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Abstract— The problem of constructing malicious data attack Also considered in this paper are counter measures to
of smart grid state estimation is considered together with oun-  malicious data attack at the control center in the form afcktt
termeasures that detect the presence of such attacks. For ¢h detection. The problem of detecting malicious data attagk ¢

adversary, using a graph theoretic approach, an efficient go- - . . .
rithm with polynomial-time complexity is obtained for the d esign be viewed as a form of classical bad data detection. It is

of unobservable malicious data attacks. When the unobserpde however important to note that, because the adversary can
attack does not exist due to restrictions of meter access,tatks choose the site of attack judiciously and design attack data
are constructed to minimize the residue energy of attack whe  carefully, it is far more difficult to detect malicious datiéeaks
guaranteeing a certain level of increase of mean square emd-or than to detect random errors in the power systems. We will

the control center, a computationally efficient algorithm is derived . ttacks with diff td f histicati
to detect and localize attacks using the generalized likélbod examine attacks wi irerent degrees ot sophistication.

ratio test regularized by an L; norm penalty on the strength of
attack.

A. Summary of Results and Contributions
It was first discovered in [2] that in some cases, it is possibl
for the adversary to arbitrarily perturb the state estimato
. INTRODUCTION without being detected by the any bad data detector. We
will discuss in Sec. Il the close relationship between ¢hes
Future smart grid will likely to be more tightly integratedhighly damaging attacks and the classical notion of power
with the cyber infrastructure for sensing, control, sciedll  system observability [3]. As such, we refer to these attacks
dispatch, and billing. Already utilities company are rel§ 0as unobservableattacks. There are two primary regimes in
computer networks to manage generation and facilitate twich malicious data attacks occur, depending on whetteer th
way communications between users and suppliers. While sugversary controls enough meters to execute this unoliserva
integration are essential for the grid to be smart, it alséesa attack. The two regimes have quite different behavior, and w
this vital physical infrastructure more vulnerable to aybepresent results in both.
attacks by adversaries around the globe. It has already beefh the case that the adversary may perform an unobservable
widely reported that the United State electrical grid hasrbe attack, it is important to know how susceptible a power syste
penetrated by cyber spies, and there has been report thajsafb such an attack. In particular, we are interested in the
experimental cyber attack launched by researchers causeshiillest number of meters that must be compromised by the
generator self-destruct [1] adversary in order to perform such an attack. In Sec. Ill, we
The nature of attacks on smart grids can be very differgpitesent an efficient algorithm to find small sets of meterg tha
from that on communication networks such as the Internet. T controlled by the adversary, could cause an unobservable
objective of an adversary may not be just gaining unautkdrizattack. The algorithm is based on the purely topological
information; an adversary could in theory cripple the powejonditions for observability developed in [4]. As such, st i
grid by attacking the energy management system (EMS) whighaph-theoretic in nature and uses techniques of submodula
collects data from remote meters and produces estimatesfipfction minimization [5], [6], [7]. Our algorithm can help
system states at the intervals of roughly 15 minutes. If a@arn how vulnerable a power system is to such an attack, and
adversary is able to hack into the power grid and generatglere the attack might take place.
fake meter data, the energy management system at the contral/e also investigate the worst malicious data attacks in
center may be misled by the state estimator, potentiallyimgak the regime that the adversary cannot perform an unobserv-
erroneous decisions on contingency analysis, dispataver able attack. We develop a heuristic that allows us to obtain
billing. attacks that minimize attack power leakage to the detector
We consider in this paper strategies of covert attack lwhile increasing the mean square error at the state estimato
adversaries on meters of the smart grid by injecting maligiobeyond a predetermined objective. This heuristic reduces t
data with the goal of biasing power system state estimation.an eigenvalue problem that can be solved off line.
successful, such attacks may mislead the control centeakéo t It is obviously important to develop countermeasures to
erroneous actions that are detrimental to the network, tireat these malicious attacks. To that end, we study detectots tha
minimum, make the control center distrust state estimationcan identify these attacks if they take place. In Sec. IV, we



present a decision theoretic formulation of detecting onalis the set of busses, anél is the set of transmission lines.
data injection by an adversary. Because the adversary &ach line connects two meters, so each elemert € is
choose where to attack the network and design the injectad unordered pair of busses W Fig 1 shows the graph
data, the problem of detecting malicious data cannot k&ucture of the IEEE 14-bus test system, which we use in our
formulated as a simple hypothesis test, and the uniformlgtmaimulations. The control center receives measuremenis fro
powerful test does not exist in general. We study a detect@rious meters deployed throughout the system, from which
based on the generalized likelihood ratio test (GLRT) thét performs state estimation. Meters come in two varieties:
was originally introduced in our prior work [8]. GLRT is nottransmission line flow meters, which measure the power flow
optimal in general, but it is known to perform well in pra&tic through a single transmission line, and bus injection nseter
and it has well established asymptotic optimality [9], [10which measure the total outgoing flow on all transmissioedin
[11]. In other words, if the detector has many data samplegnnected to a single bus. Therefore each meter is assibciate
the detection performance of GLRT is close to optimal. ~ with either a bus inV or a line in £&. We allow for the

When guarding against attacks with large numbers of mpessibility of multiple meters on the same bus or line. Irijee
ters, it is infeasible to use the GLRT itself, because it iexgu in our simulations, we assume that a meter is placed in every
searching over an exponentially large number of possilidels, and two meters on every line, one in each direction.
attacks. Therefore, we extend our prior work in [8] to depelo

a more practical technique based Gnnorm minimization. TrawsF O ERhAENT
This is based on the well-known nature of thenorm as a g‘“‘“‘“‘”‘s
. . . . . . . SYNCHRONOUS
heuristic to find sparse solutions to optimization problems SONDENSERS ¢ ™
12 4 4

Finally, in Sec. V, we conduct numerical simulations on
a small scale example using the IEEE 14 bus network. We
compare the GLRT detector with two classical detection
schemes: theJ(x) detector and the (Bayesian) largest nor-
malized residue (LNR) detector [12], [13].
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B. Related Work

The first paper that addresses cyber-attack on power system
state estimation appears to be [2], which inspired the work
presented here. Lin, Ning, and Reiter consider the problem o
malicious data attack under a deterministic model of networig. 1. IEEE 14 bus test system.
state variables and arbitrary attack patterns. They oldain
simple condition under which the attack we refer to as the The graph-theoretic model for the power system yields the
unobservable attack exists, in which case the attack m@ylowing DC power flow model, a linearized version of the
increase the state estimation error arbitrarily. The agtbb[2] AC power flow model:
also found that for many standard networks, the undetestabl

conditions are easily met if the adversary can control only a z = Hx+a+e (1)
limited number of meters. e~ N(0,3%,),
Another relevant recent work is by Gorinevsky, Boyd, and acA,={acR™: |alo <k}

Poll [15] where a quadratic programming formulation for
estimating faults is presented. The main difference betwiee wherez € R™ is the vector power flow measurements; R
approach in [15] and ours is that the formulation in [15] ha®ie system state; the Gaussian measurement noise with zero
the interpretation that the attack vector has the Laplagigor mean and covariance mati3., and vector is malicious data
and the state variables deterministic whereas, in thisptipe injected by an adversary. Here we assume that the adversary
state vector is Gaussian and attack vector deterministic. can at most controk meters,i.e., a is a vector with at most

Bad data detection is a classical problem that is part fnon-zero entries|lallo < k). A vector a is said to have
the original formulation of state estimation [12]. See [16%parsityk if ||allo = k. The H matrix in (1) arises from the
for an earlier comparison study. Malicious data attack c#iaph theoretic model as follows. For each transmissioa lin
be viewed as thevorst interacting bad datanjected by an (b1,b2) € &, the DC power flow through this line from bis
adversary. To this end, very little is known about the worée busb. is given by
case scenario although the detection of interacting bad dat
has been consideredg[13], [17], [18], [19]. ° [ 00 Yoouby 020 —Vipupy 0000 ] x

bith element bath element
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where A, 5,) IS the susceptance of the transmission line

A power system is composed of a collection of busse§,b2). Let h, 5,y be the row vector in (2). If a meter
transmission lines, and power flow meters. We adopt a grapheasures the flow through the transmission line connecting
theoretic model for such a system. Therefore the powermsystbussesh; and b, then the associated row & is given by
is modeled as an undirected graph €), whereV represents h, ,,). If @ meter measures the power injection for lhys

Il. PROBLEM FORMULATION



then the associated row &1 is given by unobservable attack is closely related to the classicalorét
observability conditions [3].

Z WORSE ©) Theorem 1:A k-sparse attack vecter comprises an unob-
servable attack if and only if the network becomes unobserv-
able when thek meters associated with the nonzero entries

A. A Bayesian Framework and MMSE Estimation of a are removed from the networke., the (m — k) x n

We consider in this paper a Bayesian framework where tfdPmatrix ofH taken from the rows oH corresponding to
state variables are random vectors with Gaussian disisibut the Zero entries o& does not have full column rank.
N(p,,S,). We assume that, in practice, the meap and Proof: Without loss of generality, leH be partitioned into

€ x )" 1 ’ .
covarianceX, can be estimated from historical data. By = Hi | Hb], and submatridH, does not have full column

subtracting the mean from the data, we can assume with6@fK: i-€., there exists a vectoe 7 0 such thatH, c=0. We
loss of generality that:, = 0. now havea = Hc € Ay, which is unobservable by definition.

In the absence of an attacke., a = 0 in (1), (z,x) are Conversely, consider an unobservahle- He € Aj. Without

jointly Gaussian. The minimum mean square error (MMSE§SS Of generality, we can assume that the first £ entries
estimator of the state vectaris a linear estimator given by ©f & are zero. We therefore hald,c = 0 whereH, is the

ba:(by,b2)EE

submatrix made of the firstu — k rows of H. O
x(z) = argminE(||x — x(z)||*) = Kz (4) o _
% The implication from the above theorem is that the attack
where discovered in [2] is equivalent to removikgmeters from the
K=3,HHSH +3.)°. (5) network thus making the network not observable.
The minimum mean square error, in the absence of attackgis Graph-Theoretic Approach to Minimum Size Unobservable
given by Attacks
& = minE(||x — x(2)|]?) = Tr (T, - K, HX,). To know how susceptible a power system is to this highly

damaging unobservable attack, it is important to know how
If an adversary injects malicious datac A, but the control few meters that must be controlled by the adversary before
center is unaware of it, then the state estimator defined)in @he can be performed. From Theorem 1, we know that there
is no longer the true MMSE estimator (in the presence @ an unobservable-sparse attack vectarif and only if it is
attack); the estimatox = Kz is a “naive” MMSE estimator possible to remové rows fromH and causél not to have
that ignores the possibility of attack, and it will incur aher  full column rank. Finding the minimum sudhfor an arbitrary
mean square error (MSE). In particular, it is not hard to s&¢ is a hard problem. However, it becomes easier given the
that the MSE in the presence afis given by extra structure ofH imposed by the network topology.
£ + [Kall2 ©6) We now give a simple method to find sets of meters whose
z removal make the system unobservable. Moreover, we show
The impact on the estimator from a particular attacks that it is possible to efficiently minimize the size of the eét
given by the second term in (6). To increase the MSE at theeters produced by this method; thereby one may efficiently
state estimator, the adversary necessarily has to incthasecompute small sets of meters from which an adversary may
“energy” of attack, which increases the probability of lgpinexecute an unobservable attack.

detected at the control center. For a set of linesA C &, letg(A) be the set of meters either
on lines inA or on busses adjacent to lines/h Let h(A) be
1. STRATEGIES FORMALICIOUS ATTACKS the number of connected components in the grapte \ A);

i.e., the original graph after all lines il have been removed.
A. Unobservable Attacks The followi%g thgorzm gives a simple method for determining
Liu, Ning and Reiter observe in [2] that if there exists & number of meters ig(A) to remove from the network to
nonzerok-sparsea for which a = Hec for somec, then make it unobservable. The proof relies on [4], which gave an
efficient method to determine the observability of a network

based only on its topology.

Thus as a deterministic quantity,is observationally equiva- Theorem 2 (Sufficient condition for unobservable attacks):

lent tox + c. Therefore, if bothx andx + ¢ are valid network For all A C &, removing an arbitrary subset gfA) of size

states, the adversary'’s injection of datahen the true state is [g(A)| — h(A) 4+ 2 makes the system unobservable.

x will lead the control center to believe that the true network Proof: Let V and & be the sets of busses and lines respec-

state isx + ¢, and vectorc can be scaled arbitrarily. Since notively with a meter placed on them. Theorem 5 in [4] states

detector can distinguisk from x + ¢, we call hereafter an that the power system given b, &,V, €) is observable if

attack vectom unobservabléf it has the forma = Hc. and only if there exists & C £ comprising a spanning tree
Note that it is unlikely that random bad datawill satisfy of V and an assignment function

a= Hc. But an adversary can sy_nthesize their z?lttack vector 6:F SVUE )

to satisfy the unobservable condition. The following thezor

provides insight into the adversary action by showing thmat &atisfying:

z=Hx+a+e=H(xx+c)+te.



1) If I € €, theng(l) = L. is particularly damaging to the control center’s stateneste
2) If ¢(1) €V, then linel is incident to the bus(l). without being easily detectable. There will thus be a trade-
3) If I1,1y € F are distinct, thery(l;) # ¢(l2). off for the adversary between cause large errors in the state
The principle behind this theorem is that a bus injectionenetéstimate and being detected with low probability. We introel
may “impersonate” a single line meter on a line incident t8 method based on a residue energy heuristic to approach this
the bus. If a bush = ¢(I) for some linel, this represents trade-off.
the meter ath impersonating a meter on line The system  Given the naive MMSE state estimater= Kz (4-5), the
is observable if and only if a spanning tréeexists made up €stimation residue error is given by
of transmission lines with either real meters or impersedat r=Gz, G2I-HK ©)
meters by bus meters.
Not including the lines inA, the network splits intdi(A) Substituting the measurement model, we have
separate pieces. Therefore, any spanning dreeust include
at leasth(A) — 1 lines in A. Any assignment) satisfying r=GHx + Ga + Ge.
the conditions above must therefore employ at lédst) -1 \here Ga is the only term from the attack. Therefore, an
meters ing(A). Hence, if any|g(A)| — h(A) + 2 of these attack vectora will be more difficult to detect at the control
meters are removed from the network, ohlyd) — 2 remain, center if Ga is small. Recall from (6), the damage in MSE
which is not enough to create a full spanning tree, so th@ne by injectinga is |Kal|2. We therefore consider the

network becomes unobservable. U following equivalent problems:
Example 1:Consider the IEEE 14-bus test system, shown max ||[Kal|? subject to |Gal? <, (10)
in Fig. 1. TakeA = {(7,8)}. Since bus 8 is only connected to acA, -

the system through bus 7, removing this line from the netwogt equivalently,

cuts it into two pieces. TherefofgA) = 2. The set of meters . ) ) )

g(A) consists of meters on the ling, 8), and bus injection o |Gallz  subject to [Kal; > C. (11)
meters at bus 7 and 8. Theorem 2 states that if we remave o - .
lg(A)| meters from this set—that is, all the metersyia)— The above optimizations remain dlff!cult due_ to the conatrai
the system becomes unobservable. In our simulation examp € A Howev_er, given a Spe’CIfIC sparsity patte$r_1c
we assume there are two meters on each line, therefore it "’ ,n} forwhicha; = 0forall i ¢ 8, soI_vmg Fhe optimal
takes 4 meters to execute an unobservable attack. Furtr@rm'attaCk vectora for the above two formulations is a standard
it is not hard to employ Theorem 2 to find similar 4-spars%enera“Zed eignevalue problem.

unobservable attacks on the 30-bus, 118-bus, and 300-4tus te!n particular, for fixed sparsity patterﬁ,_let as be the
systems. nonzero subvector of, Kg the corresponding submatrix of

K, and Gg similarly defined. The problem (11) becomes
Theorem 2 provides a method to find unobservable attacks,

but we would like to find attacks using as few meters as JJin |Gsull3 subjectto [Ksul3>C.  (12)
possible. We use the theory of submodular functions to show

that the quantityg(A)|—h(A)+2 can be efficiently minimized Let Qz £ G;Gs, Qx = K;Ks. It can be shown that the
over all sets of edgesi. This significantly increases theoptimal attack pattern has the form

usefulness of Theorem 2, because it means we can efficiently

find small unobservable attacks for arbitrary power systems aj = ¢ . (13)
A submodular function is a real-valued functigndefined IKsvl3
on the collection of subsets of a sBf such that for any

wherev is the generalized eigenvector corresponding to the
A, BCW, . . _ . X
smallest generalized eigenvalugi, of the following matrix

f(AUB) + f(ANB) < f(A) + f(B). (8) pencil

. . . . Qcv — MminQxv = 0.
Moreover, a functionf is supermodular if- f is submodular.
There are several known techniques to find the4et W The k dimensional symmetrical generalized eigenvalue prob-
minimizing f(A) in time polynomial in the size of¥ [5], lem can be solved the QZ algorithm [21].
[6], [7]. It is not hard to see thalg(A)| is submodular in
A, and h(A) is supermodular. Therefore, their difference is V. DETECTION OFMALICIOUS DATA ATTACK

submodular, so it can be efficiently minimized. A. Statistical Model and Attack Hypotheses

o ) We now present a formulation of the detection problem
C. Minimum Residue Energy Attack at the control center. We assume a Bayesian model where
We now consider the problem of finding the worst attack ithe state variables are random with a multivariate Gaussian
the regime that the adversary cannot perform an unobservatiktributionx ~ A(0, X,.). Our detection model, on the other
attack. In this regime, it is not possible to selectaamector hand, is not Bayesian in the sense that we do not assume any
that will never be detected by the control center. The bestior probability of the attack nor do we assume any staasti
choice for the adversary will be to select an attack vectat thmodel for the attack vectai.



Under the observation model (1), we consider the following V. NUMERICAL SIMULATIONS

composite binary hypothesis: We present some simulation results on the IEEE 14 bus

Ho:a=0 versus Hi:ac A\ {0} (14) System shown in Fig. 1 to compare the performance of the
GLRT with the J(z) test and the LNR test [12], [13]. For
Given observatiorz € R™, we wish to design a detectdr: various sparsity levels, we find the minimum energy residue
R™ — {0,1} with §(z) = 1 indicating a detection of attack attack as discussed in Sec. IlI-C. The adversary may then
(H1) andé(z) = 0 the null hypothesis. scale this attack vector depending on how much it wishes
to influence the mean square error. We make two plots to
B. Generalized Likelihood Ratio Detector with Norm Reg- show performance of the detectors. The first is the standard
ularization Receiver Operating CharacteristiqgROC) that characterize

the tradeoff bet th bability of attack detectionthr
For the hypotheses test given in (14), the uniformly mo tre raceoll beween the probabiiity of aftack Aetectione

. bability of false alarm, which we may plot for a single
powerful test does not exist. We propose a detector ba % y y p g

. L ) -attack vector. In addition, we plot thAttacker Operating
on the generalized likelihood ratio test (GLRT). We note 'E‘:haracteristic(AOC), which was introduced in [8], and char-

particular that, if we have mult|plle measurements un_der Fg%terizes the tradeoff between the probability of beingcted
samea, the GLRT proposed here is asymptotically optimal Vs, resulting (extra) mean-square error at the state estima

the sense that it offers the fastest decay rate of miss dmec'in particular, we fix a probability of false alarm and vary the

probablh-ty [.20]'. length of the attack vector along the direction minimizihe t
The dlstr_lbu'uon Of_ the r_neasuremezltunder the two hy- energy residue. This plot illustrates the trade-off facgdHz
potheses differ only in their means adversary between increasing the state estimation ermbr an
Ho : z~N(0,X,) minimizing it_s probability of detection. _In our simulatisn
we characterize the mean square error increase at the tontro
Hi o oz~ N(a E:),a€Ax\ {0} center using the ratio between the resulting MSE from the

whereX, £ HY, H' + 3.. The GLRT is given by atta_ck and the MSE under no attadle(, a = 0) in dB.
Fig. 2 shows the ROC and AOC curves for the worst-case
max f(zla) #, 2-sparse attack. We implement the GLRT using exhaustive
L(z) = % 2T, (15) search over all possible sparsity patterns. This is feasibl
zja = Ho because of the low sparsity level, so we need not resort to the

Ly minimization as in (18). Observe that the GLRT performs

where f(zla) be the Gaussian density function with mean consistently better than the other two conventional detsct

and covariancé&:., and the threshold is chosen from under
null hypothesis for a certain false alarm rate. This is egjent

to
Ho 0 o
min a'¥;'a—22'3'a = 7. (e
acAyg e g,
Ha g,
Thus the GLRT reduces to solving '
minimize a'S-'a - 275 la W m g

: a7
<k.
SUbJeCt to HaHO <k Fig. 2. Left: ROC Performance of GLRT for 2 sparsity case. M&ith

attack is 8db. SNR=10db. Right: AOC Performance of GLRT faparsity

For a fixed sparsity patterne., if we know the support but case. False alarm rate is 0.05. SNR=10dB. The horizontal axi

not necessarily the actual valuessgtthe above optimization is
easy to solve. In other words, if we know a small set of suspectrig. 3 shows the ROC and AOC curves for the worst-
meters from which malicious may be injected, the above tgg{se 3-sparse attack, again using exhaustive search for the
is easily computable. The sparsity condition @makes the G| RT. Interestingly, the LNR test outperforms the GLRT at
above optimization problem non-convex, but for sntaill can  thjs sparsity level. We believe the reason for this is that th
be solved exactly simply by exhaustively searching throaigh G| RT has little recourse when there is significant uncetyain
sparsity patterns. For largér this is not feasible. It is a well jn the sparsity pattern of the attack. In particular, the eret
known technique that (17) can be approximated by a convgXing controlled by the adversary here are the bus injection
optimization: meter at bus 1, and the two meters on the transmission line
between bus 1 and 2. These constitute three of the sevensmeter
(18) that hold any information about the state at bus 1. Thus, jt ma
be difficult for the detector to determine which of the selera
where thel; norm constraint is a heuristic for the sparsityneters around bus 1 are the true adversarial meters. The GLRT
of a. The constantv needs to be adjusted until the solutiomoes not react to this uncertainty: it can only choose thet mos
involves ana with sparsity k. This requires solving (18) likely sparsity pattern, which is often wrong. Indeed, inrou
several times. simulations the GLRT identified the correct sparsity patter

minimize a'¥;'a—2z'%]'a
subject to ||alj; <wv



only 4.2% of the time.

o 0% o006
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Fig. 3. Left: ROC Performance of GLRT for 3 sparsity case. M&ith
attack is 10db. SNR=10db. Right: AOC Performance of GLRTIaparsity
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case. False alarm rate is 0.05. SNR=10dB
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Fig. 5. ROC Performance of GLRT under random attack for 6ssfyacase.
MSE with attack is 6db. SNR=10db.

problem; in particular, this detector was implement using
convex optimization vial; norm regularization.
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