞ

NðkÞðtÞ
:

By analyzing the limiting behaviors of t=NðtÞ,

rkðtÞN
ðkÞ
ðtÞ=ðtrkðtÞÞ, and NðkÞf ðtÞ=NðkÞðtÞ (use Theorem 3.2),

we have

lim
t-1

t

NðtÞ

XM0

k ¼ 1

rkðtÞ
NðkÞðtÞ

trkðtÞ

NðkÞf ðtÞ

NðkÞðtÞ
¼

PM0

k ¼ 1 rkðm
ðkÞ
1 þm

ðkÞ
2 ÞfðmðkÞ

1
,mðkÞ

2
ÞPM0

k ¼ 1 rkðm
ðkÞ
1 þm

ðkÞ
2 Þ

a:s:
Fig. 12. This figure illustrates a simple case that ðl1ðtÞ,l2ðtÞÞ can only take eit

intervals in which liðtÞ ¼ mð1Þi , and the blue bars represent the intervals in whic

references to color in this figure legend, the reader is referred to the web vers
where rk9limt-1rkðtÞ and f is as defined in Theorem

3.2. Then, by Lemma D.1,

lim
t-1

RðtÞ ¼

PM0

k ¼ 1 rkðm
ðkÞ
1 þm

ðkÞ
2 ÞfðmðkÞ

1
,mðkÞ

2
ÞPM0

k ¼ 1 rkðm
ðkÞ
1 þm

ðkÞ
2 Þ

a:s: ðD:1Þ

Now, we will prove that T ðtÞ also converges almost

surely to the same constant. Let ci9ðw=2ðwþaÞÞci, 8i. As

depicted in Fig. 12, the local intensities of S1 and S2,

denoted by ðl1ðtÞ,l2ðtÞÞ, may be equal to ðmðjÞ1 ,mðkÞ2 Þ with

jak, and it happens only if any ci is in ½wbt=wc,
wðbt=wcþ1ÞÞ. Define C as a set

f½wðk�1Þ,wkÞ : k 2 N, ( i s:t: ci 2 ½wðk�1Þ,wkÞg

As illustrated in Fig. 12, we partition ½0,1Þ of ðS iÞ
2
i ¼ 1 into

the intervals in C and the gap intervals between two
adjacent intervals in C, and ðJiÞiZ1 denotes the sequence of

these intervals arranged in a time order. fa0;i, iZ1g

denotes the increasing sequence of the indices of Ji’s

satisfying Ji 2 C. For 1rkrM0, fak; i, iZ1g denotes the

increasing sequence of the indices of Ji’s satisfying

ðl1ðtÞ, l2ðtÞÞ ¼ m!
ðkÞ

, 8t 2 Ji. Then, fJi, iZ1g can be parti-

tioned into the ðM0þ1Þ sets, fJak;i
, iZ1g, 0rkrM0. For

0rkrM0, we use the epochs of ðSiÞ
2
i ¼ 1 in ðJak;i

ÞiZ1 to

generate ðS
ðkÞ

i Þ
2
i ¼ 1, in the same manner as we generate

ðSðkÞi Þ
2
i ¼ 1 based on ðIak;i

ÞiZ1 in Lemma D.1. Then, based on

Lemma D.1 and ðS
ðkÞ

i Þ
2
i ¼ 1 ð0rkrM0Þ, we can use the

similar argument as in obtaining limt-1RðtÞ and show

lim
t-1

T ðtÞ ¼

PM0

k ¼ 1 rkðm
ðkÞ
1 þm

ðkÞ
2 ÞfðmðkÞ

1
,mðkÞ

2
ÞPM0

k ¼ 1 rkðm
ðkÞ
1 þm

ðkÞ
2 Þ

a:s: ðD:2Þ

From (D.1) and (D.2), we can see that RðtÞ�T ðtÞ con-
verges almost surely to 0 as t grows. Hence, for any positive
her ðmð1Þ1 ,mð1Þ2 Þ or ðmð2Þ1 ,mð2Þ2 Þ. The bars filled with slant lines represent the

h liðtÞ ¼ mð2Þi . In this example, J2 and J4 are in C. (For interpretation of the

ion of this article.)
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E, the false alarm probability vanishes as t grows:

lim
t-1

PF ðtÞ ¼ lim
t-1

PrðRðtÞ�T ðtÞ4EÞ ¼ 0

D.2. Miss detection probability

Suppose that H1 is true and the distribution of ðSiÞ
2
i ¼ 1

satisfies the assumptions of the theorem including RZZ
a.s. Due to the a.s. convergence of RðtÞ, R¼ lim inf t-1

RðtÞZZ a.s. is equivalent toPM1

k ¼ 1 rkðl
ðkÞ
f 1 þl

ðkÞ
f 2 ÞPM1

k ¼ 1 rkðl
ðkÞ
1 þl

ðkÞ
2 Þ

ZZ ðD:3Þ

where rk9limt-1rkðtÞ. In addition, the first assumption
of the theorem guarantees that S1 and S2 are independent
non-homogeneous Poisson processes. We run BiBGM on
ðSiÞ

2
i ¼ 1 and let RðtÞ denote the fraction of the matched

epochs in the total epochs in ½0,t�. We also run BiBGM on
ðSiÞ

2
i ¼ 1 and let T ðtÞ denote the fraction of the matched

epochs in the total epochs in ½0,bt=2ðwþaÞcw�. First of all,
by following exactly the same steps as in the proof of
vanishing PF, we can derive

lim
t-1

T ðtÞ ¼

PM1

k ¼ 1 rkðl
ðkÞ
1 þl

ðkÞ
2 ÞfðlðkÞ

1
,lðkÞ

2
ÞPM1

k ¼ 1 rkðl
ðkÞ
1 þl

ðkÞ
2 Þ

a:s: ðD:4Þ

Let ðciÞiZ1 denote the increasing sequence of the time

points at which l
!
ðtÞ changes, and we partition ½0,1Þ into

a countable number of subintervals fIi9½ci�1,ciÞ, iZ1g. For

1rkrM1, let ðak;iÞiZ1 denote the increasing sequence of

all the indices of Ii’s satisfying l
!
ðtÞ ¼ l

!ðkÞ
, 8t 2 Ii. We use

the epochs of ðSiÞ
2
i ¼ 1 in ðIak;i

ÞiZ1 to generate a pair of point

processes ðSðkÞi Þ
2
i ¼ 1, as in Lemma D.1. Then, based on

Lemmas C.1, D.1, and ðSðkÞi Þ
2
i ¼ 1ð1rkrM1Þ, we can use

the similar argument as in obtaining limt-1RðtÞ in the
proof of vanishing PF and derive

lim inf
t-1

RðtÞZ

PM1

k ¼ 1 rkðl
ðkÞ
1 þl

ðkÞ
2 ÞyðlðkÞ

1
,lðkÞ

2
,lðkÞ

f 1
þlðkÞ

f 2
ÞPM1

k ¼ 1 rkðl
ðkÞ
1 þl

ðkÞ
2 Þ

a:s:

where y is defined in Lemma C.1. For fixed l1 and l2,

yðl1 ,l2 ,lf Þ
is a strictly increasing function of lf , and it

decreases to fðl1 ,l2Þ
as lf decays to 0. Hence, if we define

g as

min
ðrkÞ

M1
k ¼ 1

PM1

k ¼ 1 rkðl
ðkÞ
1 þl

ðkÞ
2 ÞyðlðkÞ

1
,lðkÞ

2
,lðkÞ

f 1
þlðkÞ

f 2
ÞPM1

k ¼ 1 rkðl
ðkÞ
1 þl

ðkÞ
2 Þ

�

PM1

k ¼ 1 rkðl
ðkÞ
1 þl

ðkÞ
2 ÞfðlðkÞ

1
,lðkÞ

2
ÞPM1

k ¼ 1 rkðl
ðkÞ
1 þl

ðkÞ
2 Þ

,

where the minimization is over fðrkÞ
M1

k ¼ 1 : ðD:3Þ holdsg,

then it can be easily seen that g is strictly greater than 0.

Set E ¼ 1
3 g, and let E be an arbitrary number in ð0,E�. Then,

if the condition (D.3) holds,

lim inf t-1ðRðtÞ�T ðtÞÞZg42E a:s:
Therefore, as long as the condition (D.3) holds, the miss
detection probability vanishes as t grows:

lim
t-1

PMðtÞ ¼ lim
t-1

PrðRðtÞ�T ðtÞoEÞ ¼ 0:
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