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Abstract—A data framing attack is presented to exploit the
bad data detection and identification mechanisms at a typical
ISO/RTO control center. In particular, the proposed attack
frames normal meters as sources of bad data and causes the
control center to remove useful measurements from the framed
meters. The proposed attack uses subspace information of power
system measurements; neither the network topology nor the
network parameters are required for constructing the attack.
It is shown that the proposed attack is capable of perturbing
the power system state estimate by an arbitrary degree using
only half of the critical measurements. Implications of this
attack on power system operations are discussed, and the attack
performance is evaluated using benchmark systems.

Index Terms—Power system state estimation, framing attack,
bad data test, cyber security of smart grid.

I. I NTRODUCTION

The paradigm shift to a data-driven grid control enables
integration of sophisticated data processing methods for more
efficient and reliable grid operations. However, it exposesthe
grid to possible cyber attacks that may disrupt grid operations
and potentially cause a cascading failure.

Liu, Ning, and Reiter presented in [1] the first man-in-the-
middle attack on the power system state estimation where
an adversary replaces part of “normal” sensor data with
“malicious data.” They showed that, if an adversary can control
a sufficient number of meter data, it can perturb the state
estimate by an arbitrary amount without being detected by
the bad data detector at the control center. Such undetectable
attacks are referred to ascovert state attacks.

The condition under which covert state attacks are possible
is found to be equivalent to that of network observability.
In particular, covert attacks are possible if and only if the
network becomes unobservable when the adversary-controlled
meters are removed [2]. The minimum number of meters that
an adversary has to control in order to launch a covert state
attack, referred to as asecurity index, is a measure of security
against data attacks. It represents a fundamental limit on the
capability of an adversary to disrupt grid operations covertly
[2], [3].

A. Summary of results

In this paper, we show that the barrier on the capability of an
attacker represented by the security index can be circumvented
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by constructing a data framing attack aimed at misleading
the control center about the source of bad data. In particular,
we show that the adversary only needs to gain control of
about half of the meters required by the security index while
achieving the same objective of perturbing the state estimate
by an arbitrary amount without being detected.

Existing attack strategies typically assume a knowledge of
network topology and network parameters. To our best knowl-
edge, the present paper is the first to construct a data attack
based on certainsubspace information of meter measurements
without network parameter and topology information.

B. Related work

There is an extensive literature oncovert state attacks fol-
lowing the work of Liu, Ning, and Reiter [1]. The link between
feasibility of covert state attacks and network observability
was made in [2], [4]. Consequently, network observability
conditions [5] can be modified for that for covert attacks and
used to develop meter protection strategies [2], [4], [6]–[9]. To
assess the grid vulnerability against data attacks, the minimum
number of adversary meters necessary for a covert attack was
suggested as the security index for the grid [2], [3].

The framing attack strategy considered here relies on bad
data identification and removal techniques that have long
been subjects of study (see [10]–[12] and references therein.)
Typically, the residue vectors in normalized forms are widely
used as statistics for the bad data test [10]. In this paper, we
take the residue analysis in [10] as a representative bad data
test and analyze the effect of the framing attack.

There is only limited work on attacking a network without
network parameter or network topology. The use of indepen-
dent component analysis in [13] is the most relevant. The
authors of [13] propose to identify a mixing matrix from
which to construct the attack. Generating attacks using local
information has also been considered. See [14].

The rest of this paper is organized as follows. Section II
introduces the measurement and adversary models with pre-
liminaries on state attacks. Section III presents the mathe-
matical model of state estimation and bad data processing.
In Section IV, we present the main idea of the data framing
attack, a theoretical justification of its efficacy, and how the
estimated subspace information can be used to construct the
framing attack. In Section V, the simulations with the IEEE
14-bus network and the nonlinear model demonstrate that the
framing attacks designed based on the linearized system model



can successfully perturb the state estimate. Finally, Section VI
provides concluding remarks.

II. M ATHEMATICAL MODELS

A. Measurement model

For real-time estimation of the system statex, the vector of
bus voltage magnitudes and phase angles, the control center
collects measurements from line flow and bus injection meters1

deployed throughout the grid. The meter measurements are
related to the system statex in a nonlinear fashion, and the
relation is described by the AC model [12]:

z = h(x) + e, (1)

whereh(·) is the measurement function, ande is the Gaussian
measurement noise.

If some of the meters malfunction or an adversary injects
malicious data, the control center observes biased measure-
ments,

z̄ = h(x) + e+ a, (2)

wherea represents a deterministic bias. In such a case, the data
are said to bebad, and the biased meter entries are referred to
asbad data entries. Note that even when a meter is protected
from adversarial modification, it may still have a bias due toa
physical malfunction or improper parameter setting; filtering
out the measurements from such malfunctioning meters was
the original objective of the legacy bad data processing andis
adopted in practice today [10].

In analyzing the attack effect on state estimation, we adopt
the linearized DC model [12]:

z = Hx+ e, (3)

wherez ∈ R
m is the measurement vector consisting of the

real part of the line flow and bus injection measurements, the
system statex ∈ R

n is the vector of voltage phase angles at all
buses except the reference bus,H ∈ R

m×n is the measurement
matrix that relates the system state to bus injection and line
flow amounts, ande is the Gaussian measurement noise with a
diagonal covariance matrixΣ , σ2Σ̄, whereΣ̄ is a diagonal
matrix representing the variation of noise variances across
different meters (

∑

m

i=1 Σ̄ii = 1), andσ2 is a scaling factor.

B. Adversary model

As described in Fig. 1, an adversary is assumed to be
capable of modifying the data from a subset of metersSA ,
referred to asadversary meters. The control center observes
corrupted measurements̄z instead of the real measurements
z. The adversarial modification is mathematically modeled as
follows:

z̄ = z+ a, a ∈ A, (4)

wherea is an attack vector, andA is the set of feasible attack
vectors defined asA , {c ∈ R

m : ci = 0, ∀i /∈ SA}.

1Other types of meters can also be considered, but we restrict our attention
to line flow and bus injection meters for simplicity.
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Fig. 1. Adversary model with state estimation and bad data test

The adversary is assumed to know a basis matrixU of
the column space ofH and the noise covariance matrixΣ.
In practice, a basis matrix can be inferred based on multiple
measurement samples.

C. Network observability and covert state attack

A network is said to beobservable if the DC measurement
matrix H has full rank (i.e., x can be uniquely determined
from observingHx.) In practice, power network measure-
ments should be designed to satisfy observability. Hence, we
assume that the network of our interest is observable,i.e., H
has full rank.

The concept of network observability is closely related to
the feasibility of a covert state attack. A covert state attack
was proposed in [1] under the DC model: if there existsy ∈
R

n\{0} such thatHy ∈ A, then settinga equal toHy results
in

z̄ = Hx+ e+ a = H(x+ y) + e, (5)

and thus, z̄ cannot be distinguished from a normal noisy
measurement vector with the statex + y. Furthermore, by
properly scaling the attack vector (e.g., αa), the adversary can
perturb the state estimate by anarbitrary degree (e.g., αy).

It was shown in [2] that a covert attack is feasible if and only
if SA contains acritical set of meters, which is defined as a set
of meters such that removing the set from the network renders
the network unobservable while removing any proper subset of
it does not [12]. In other words, the feasibility condition means
that removing the adversary meters renders the measurement
matrix rank deficient. Therefore, thesecurity index of the
grid [2]—the minimum number of meters an adversary needs
to control to launch a covert attack—is equivalent to the
cardinality of the smallest critical set.

III. STATE ESTIMATION AND BAD DATA PROCESSING

This section introduces a popular approach of state estima-
tion and bad data processing [10], [12], which we assume to
be employed by the control center. Fig. 1 illustrates an iterative
scheme for obtaining an estimatex̂ of the system state, which
consists of three function blocks: State Estimation, Bad Data
Detection, and Bad Data Identification.

The iteration begins with the initial measurement vector
z(1) , z and the initial measurement functionh(1) , h where
the superscript denotes the index for the current iteration.

In thekth iteration, State Estimation uses(z(k), h(k)) as an
input and calculates the weighted least squares (WLS) estimate



of the system state and the corresponding residue vector:

x̂(k) , argminx(z
(k) − h(k)(x))T (Σ(k))−1(z(k) − h(k)(x)),

r(k) , z(k) − h(k)(x̂(k)).
(6)

whereΣ(k) is the covariance matrix of the corresponding noise
vector.

We assume that theJ(x̂)-test [10], [12] is employed for bad
data detection:

{

bad data if(r(k))T (Σ(k))−1r(k) > τ (k);
good data if(r(k))T (Σ(k))−1r(k) ≤ τ (k).

(7)

The J(x̂)-test is widely used due to its low complexity and
the fact that the test statistic has aχ2 distribution if the data
are good [10]. The latter fact is used to set the thresholdτ (k)

for a given false alarm constraint.
If Bad Data Detection (7) declares that the data are good,

the algorithm returns the state estimatex̂(k) and terminates.
However, if Bad Data Detection declares that the data are bad,
Bad Data Identification is invoked to identify and remove one
bad data entry from the measurement vector.

A widely used criterion for identifying a bad data entry is
the normalized residue [10], [12]: eachr(k)

i
is divided by its

standard deviation under the hypothesis that there exists no
bad data entry inz(k). Specifically,

r̃(k) , Ω(k)r(k), (8)

whereΩ(k) is a diagonal matrix with

Ω
(k)
ii

,

{

0 if {i} is a critical set2,
1√

(W(k)Σ(k))ii
otherwise; (9)

and

W(k) , I−H(k)((H(k))T (Σ(k))−1(H(k)))−1(H(k))
T

(Σ(k))−1

(10)
with H(k) denoting the Jacobian ofh(k) at x̂(k) (see Appendix
of [10] for the detail.)

Once the normalized residuẽr(k) is calculated, the meter
with the largest|r̃(k)

i
| is identified as a bad meter. Bad Data

Identification removes the row ofz(k) and the row ofh(k)

that correspond to the bad meter and returns the updated
measurement vectorz(k+1) and measurement functionh(k+1),
which are inputs for the next iteration.

Under the DC model (3), every step is the same with that in
the AC model, except that the nonlinear measurement function
h(k)(x) is replaced with the linear functionH(k)x (so, the
Jacobian is the same everywhere.) Note that the WLS state
estimate (6) is replaced with a simple linear WLS solution:

x̂(k) = ((H(k))T (Σ(k))−1(H(k)))−1(H(k))
T

(Σ(k))−1z(k),
(11)

and thus

r(k) = z(k) −H(k)x̂(k) = W(k)z(k). (12)

2If {i} is a critical set (i.e., removing the meteri makes the grid
unobservable), its residue is always equal to zero [12], andthe corresponding
diagonal entry ofW(k)

Σ
(k) is zero. For such a meter, the normalizing factor

is 0 such that its normalized residue is equal to0.

IV. DATA FRAMING ATTACK

In this section, we present the main idea of data framing
attack and demonstrate that the data framing attack enablesthe
adversary controlling only a half of a critical set of metersto
perturb the state estimate by an arbitrary degree. In addition,
we present the attack construction based on a basis matrix of
the column space ofH.

A. Main idea and the factor-of-two result

Suppose that{S1, S2} is a partition of a critical set, and let
H̄ denote the measurement matrix after removing the meters
in S1 ∪ S2 from the grid. SinceS1 ∪ S2 is a critical set,H̄
has rankn − 1, and the dimension of its null spaceN(H̄)
is one. Let∆x denote a unit basis vector ofN(H̄). Now,
we consider two vectors,H1∆x and H2∆x, whereH1 is
the m × n matrix obtained fromH by replacing the rows
corresponding to the meters inS2 with zero row vectors (H2 is
defined in the same way by replacing the rows corresponding
to S1.) Since∆x ∈ N(H̄), H1∆x has nonzero entries only at
the locations corresponding to the meters inS1; i.e., H1∆x is
a feasible attack vector whenSA = S1. Similarly, H2∆x is a
feasible attack vector whenSA = S2. Since both attack vectors
are not in the column space ofH, if the noise magnitude
is small (i.e., σ2 ≪ 1,) any of these attacks will cause the
iterative bad data processing to detect presence of bad data,
identify some meters as bad, and remove them.

In the following, we will provide an intuition for why at
least one of these two attack vectors—H1∆x andH2∆x—
will succeed in perturbing the state estimate. For the ease
of presentation, we present the idea using noiseless measure-
ments.

First, note that

H1∆x+H2∆x = H∆x, (13)

because∆x ∈ N(H̄). Therefore,

Hx+ ηH2∆x = H(x+ η∆x)− ηH1∆x, (14)

whereη ∈ R is a nonzero scaling factor. Now consider the
first iteration of the bad data processing. Because the part of
the measurement vector that is in the column space ofH does
not affect the residues, (14) implies that settinga = ηH2∆x

and settinga = −ηH1∆x result in the same residue vector
and thereby removal of the same meter. On the other hand,
a = −ηH1∆x anda = ηH1∆x result in the residue vectors
−W(1)(ηH1∆x) andW(1)(ηH1∆x) respectively. Therefore,
since bad data detection and identification exclusively relies
on themagnitudes of residues, the two attack vectors result in
removal of the same meter in the first iteration. Consequently,
a = ηH1∆x anda = ηH2∆x result in removal of the same
meter in the first iteration. It can be easily seen that the same
logic can be applied to the subsequent iterations, and thus
a = ηH1∆x anda = ηH2∆x result in removal of the same
sequence of bad meters in the bad data processing, which we
denote by(i1, . . . , iN ) where ik is the index of the meter
removed in thekth iteration.



Second, since the iterative bad data processing never re-
moves an entire critical set [12], at least one meter inS1 ∪ S2

is not contained in{i1, . . . , iN}. Suppose that a meter inS1 is
not in {i1, . . . , iN}. Then, an adversary withSA = S1 can set
a = ηH1∆x such that some adversary meter remains at the
end of bad data processing and perturbs the state estimate3.
Suppose that all the meters inS1 are in {i1, . . . , iN}. Then,
it implies that at least one meter inS2 is not in {i1, . . . , iN},
and an adversary withSA = S2 can seta = ηH2∆x such that
some adversary meter survives the bad data processing and
perturbs the state estimate. Note that the adversary can adjust
the perturbation level by using a properη.

Formally, the following theorem provides a sufficient con-
dition that guarantees that the framing attack can use one of
S1 andS2 to perturb the state estimate by an arbitrary degree
when the meter signal-to-noise ratios (SNRs) are high.

Theorem 4.1: Suppose that if we run the noiseless4 version
of the iterative bad data processing onH1∆x, then there exists
a unique statey ∈ R

n such that the final state estimate is
always equal toy regardless of whatever decisions are made
under tie5 situations in Bad Data Identification. Under this
condition, the following hold for anyx ∈ R

n:
(1) Supposey 6= 0. If the framing attack withSA = S1 is

launched,i.e., a = ηH1∆x whereη ∈ R is a scaling factor,

lim
σ2→0

Pr(z̄(N) = H(N)(x+ ηy) + e(N)) = 1, (15)

whereN is the random variable representing the total number
of iterations in the bad data processing.

(2) Supposey 6= ∆x. If the framing attack withSA = S2

is launched,i.e., a = ηH2∆x,

lim
σ2→0

Pr(z̄(N) = H(N)(x+ η(∆x− y)) + e(N)) = 1. (16)

Proof: See Appendix in [15].

Theorem 4.1 implies that if the condition is met, then at
least one ofS1 andS2 can be used by the framing attack to
perturb the state estimate by an arbitrary degree, becausey

cannot be simultaneously0 and∆x.
If the condition of Theorem 4.1 holds for a partition with

|S1| = |S2|, then the adversary controlling only a half of the
critical set can perturb the state estimate by an arbitrary degree.
One important question is whether a partition{S1, S2} with
|S1| ≃ |S2| that satisfies the condition can be found in general.
To answer this question, we investigated critical sets associated
with cuts of the network topology (i.e., the set of the line
meters on the cut-set lines and the injection meters on the

3It is not hard to see that all the entries ofηH1∆x corresponding to the
meters inS1 are nonzero, becauseS1 ∪ S2 is a critical set. Hence, as long as
any meter inS1 remains, it will perturb the state estimate by nonzero amount.

4The noiseless version means the algorithm which the bad data processing
converges to asσ2 decays to 0. The only difference from the normal bad data
processing is that in each iteration, Bad Data Detection declares that data are
good if and only if State Estimation results in a zero residue vector.

5It is possible that atie may occur in Bad Data Identification at some
iteration: i.e., the largest absolute normalized residue is assumed by more
than one meter. In a tie situation, we assume that Bad Data Identification
chooses an arbitrary meter with the largest absolute normalized residue.

both ends of the cut-set lines). We found 118 cuts in the IEEE
14-bus network and 290 cuts in the IEEE 118-bus network.
For every critical set6 associated with each cut, we were able
to construct a parition with

∣

∣

∣
|S1| − |S|

2

∣

∣

∣
≤ 1 satisfying the

condition of Theorem 4.1 (refer to [15] for the details.)

B. Attack with unknown network parameters

Theorem 4.1 provides a way to find an adversary meter
set and design the data framing attack based onH. In fact,
knowledge of a basis matrixU of the column space ofH
is sufficient for designing the attack. The following are the
detailed steps for the attack design based onU:

• Step 0. Find a critical setS and its partition{S1, S2}.
This can be achieved by finding a set of rows ofU,
removal of which makesU rank-deficient while removing
any proper subset of it does not.

• Step 1. Find a nonzero vector∆v ∈ N(Ū) where Ū

denotes the submatrix ofU obtained by removing the
rows corresponding toS.

• Step 2. Run the noiseless version of the bad data pro-
cessing onU1∆v (U1 is obtained fromU by replacing
the rows corresponding toS2 with zero row vectors,
andU2 is similarly defined based onS1.) If any meter
in S1 remains unremoved, the adversary usesS1 as the
adversary meter set and seta = ηU1∆v whereη ∈ R is
set according to desired perturbation amount. Otherwise,
the adversary usesS2 as the adversary meter set and set
a = ηU2∆v.

The above attack design based onU is possible, because all
we need in designing the attack is the column or null space
information ofH (or its submatrices consisting of a subset of
rows), andU contains all the information.

The step 0 can be omitted if the adversary already knows a
critical set. In practice, when an estimateÛ of a basis matrix
is used, even small estimation errors may cause the numerical
rank of a submatrix erroneous. One way to handle this problem
is to compare the singular values of the submatrix with certain
threshold and count the number of singular values larger than
the threshold to estimate the rank.

V. NUMERICAL RESULTS

We tested the performance of the framing attack with the
IEEE 14-bus network under the AC model. As a performance
metric, we usedE[‖x̂ − x‖2], where x̂ is the state estimate,
andx is the true state.

In each Monte Carlo run, the true statex was generated by
a multivariate Gaussian distribution with small variances. Its
mean was set as the operating state given by the IEEE 14-bus
data [16]. Based onx, the noisy measurements were generated
by the measurement model(i.e., h(x) + e). The attack vector
was constructed based on an estimate7 Û of a basis matrix of
the column space ofH, as described in Section IV-B. Once

6The average cardinality of the critical sets we considered is 15.7 for the
14-bus case and 12.7 for the 118-bus case.

7The estimate is obtained from the sample covariance estimate ofE[zzT ]
based on 1,000 independent measurements generated from the ACmodel.



constructed, the atack vector was added to the real part of the
noisy measurements, and the iterative bad data processing8

were executed on the corrupted measurements. Considering
the linear decoupled model (see Chapter 2.7 in [12]), such
addition of the attack vector is expected to modify primarily
the bus voltage phase angles and have little effect on the
bus voltage magnitudes. Hence, in interpreting the results, we
focus on thephase-angle part of the state estimate error.

For comparison, we also executed theconservative scheme
in [2], which aims to perturb the state estimate by the
maximum degree while not raising any alarm in Bad Data
Detection (see Problem (31) in [2] for details.)

We considered the adversary who can control(2, 3), (3, 4),
and (4, 3): (i, j) denotes the line meter for the power flow
from i to j, and(i) denotes the injection meter at busi. The
adversary meter set is a subset of a critical set consisting
of (3, 4), (4, 3), (2, 3), (3, 2), (2), (3), and (4), which is
associated with the cut isolating the bus 3 from the rest of
the network. We tested the framing attack with three different
attack magnitudes:‖a‖1 is 1%, 2%, or 3% of ‖z‖1.

Fig. 2 shows the state estimate error versus the meter SNR
in the AC simulations. The normal state estimate error and
the state estimate error under the conservative scheme are very
close, and both decays to zero as the SNR increases. For fram-
ing attacks, we tested both the attacks based onH matrix (solid
lines) and the attacks based on a basis matrix estimate (dashed
lines). Both attacks resulted in almost the same effect on the
state estimate error thereby demonstrating that the estimated
subspace information is sufficient for constructing an attack.
The state estimate errors under the framing attacks converge to
nonzero values, and the result implies that the framing attack
can adjust the degree of resulting perturbation by choosinga
proper attack magnitude (note that most practical meters have
SNRs higher than 40 dB [17].)

VI. CONCLUSIONS

We have presented the data framing attack constructed
from the subspace information of the meter measurement
space. Controlling only a half of a critical set, the data
framing attack can perturb the state estimate by an arbitrary
degree. A theoretical justification was provided, and numerical
experiments demonstrated the efficacy of the framing attack.

Our results indicate that most known countermeasures, that
are aimed at merely preventing covert state attacks, are not
sufficient for protection against the attacks aimed at state
perturbation. In designing countermeasures, the possibility of
the framing attack needs to be taken into account.
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