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Abstract- Malicious attacks against power system state es
timation are considered. It has been recently observed that if
an adversary is able to manipulate the measurements taken at
several meters in a power system, it can sometimes change the
state estimate at the control center in a way that will never
be detected by classical bad data detectors. However, in cases
when the adversary is not able to perform this attack, it was
not clear what attacks might look like. An easily computable
heuristic is developed to find bad adversarial attacks in all
cases. This heuristic recovers the undetectable attacks, but it
will also find the most damaging attack in all cases. In addition,
a Bayesian formulation of the bad data problem is introduced,
which captures the prior information that a control center has
about the likely state of the power system. This formulation
softens the impact of undetectable attacks. Finally, a new Loc>
norm detector is introduced, and it is demonstrated that it
outperforms more standard L 2 norm based detectors by taking
advantage of the inherent sparsity of the false data injection.

Index Terms-Power system state estimation, power system
security, false data attack.

I. INTRODUCTION

A power system is composed ofmany interconnected gener
ators, transmission lines, transformers and loads. To maintain
reliable performance of such a system requires that operators
have up to date and accurate knowledge about the state of
the grid. As such, numerous meters are deployed through the
network to measure bus voltage magnitudes, real and reactive
power injections, and recently bus voltage and current angles.
These measurements are brought together at control centers
and used as the basis of state estimation, from which an
estimate of the complete state of the power grid is produced.

Since the beginning of the development of state estimation
[1], it has been necessary to deal with bad data. Traditionally,
bad data were assumed to be caused by random errors resulting
from a fault in a meter and/or its attendant communication
system. These errors are modeled by a change of variance
in Gaussian noise, which leads to an energy (£2) detector
(e.g. [2]-[6]). Recently, Liu, Ning, and Reiter studied the
problem that several meters are seized by an adversary that is
able to corrupt the measurements from those meters that are
received by the control center [7]. This differs from previous
investigations of the problem in that the false data at various
meters can be simultaneously crafted by the adversary to
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defeat the state estimator, as opposed to independent errors
caused by random faults. It is observed in [7] that there exist
cooperative and malicious attacks on meters that all known
bad data techniques will fail to detect. The authors of [7]
gave a method to adjust measurements at just a few meters
in the grid in such a way that bad data detector will fail to
perceive the corruption of the data. In fact, this observation
can be made even stronger: in a non-Bayesian framework, if
an adversary has the ability to adjust the measurements from
enough meters, then no algorithm at the control center will
ever be able to detect that an adjustment has been made. This
can be viewed as a fundamental limit on the ability of the
classical formulation of state estimation to handle cooperative
attacks.

Power state estimation is generally performed every few
minutes, and change from one to the next is usually gradual
unless a contingency has occurred that causes an abrupt change
in system state. Therefore, in this paper, we take the viewpoint
that the control center can use historical data to maintain and
track its belief state of the system. It is therefore appropriate
to exploit the knowledge of the belief state in a Bayesian
formulation to detect and "correct" statistically unlikely mea
surements. The Bayesian framework has the advantage that
there is no hard limit on the number ofmeters controlled by the
adversary before state estimation becomes impossible. Instead,
when the number of meters controlled is enough to execute
the attack in [7], the estimation error will jump not to infinity,
but merely to a quantity on the order of the prior variance on
the state.

The highly damaging attack outlined in [7] exists only if
specific sets of meters are simultaneously compromised by
cooperating adversaries. It is demonstrated in [7] that if a
group of adversaries randomly chooses meters to compromise,
they must be capable of controlling a significant fraction of
the network before they are likely to control one of these
dangerous sets of meters. If they are not capable ofperforming
this attack, [7] makes no statement how much damage the
adversaries might be able to do. We develop a detectability
heuristic to find the attacks to which bad data detection will be
the most vulnerable given a particular set of meters controlled
by the adversary. When the adversaries control a particularly
damaging set of meters, the heuristic recovers the result of [7]
that state estimation will result in large estimation errors; when
they do not, it offers a more refined analysis that provides a
metric by which we can determine which attacks might be



where H is an m x n matrix, and e is measurement noise. We
assume e is Gaussian with zero mean and covariance matrix
~e. If there is an adversary in the network injecting false data,
then it is able to adjust the values of z that are associated with
the meters to which it has access. That is,

II. PROBLEM FORMULATION

Consider a DC power flow state estimation problem. This
is a linearization of the AC power flow problem. The goal is
to estimate the power system state variable x E jRn based on
measurements z E jRm. Assuming no adversary, x and z are
related according to

where a E jRm represents the change in measurement values
by the adversary. Observe that a may be nonzero only in those
entries for which the adversary controls the associated meter.
We assume that the adversary may seize up to k meters, but it
may choose whichever meters it likes. Therefore it may choose
a to be an arbitrary k-sparse vector.

The main observation of [7] was the following. Suppose
there exists a nonzero k-sparse a for which a = He for some
c. For many state estimation problems, H is sparse, so vectors
a satisfying this property are not uncommon. Consider two
possible state vectors Xl and X2, where X2 = Xl + c. If Xl
were the true state vector, and the adversary injects a, then
the measurement vector received at the control center will be

Zl = HXI + e + He = H(XI + c) + e. (3)

(8)

(4)

(6)

(7)x(z) = Kz

x(z) = IE(xlz,a = 0).

Z2 = HX2 + e = H(XI + c) + e.

where

Given a particular injected vector a, the mean square error can
be written

IEllx - K(Hz + e + a)11 2

= Tr[(I - KH)~x(I - KH)T

+ K~eKT + KaaTKTJ . (9)

Now suppose the true state vector is X2, and the adversary is
not present (Le. a = 0). Then the measurement vector is

That is the control center is interested in detecting whether the
adversary has injected a sufficiently large so that the resulting
increase in mean square error is at least C. Thus, if it declares
8 = 0, it can guarantee, with a certain probability, that the
estimate x is within some error of the true state x. We may
write the MMSE estimate x(z) as

Observe that Zl = Z2. Therefore, no detection algorithm will
ever be able to tell that the adversary was present in the
first case, because the second case could always be possible.
Furthermore, the adversary can scale a to be arbitrarily large,
and therefore move the control center's state estimate as far
as it likes in the direction of c.

Note that this analysis was decidedly non-Bayesian. That
is, if there were some prior information on x, then one of Xl
and X2 may have been preferred, and the ambiguity could be
resolved.

We therefore propose the following Bayesian problem for
mulation. Assume that X is jointly Gaussian with zero mean
and covariance matrix ~x. (The zero mean assumption is for
simplicity. The problem does not change if X has non-zero
mean, but one can imagine that X represents the difference
between the true state and the canonical voltage levels.) The
control center receives z, given by (2), where the adversary
chooses a constrained to be k-sparse. The control center has
a detector 8(z) which it uses to decide whether any false data
may be present. We are interested only in the first ste~ of t~e
process: detecting whether false data is present. Potentlal~y, If
a control center detects false data, it should have an algorithm
to find it, remove it, and produce a better estimate. But for
now, we focus only on the design of 8.

The detector 8 attempts to distinguish the following two
hypotheses:

H«: a = 0

HI : IE(llx - xll~la) - IE(llx - xll~la = 0) ~ C (5)

a is k-sparse

where the estimate x(z) is the minimum mean square error
with no adversary present

(1)

(2)

z = Hx+e

z=Hx+e+a

worse than others. Using the heuristic, it is possible to find
the worst attack by calculating the singular vector associated
with the smallest singular value ofa particular matrix, an easily
computable process. .

We also study the design of the false data detector Itself.
Because an adversary will only be able to change measure
ment values at a few meters, by definition the change in
measurement vector received at the control center from the
true measurements taken at meters will be a sparse vector.
Traditional bad data detectors are based on the L 2 norm,
and therefore not well suited to detecting sparse vectors.
We propose a test based on the L oo norm, which more
accurately detects the presence of an injected sparse vector. We
demonstrate that it performs better than the L 2 norm detector.
Moreover, we give numerical evidence that the perfor mance
of both the classical L 2 detector as well as our L oo detector
is well approximated by our detectability heuristic.

The rest of the paper is organized as follows. Section II
discusses the limit imposed on classical state estimation shown
in [7], and formally presents our formulation of the bad ~~ta

detection problem. Section III introduces our detectability
heuristic, and explains why we believe it to work well. Sec
tion IV proposes our L oo Detector and presents simulation re
sults and comparisons with the L 2 detector on the IEEE 14-bus
test system. It also presents numerical evidence demonstrating
that our detectability heuristic is roughly accurate. Finally, we
conclude and discuss future directions in Section V.



Note that the only term in (9) dependent on a is the last one,
meaning the HI condition can be written as simply

For the hypothesis testing problem in (5), the false alarm
probability is given by

(15)

(14)

(16)H=USVT

I'(a] = IIGs,sasI12.

This can be easily solved using singular value decomposition.
We now argue that attacks found via the optimization in

(15) form a generalization of the attacks outlined in [7]. In
particular, if the optimum value of (15) is 0, this corresponds
exactly to the attack in [7]. Consider the case that there is
no prior distribution, i.e, ~x = 00. In this case K = H+,
the pseudo-inverse of H. We claim that the optimum value
of (15) is O-Le. the matrix Gs,s is singular-exactly when
there exists a nonzero vector e such that a = He has sparsity
pattern 8.

The set of vectors a = He form a linear space which
may be equivalently written Fa = 0 for some matrix F. We
construct one such matrix F as follows. Let t be the rank of
H, and let

If this is small, then by injecting the vector a, the adversary
is able to move the measurement residual by only a small
amount in the elements corresponding to the measurements
that were manipulated. Therefore, we can expect the presence
of the adversary to be detected with low probability.

For a given sparsity pattern 8, the most damaging a will be
the one minimizing I'(a). In particular, if the adversary wishes
to add C to the mean square error of the control center's
estimate, the worst a for it to use, according to the heuristic,
would be the solution to the optimization problem

minimize IIGs,sasl12

subject to IIKall~ ~ C

a, = 0 for i tf. 8.

be the singular value decomposition of H. Recall that only the
first t diagonal elements of S are nonzero. Hence the linear
space of linear combinations of the columns of H is equivalent
to the space of linear combinations of the first t columns of
U. We denote the matrix made up of these columns of U by
U l:t. Since U is unitary, this is precisely the set of vectors
a for which U[+l:ma = O. Hence, we set F = U[+l:m. In
particular, if the sparsity pattern of a is 8, then there exists a

again x = Kz is the MMSE estimate of x given z. The
measurement residual can be rewritten simply as r = Gz
where G = I - HK.

Consider a measurement Zi. The ith element of Hx rep
resents the control center's best estimate of the noiseless
version of Zi, taking into account data from all measurements,
in particular those other than Zi. Therefore if an adversary
manipulates the value of Zi, we can expect that redundant
measurements elsewhere in the measurement vector will hold
Hx relatively fixed, so ri will change. If the adversary seizes
the meters associated with the measurements in the set 8 C

{I, ... ,n}, then it can inject a vector a with sparsity pattern
8. We can expect that the largest values of the measurement
residual will be r s- In particular, the extent by which r swill
change because of the injection of a is GS,sas, where Gs,s
is the 181 x 181 matrix taken from the rows and columns of
G corresponding to elements of 8. Our proposed heuristic is
given by

(11)

(10)

(12)

IIKall~ ~ c.

a = Pr(8(z) = I]a = 0)

and the worst-case detection probability, determined by op
timizing over the adversary's choice of a, is given by the
solution to the optimization problem

minimize Pr(8(z) = Ija)

subject to IIKall~ ~ c
a is k-sparse.

Consider now this problem formulation from the adversary's
perspective. It knows 8, but of course it is not constrained to
keep the mean square error increase below C. Any a that it
chooses will result in some probability of detection, and some
increase in mean square error. Certainly, it can cause the most
damage by choosing a point on the optimal trade-off curve
between these two quantities. If it chooses a certain level of
risk, i.e, a certain detection probability (3, it can optimize the
mean square error as follows:

maximize IIKall~

subject to Pr(8(z) = Ija) ::; (3 (13)

a is k-sparse.

Observe that the optimizations in (12) and (13) are equivalent
in that they will trace out the same trade-off curve between
detection probability and mean square error, but their interpre
tations are slightly different: (12) represents the control center
designing a detector by choosing a tolerable level ofestimation
error and preparing for the worst adversarial action, and (13)
represents the adversary finding the best attack given a certain
risk of detection.

III. DETECTABILITY HEURISTIC

For many detectors, solving the optimization problem (12) is
difficult. In this section, we propose a heuristic for Pr(8(z) =
I]a), which will allow us to rewrite (12) in a way that is easier
to solve. The heuristic approximates the degree to which it
is possible for the control center to detect the presence of a
certain adversarial vector a. Even though the probability in
(12) depends on the detector 8, our heuristic will not. We
claim that for most detectors, Pr(8(z) = Ija) will be roughly
increasing in our heuristic; therefore optimizing one is as good
as optimizing the other. Section IV provides some numerical
evidence for this claim, but first we argue intuitively why it
may be the case. In addition, we show that the most damaging
attacks found using the heuristic form a generalization of the
attacks found in [7].

Given a measurement vector z, the main tool by which
we may determine the implausibility of this vector as having
resulted from the measurement process (1) with no adversary
present is the measurement residual r = z - Hx where



nonzero a such that Fa = 0 exactly when the matrix made up
of the columns of F from S is rank deficient. We write this

matrix as U~,t+l:m'
We now consider the condition that the minimal heuristic

is zero, and show that it is equivalent to the condition that
U~,t+l:m is rank deficient. We may write

G = 1 - HK = U(1 - SS+)UT . (17)

Observe that 1 - SS+ is a diagonal m x m matrix whose first
t diagonal elements are zeros and the rest are ones. Therefore

Gs,s = US,t+l:mU~,t+l:m' (18)

Hence, Gs,s is singular exactly when US,t+l:m is rank
deficient.

We can now interpret the result in [7] as stating that when
the a optimizing (15) satisfies I'(a) = 0, part of the state
becomes unobservable, so state estimation is impossible. Our
claim concerning the heuristic I'(a) is a generalization of
the statement: the smaller I'(a) is, the more difficult state
estimation becomes.

IV. PROPOSED DETECTOR

Recall that a classical bad data detector tests the 2-norm of
the measurement residual. That is, it is of the form

82(z) = {I if liz -.HxI12 > 7
o otherwise. (19)

There are two flaws with this detector. First, it does not take
into account the inherent sparsity of the adversary's injected
vector a. A deviation in a non-sparse direction is more likely to
be caused by the measurement noise than false data injection,
but the 2-norm test considers all directions equivalent. A better
test would be one where moving the measurement vector along
a sparse direction more quickly crosses the detector's threshold
than doing so in a non-sparse direction.

Second, 82 does not take advantage of the prior distribution
on x in order to defeat the damaging attacks from [7]. That
is, if a = He, then the measurement residual does not change
much, but if a gets too large, elements of the measurement
vector z itself may become unrealistically large. A better
detector would be aware of this possibility. We next propose
a simple detector that improves on both these problems.

A. The t.; Detector

Our detector, referred to as the L oo Detector, is of the
following form:

8
00

(z) = {I if liz -.Hxlloo > 71 or IlzjITzll oo > 72 (20)
o otherwise

where z/O'z is the vector composed of each measurement
normalized by its standard deviation. Note that this detector
has two thresholds, 71 and 72. We will usually fix 72 at
some level, then vary 71 to achieve the desired false alarm
probability.

This detector has the desired properties: if one changes only
a few elements of z, then redundancy in other measurements

should hold the corresponding elements ofHx relatively fixed.
Therefore, the measurement residual will grow along a sparse
direction, so it will cross the threshold sooner than if it were
to grow along a non-sparse direction. Moreover, the test on
the weighted measurement vector itself constrains attacks of
the a = He type such that the size of each element Zi cannot
exceed its standard deviation by more than a constant factor.
Again, we use the infinity norm, because we expect that a
small number of Zi will be affected.

B. Performance

Evaluating and comparing the performance of detectors for
this problem is complicated by the fact that one must find the
worst-case a. We can only be certain of the performance of
some detector if we can find the a that solves the optimization
problem given by (12). The heuristic described in Section III
allows us to solve this optimization problem approximately,
but solving it exactly is not easy, for several reasons. First, the
k-sparsity condition of a is difficult to deal with, as it is highly
non-convex, so one may need to check all (~) sparsity patterns
to find the best a. Moreover, even for a fixed sparsity pattern,
the optimization problem is not convex, and thus difficult to
solve. We now rewrite the optimization problem in (12) to
show why this is so.

Minimizing Pr(8(z) = 11a) as in (12) is equivalent to
maximizing Pr(8(z) = O]a). We will show that for any
detector for which the rejection region (the set of z with
8(z) = 0) is convex-true for both 82 and 800- the latter
probability is log-concave in a. Therefore the optimization
problem in (12) is to maximize a concave function, but over
a non-convex set given by the constraint in (10). Conversely,
the equivalent optimization problem in (13) is to minimize a
convex function over a non-convex set.

Proposition 1: The probability Pr(z E Ala) is log-concave
for any convex set A.

Proof We may write

Pr(z E Ala) = Jf(z')l(z' + a E A)dz' (21)

where z' = Hx + e, and f(z') is the probability density
function of z'. Since z' is Gaussian, f(z') is log-concave in
z'. Moreover, the function l(z' + a E A) is log-concave in
z' and a since A is convex. Therefore the integral in (21)
represents the convolution of two log-concave sets, which is
itself log-concave (see [8]). •

We evaluate the two detectors on the IEEE 14-bus test
system. We take bus 1 to be the reference bus, so this system
has 13 state variables and 54 measurements. We assume that
the prior distribution on the states are given by ~x = 0';1, and
the measurement errors are given by ~e = 0';1. Throughout
our simulations, we use the parameters a; = 1 and a; = 0.1.
For the L oo Detector, we use 72 = 4, and again vary 71 based
on the desired probability of false alarm.

For the L 2 norm detector, the probability Pr(IIGzI1 2 2 7)
can be evaluated directly, using the techniques in [9]. Finding
this probability for the L oo Detector is not as straightforward,
so we use Monte Carlo approximation. For the case when
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Fig. I. ROC curves for L oo and L 2 residual detectors for l-sparse false
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Fig. 3. Comparison of the heuristic I' (a) with the true detection probability
for l- sparse vectors for both L 2 and L oo detectors.

c

difficult, for the two reasons outlined above: the number
of sparsity patterns grows very large, and for each one,
optimizing the probability is nontrivial. Therefore we do not
do this exactly for k > 1, but we use the heuristic I'(a) to do
some approximate analysis at higher sparsity levels.

C. Performance Approximation Using Detectabtlity Heuristic

We first present some numerical evidence that the heuristic
I'(a) described in Section III works well in that Pr(8(z) =
I]a) is roughly increasing in I'( a) for both our detectors. We
proceed to find approximate performance levels of these two
detectors at sparsity levels above k = 1.

For the two detectors 82 and 800 , we consider the detection
probability for all l-sparse vectors a satisfying equality in
(10) on the IEEE 14-bus test system. We use parameters C =
0.01 and Q; = 0.1, and plot in Figure 3 I'(a) versus the true
probability of detection for l-sparse a and for both detectors.
Observe that the scatter plots are roughly increasing.

Additionally, we evaluate the performance of the heuristic
on 2-sparse vectors in the following way. For each pair of
entries i,j of a, we optimize (15) with S = {i, j} . This gives
the a with sparsity S optimal according to r .We then evaluate
the true probability of detection for the two detectors, with
the same parameter values as above. The results are shown in
Figure 4 for the L2 detector and Figure 5 for the Loo detector.
Again, the heuristic appears to track the true probabilities
reasonably well.

With the heuristic, we can use brute force on k = 3 and
k = 4 to find a good-if not necessarily optimal-k-sparse a.
The results of our analysis for k = 0, ... , 4 are summarized
in Table 1. Listed there is the set of k meters that were found
to be best for the adversary to control, and the resulting mean
square error if the detection probability is raised from the false
alarm of 0.1 to 0.5. When the sparsity reaches 4, the attack
discussed in [7] becomes possible, so the mean square error
radically increases. However, note that for the L oo Detector, it
increases only to about an order of magnitude above <7; = 1.
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Fig. 2. Detection probabilities of L oo and L 2 residual detectors as functions
of mean square error C for I-sparse false data injections.

k = 1, i.e. the adversary controls only one meter, so a is 1
sparse, the optimization in (12) is easy, since it is clear that
(10) should hold with equality, so for each sparsity pattern (of
which there are only n = 54), there is only one choice for a .
For each i = 1, . . . , n, we evaluate the probability of detection
for the a nonzero only in a; satisfying equality in (10), then
minimize over i. This results in Figures I and 2. Figure I
compares the ROC curves for the two detectors for C = 0.04.
For this value ofC, the Loo Residual Detector outperforms the
L2 norm detector at all probabilities of false alarm. Figure 2
compares the detection probabilities of the two detectors at a
fixed probability of false alarm of 0.1 but varying C. The L oo

Residual Detector performs better than the L 2 norm detector
at high C, but worse at low C. It seems that as the error
injected by the adversary shrinks and becomes comparable to
the Gaussian noise, the more standard L2 detector becomes
the better one.

Comparing the two detectors for k > 1 is much more



k Sparsity pattern MSE for L 2 MSE for i-;
0 0.0197 0.0197
I {I} 0.0473 0.0450
2 {l ,15} 0.0705 0.0856
3 {I , 15,35} 0.146 0.178
4 {7,8, 28,48} 20900 29.4

TABLE I

DETECTOR PERFORMAN CE WITH INCREASING S PARSITY

likely to perform better in the given circumstances. In fact,
one would like to design a more elaborate detector that can
continuously trade off between the two, always choosing the
optimal operating point. We have argued that the detector
should share some of the properties of the Loo Residual
Detector, but this is by no means a proof that it is optimal. It
would be desirable to find the truly optimal detector, or if not,
demonstrate rigourously that the performance of our detector
is not far from the best.

Furthermore, several related problems could be considered.
First, real state estimation is performed over a very long
period of time, in which measurements arrive asynchronously,
and data is received from each meter continuously. It would
be worthwhile to develop a measurement-update type state
estimator with false data detection, capable of observing the
long-term behavior of each meter and discerning whether it
might be compromised. In such a scenario, the attacks may
become more complicated as well, as an adversary would
need to spread its influence over time in order to avoid being
detected. Moreover, it is yet unclear exactly how much damage
to the performance of the power system can be done via false
data attacks such as these. For example, if it were possible to
inject false data in such a way that the control center developed
an incorrect belief about the topology of the network, further
problems could develop as operators make control decisions
based on faulty information.
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0.8
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Fig. 5. Comparison of the heuristic rea) with the true detection probability
for 2-sparse vectors for the L oo detector.

It would be impossible for it to be less than a;.As the L2

detector has no ability to ascertain that this attack may be
taking place, the mean square error jumps to a level several
orders of magnitude higher.

V. CONCLUSIONS AND FUTURE WORK

We studied the problem of adversarial false data injection
in power system state estimation. We presented a novel for
mulation for the bad data detection problem. We introduced
a heuristic for the detectability of a particular attack by
the adversary, which allows particularly bad attacks to be
easily computed for any set of compromised meters. Finally,
we proposed a detector that can outperform the classical
detector, and demonstrated that our heuristic works well for
both the classical L2 detector and our Loo Detector. We saw
in Section IV-B that the L oo Detector performs better than
classical L 2 detector for certain problem parameters, but not
all. It would obviously be advantageous to use the one more
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