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Abstract—A data framing attack is presented to exploit the by constructing a data framing attack aimed at misleading
bad data detection and identification mechanisms at a typical the control center about the source of bad data. In particula

ISO/RTO control center. In particular, the proposed attack we show that the adversary only needs to gain control of
frames normal meters as sources of bad data and causes the bout half of th t ired by th itv ind hil
control center to remove useful measurements from the framgz 200UL Nall o the meters required Dy the security index while

meters. The proposed attack uses subspace information of powe achieving the same objective of perturbing the state estima

system measurements; neither the network topology nor the by an arbitrary amount without being detected.

network parameters are required for constructing the attack. Existing attack strategies typically assume a knowledge of

:::1(!)5 p%wgns;hs?ér;hitgtgpé)sstien(:a?étf)l/( ;} Z\?Eﬁ?&lﬁy Oée%?ggrgggg network topology and network parameters. To our best knowl-
edge, the present paper is the first to construct a data attack

only half of the critical measurements. Implications of this ) ] .
attack on power system operations are discussed, and the attac based on certaisubspace information of meter measurements

performance is evaluated using benchmark systems. without network parameter and topology information.
Index Terms—Power system state estimation, framing attack,
bad data test, cyber security of smart grid. B. Related work

There is an extensive literature covert state attacks fol-
lowing the work of Liu, Ning, and Reiter [1]. The link between

The paradigm shift to a data-driven grid control enablégasibility of covert state attacks and network obserigbil
integration of sophisticated data processing methods fmemwas made in [2], [4]. Consequently, network observability
efficient and reliable grid operations. However, it expoes conditions [5] can be modified for that for covert attacks and
grid to possible cyber attacks that may disrupt grid openati used to develop meter protection strategies [2], [4], [8]-To
and potentially cause a cascading failure. assess the grid vulnerability against data attacks, themin

Liu, Ning, and Reiter presented in [1] the first man-in-theaumber of adversary meters necessary for a covert attack was
middle attack on the power system state estimation whefgggested as the security index for the grid [2], [3].
an adversary replaces part of “normal” sensor data withThe framing attack strategy considered here relies on bad
“malicious data.” They showed that, if an adversary canmbnt data identification and removal techniques that have long
a sufficient number of meter data, it can perturb the stafeen subjects of study (see [10]-[12] and references thgrei
estimate by an arbitrary amount without being detected Hypically, the residue vectors in normalized forms are \yide
the bad data detector at the control center. Such undetectalged as statistics for the bad data test [10]. In this paper, w
attacks are referred to asvert state attacks. take the residue analysis in [10] as a representative bad dat

The condition under which covert state attacks are possiégt and analyze the effect of the framing attack.
is found to be equivalent to that of network observability. There is only limited work on attacking a network without
In particular, covert attacks are possible if and only if thaetwork parameter or network topology. The use of indepen-
network becomes unobservable when the adversary-cadrolfjent component analysis in [13] is the most relevant. The
meters are removed [2]. The minimum number of meters thafithors of [13] propose to identify a mixing matrix from
an adversary has to control in order to launch a covert stai@ich to construct the attack. Generating attacks usinglloc
attack, referred to as security index, is a measure of security information has also been considered. See [14].
against data attacks. It represents a fundamental limihen t The rest of this paper is organized as follows. Section II
capability of an adversary to disrupt grid operations ctyer introduces the measurement and adversary models with pre-
(2], [3]. liminaries on state attacks. Section Il presents the mathe
matical model of state estimation and bad data processing.
In Section IV, we present the main idea of the data framing

In this paper, we show that the barrier on the capability of gfitack, a theoretical justification of its efficacy, and hdve t
attacker represented by the security index can be circutedtengstimated subspace information can be used to construct the

This work is supported in part by the National Science Fotioda framlng attack. In Section V’. the simulations with the IEEE
under Grant CNS-1135844 and the Army Research Office undentGraiI-4'bus network and the nonlinear model demonstrate that the
W911NF1010419. framing attacks designed based on the linearized systerelmod

I. INTRODUCTION

A. Summary of results



can successfully perturb the state estimate. Finally,i@estl _
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[I. MATHEMATICAL MODELS L Fail
d
A. Measurement model \dentfioation

and Removal

For real-time estimation of the system statethe vector of
bus voltage magnitudes and phase angles, the control center
collects measurements from line flow and bus injection rsbter Fig. 1. Adversary model with state estimation and bad data test
deployed throughout the grid. The meter measurements are
related to the system statein a nonlinear fashion, and the

relation is described by the AC model [12]: The adversary is assumed to know a basis malfiof

the column space oH and the noise covariance matri.
z=h(x)+e, (1) In practice, a basis matrix can be inferred based on multiple

. i ] . measurement samples.
whereh(-) is the measurement function, aads the Gaussian

measurement noise. C. Network observability and covert state attack

If some of the meters malfunction or an adversary injectsA network is said to bebservable if the DC measurement
malicious data, the control center observes biased measWeirix H has full rank (e, x can be uniquely determined
ments, - from observingHx.) In practice, power network measure-

z=h(x)+e+a, (2)  ments should be designed to satisfy observability. Henee, w

wherea represents a deterministic bias. In such a case, the da$gume that the network of our interest is observalse, H
are said to béad, and the biased meter entries are referred 2 full rank. o
asbad data entries. Note that even when a meter is protected '€ concept of network observability is closely related to
from adversarial modification, it may still have a bias duatothe feasibility of a covert state attack. A covert state ciita
physical malfunction or improper parameter setting; fittgr Was Proposed in [1] under the DC model: if there exists
out the measurements from such malfunctioning meters was \{0} such thaly < A, then setting: equal toHy results
the original objective of the legacy bad data processingignd"
adopted in practice today [10]. z=Hx+e+a=H(x+y)+e, 5)

In analyzing the attack effect on state estimation, we ado;gajid thus,z cannot be distinguished from a normal noisy

the linearized DC model [12]: measurement vector with the state+ y. Furthermore, by
z=Hx +e, (3) properly scaling the attack vectag ., ca), the adversary can
perturb the state estimate by arbitrary degree €.9., ay).
wherez € R™ is the measurement vector consisting of the |t was shown in [2] that a covert attack is feasible if and only
real part of the line flow and bus injection measurements, tfj€s, contains acritical set of meters, which is defined as a set
system state € R" is the vector of voltage phase angles at alif meters such that removing the set from the network renders
buses except the reference blsg R™*" is the measurement the network unobservable while removing any proper sulfset o
matrix that relates the system state to bus injection arel lip does not [12]. In other words, the feasibility conditiorams
flow amounts, ané is the Gaussian measurement noise withtdat removing the adversary meters renders the measurement
diagonal covariance matriX £ 0%, whereX is a diagonal matrix rank deficient. Therefore, theecurity index of the
matrix representing the variation of noise variances &rogrid [2]—the minimum number of meters an adversary needs
different meters {_;" ; X;; = 1), ando? is a scaling factor. to control to launch a covert attack—is equivalent to the

cardinality of the smallest critical set.
B. Adversary model y

As described in Fig. 1, an adversary is assumed to be |ll. STATE ESTIMATION AND BAD DATA PROCESSING

capable of modifying the data from a subset of me®4s  Tnjs section introduces a popular approach of state estima-
referred to asadversary meters. The control center observestion and bad data processing [10], [12], which we assume to
corrupted measuremengsinstead of the real measurementgg employed by the control center. Fig. 1 illustrates amafiee

z. The adversarial modification is mathematically modeled agheme for obtaining an estimateof the system state, which
follows: consists of three function blocks: State Estimation, BataDa

z=z+a, acHh, (4) Detection, and Bad Data Identification.
The iteration begins with the initial measurement vector

z(1) £ z and the initial measurement functiaéf!) £ h where

the superscript denotes the index for the current iteration

H H P i k k
10ther types of meters can also be considered, but we resmricttention In the kth iteration, State_ESt'mat'on uses™), h(*)) as an
to line flow and bus injection meters for simplicity. input and calculates the weighted least squares (WLS) gstima

wherea is an attack vector, and is the set of feasible attack
vectors defined agl £ {c e R™: ¢; =0, Vi ¢ Sa}.



of the system state and the corresponding residue vector: IV. DATA FRAMING ATTACK

x(F) & arg ming (z®) — AR (x))T(ZF)~1(zF) — 4F) (x)), In this section, we present the main idea of data framing
p () £ 5(k) _ (k) (3(8)) attack and demonstrate that the data framing attack enthiges
N ’ 6 adversary controlling only a half of a critical set of metérs
where(®) is the covariance matrix of the corresponding noigee"turb the state estimate by an arbitrary degree. In auiiti
vector. we present the attack construction based on a basis matrix of
We assume that thé(x)-test [10], [12] is employed for bad the column space di.
data detection:

i k)T kE)\—1.(k k).
{ bad data !f(rik;)T(Eik;)qrEk; - TEk; (7) Suppose tha{S,, 82} is a partition of a critical set, and let
good data if(rt™)"(Z) T rt® < 7T H denote the measurement matrix after removing the meters
The J(x)-test is widely used due to its low complexity andn 8; U 8, from the grid. SinceS; U 8, is a critical set,H
the fact that the test statistic hasya distribution if the data has rankn — 1, and the dimension of its null spadé(H)
are good [10]. The latter fact is used to set the threshdfitl is one. LetAx denote a unit basis vector 6f(H). Now,
for a given false alarm constraint. we consider two vectorsH;Ax and H,Ax, where H; is
If Bad Data Detection (7) declares that the data are goafle m x n matrix obtained fromH by replacing the rows
the algorithm returns the state estimaté) and terminates. corresponding to the meters$a with zero row vectorsK is
However, if Bad Data Detection declares that the data are bdefined in the same way by replacing the rows corresponding
Bad Data Identification is invoked to identify and remove on® §;.) SinceAx € N(H), H; Ax has nonzero entries only at
bad data entry from the measurement vector. the locations corresponding to the metersini.e, HiAx is
A widely used criterion for identifying a bad data entry isa feasible attack vector wheffy = 8. Similarly, HyAx is a
the normalized residue [10], [12]: ea@fff) is divided by its feasible attack vector wheSy = 85. Since both attack vectors
standard deviation under the hypothesis that there extsts are not in the column space @&, if the noise magnitude

A. Main idea and the factor-of-two result

bad data entry ie(*). Specifically, is small {.e, 02 < 1,) any of these attacks will cause the
~(k) & (k) (k) iterative bad data processing to detect presence of bad data
V" = QW 8 . .
identify some meters as bad, and remove them.
where Q) is a diagonal matrix with In the following, we will provide an intuition for why at
s 0 if {i} is a critical set, Iegst one of these two gttack vectorEI—r,A_x and Hy Ax—
il = 1 otherwise: (9) will succeed in perturbing the state estimate. For the ease
V(WHE B0, ' of presentation, we present the idea using noiseless nesasur
and ments.
(20) H;Ax + HyAx = HAx, (13)
with H*) denoting the Jacobian &f*) atx(*) (see Appendix _
of [10] for the detall) becauseAx ¢ N(H) TherEfore,
Once the normalized residug®) is calculated, the meter Hx + nH,Ax — H(x + nAx) — nH, Ax,  (14)

with the Iargesdffk)| is identified as a bad meter. Bad Data
Identification removes the row af(*) and the row ofh(*) wheren € R is a nonzero scaling factor. Now consider the
that correspond to the bad meter and returns the updafigst iteration of the bad data processing. Because the part o
measurement vectaf*+1) and measurement functidgri*+1), the measurement vector that is in the column spadd dbes
which are inputs for the next iteration. not affect the residues, (14) implies that setting- nHoAx
Under the DC model (3), every step is the same with that and settinga = —nH; Ax result in the same residue vector
the AC model, except that the nonlinear measurement fumctiand thereby removal of the same meter. On the other hand,
h*)(x) is replaced with the linear functiofl(*)x (so, the a = —nH;Ax anda = nH;Ax result in the residue vectors
Jacobian is the same everywhere.) Note that the WLS stat®%v (! (nH; Ax) andW () (nH; Ax) respectively. Therefore,
estimate (6) is replaced with a simple linear WLS solution: since bad data detection and identification exclusiveliesel
T on themagnitudes of residues, the two attack vectors result in
) = (@W)T (W)~ H®) - EHE) (30) 120, removal c?fthe same meter in the first iteration. Conseqyent!
(11) a =nH;Ax anda = nH,Ax result in removal of the same
meter in the first iteration. It can be easily seen that theesam
rB) — z(B) _ gk ¢ (k) — Wk (k) (12) logic can be applied to the subsequent iterations, and thus
a = nH;Ax anda = nH;Ax result in removal of the same

21t {i} is a critical set i(e, removing the meteri makes the grid gsequence of bad meters in the bad data processing, which we
unobservable), its residue is always equal to zero [12],taactorresponding

diagonal entry oW (¥)53(k) is zero. For such a meter, the normalizing factod€NOte by (i1, ..., in) whereiy is the index of the meter
is 0 such that its normalized residue is equabto removed in thekth iteration.

and thus



Second, since the iterative bad data processing never leth ends of the cut-set lines). We found 118 cuts in the IEEE
moves an entire critical set [12], at least one mete$,iuS,  14-bus network and 290 cuts in the IEEE 118-bus network.
is not contained iy, ..., iy }. Suppose that a meter & is  For every critical sétassociated with each cut, we were able
notin {iy,..., in}. Then, an adversary withy = 8; can set to construct a parition with|S;| — i'i < 1 satisfying the
a = nH;Ax such that some adversary meter remains at t@gndition of Theorem 4.1 (refer to [15] for the details.)
end of bad data processing and perturbs the state estimate _

Suppose that all the meters & are in{iy,..., iy}. Then, B. Attack with unknown network parameters

it implies that at least one meter & is not in{i,..., iy}, Theorem 4.1 provides a way to find an adversary meter
and an adversary witha = S2 can seta = nHyAx such that set and design the data framing attack basedHorin fact,
some adversary meter survives the bad data processing knowledge of a basis matriXJ of the column space oH
perturbs the state estimate. Note that the adversary castadis sufficient for designing the attack. The following are the
the perturbation level by using a proper detailed steps for the attack design basedlbn

Formally, the following theorem provides a sufficient con- , Step Q Find a critical set$ and its partition{8;, S,}.
dition that guarantees that the framing attack can use one of This can be achieved by finding a set of rows ©f
81 and8; to perturb the state estimate by an arbitrary degree  removal of which make® rank-deficient while removing

when the meter signal-to-noise ratios (SNRs) are high. any proper subset of it does not.
Theorem 4.1: Suppose that if we run the noiselésgrsion  « Step 1 Find a nonzero vectoAv € N(U) where U
of the iterative bad data processingBHhAx, then there exists denotes the submatrix d obtained by removing the

a unique statey € R™ such that the final state estimate is  FOwWS corresponding_ t8. _
always equal toy regardless of whatever decisions are made  Step 2 Run the noiseless version of the bad data pro-
under ti€ situations in Bad Data Identification. Under this ~ cessing onU;Av (U, is obtained fromU by replacing

condition, the following hold for anyk € R": the rows corresponding t8; with zero row vectors,
(1) Supposey # 0. If the framing attack withSp = 87 is and U, is similarly defined based 08;.) If any meter
launchedj.e, a = nH;Ax wheren € R is a scaling factor, in 8; remains unremoved, the adversary uSesas the
. —(N) (N) (¥) adversary meter set and set= nU;Av wheren € R is
J%QO Pr(z) = HW (x +ny) +e7) = 1, (15) set according to desired perturbation amount. Otherwise,

. ) . the adversary use$, as the adversary meter set and set
where N is the random variable representing the total number a=nUsAv

of iterations in the bad data processing.
(2) Supposey # Ax. If the framing attack withSy = 8o
is launchedj.e, a = nHyAx,

The above attack design based ©nis possible, because all
we need in designing the attack is the column or null space
information of H (or its submatrices consisting of a subset of
lim Pr(z(N) _ H(N)(X +n(Ax —y)) + e(N)) =1. (16) rows), andU contains all the information.

o250 The step 0 can be omitted if the adversary already knows a
Proof: See Appendix in [15]. m critical set. In practice, when an estimdteof a basis matrix
Theorem 4.1 implies that if the condition is met, then 46 used, even small estimation errors may cause the nurherica

least one of8; and 8, can be used by the framing attack tgank of a submatrix erroneous. One way to handle this problem
perturb the state estimate by an arbitrary degree, beqaus@ to compare the singular values of the submatrix with aerta
cannot be simultaneously and Ax. threshold and count the number of singular values larger tha
If the condition of Theorem 4.1 holds for a partition withth€ threshold to estimate the rank.
|8_1\. = |82|, then the adversary coqtrolling only a _half of the V. NUMERICAL RESULTS
Corlr:g:?:nsp?ct)rigrr:tpqel;gjsrt?otrr:ﬁ;t\?vtr?e?ﬁgrm:tg;r)t/iﬁg&?rggagvyﬁ " We tested the performance of the framing attack with the
- o e IEEE 14- network under the AC model. A rforman
|81] =~ |82] that satisfies the condition can be found in generanEe,[riC qujse%%[ﬁi _uxﬂe] twiergfc igdtie s?a?ep;t(i)ma?e ce
To answer this question, we investigated critical setscaata : 2 '

: 4 . andx is the true state.
with cuts of the network topologyi.€., the set of the line In each Monte Carlo run, the true statavas generated by
meters on the cut-set lines and the injection meters on tg '

Snultivariate Gaussian distribution with small variancis

SIt is not hard to see that all the entries 5#; Ax corresponding to the mean was set as the opera_tlng state given by the IEEE 14-bus
meters in$; are nonzero, becausg U S, is a critical set. Hence, as long asdata [16]. Based om, the noisy measurements were generated
any meter in$; remains, it will perturb the state estimate by nonzero amounfyy the measurement modgle., (x) + e). The attack vector

A . . ) . . -) T ) -
The nmseles; version means the algo_rlthm which the bad datagsing was constructed based on an estirhdfieof a basis matrix of
converges to as“ decays to 0. The only difference from the normal bad dat

processing is that in each iteration, Bad Data Detectiofades that data are ?he column space oH, as described in Section IV-B. Once
good if and only if State Estimation results in a zero resideetar.

51t is possible that gie may occur in Bad Data Identification at some 6The average cardinality of the critical sets we considesefi5.7 for the
iteration: i.e, the largest absolute normalized residue is assumed by mdré-bus case and 12.7 for the 118-bus case.
than one meter. In a tie situation, we assume that Bad Dataifidatibn "The estimate is obtained from the sample covariance estimaigzaf’ |
chooses an arbitrary meter with the largest absolute noreshliesidue. based on 1,000 independent measurements generated from theode.



constructed, the atack vector was added to the real pareof th
noisy measurements, and the iterative bad data procéssing
were executed on the corrupted measurements. Considering
the linear decoupled model (see Chapter 2.7 in [12]), such
addition of the attack vector is expected to modify primaril
the bus voltage phase angles and have little effect on the
bus voltage magnitudes. Hence, in interpreting the reswks
focus on thephase-angle part of the state estimate error.

For comparison, we also executed ttomservative scheme
in [2], which aims to perturb the state estimate by the
maximum degree while not raising any alarm in Bad Data
Detection (see Problem (31) in [2] for details.)

We considered the adversary who can cont®B), (3,4),
and (4,3): (i,7) denotes the line meter for the power flow
from i to j, and (i) denotes the injection meter at busThe
adversary meter set is a subset of a critical set consisting
of (3,4), (4,3), (2,3), (3,2), (2), (3), and (4), which is

associated with the cut isolating the bus 3 from the rest Bf. 2.
The adversary meters a(e, 3), (3,4), and (4, 3).

the network. We tested the framing attack with three diffiere
attack magnitudedia||; is 1%, 2%, or 3% of ||z]|;.

Fig. 2 shows the state estimate error versus the meter S
in the AC simulations. The normal state estimate error an
the state estimate error under the conservative schemere v
close, and both decays to zero as the SNR increases. For fralff-
ing attacks, we tested both the attacks baseH onatrix (solid
lines) and the attacks based on a basis matrix estimateqdash
lines). Both attacks resulted in almost the same effect en tH®]
state estimate error thereby demonstrating that the dstima
subspace information is sufficient for constructing anchtta
The state estimate errors under the framing attacks coaverg [©!
nonzero values, and the result implies that the framinglatta
can adjust the degree of resulting perturbation by chooaing[7]
proper attack magnitude (note that most practical meters ha

SNRs higher than 40 dB [17].) 8]

VI. CONCLUSIONS

We have presented the data framing attack construct
from the subspace information of the meter measurement
space. Controlling only a half of a critical set, the data
framing attack can perturb the state estimate by an arjoitré%o]
degree. A theoretical justification was provided, and nucaér
experiments demonstrated the efficacy of the framing attacik!]

Our results indicate that most known countermeasures, that
are aimed at merely preventing covert state attacks, are not
sufficient for protection against the attacks aimed at std#@!
perturbation. In designing countermeasures, the poigibii [13]
the framing attack needs to be taken into account.
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