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Abstract— The problem of constructing malicious data attack
of smart grid state estimation is considered together with coun-
termeasures that detect the presence of such attacks. For the
adversary, using a graph theoretic approach, an efficient algo-
rithm with polynomial-time complexity is obtained for the d esign
of unobservable malicious data attacks. When the unobservable
attack does not exist due to restrictions of meter access, attacks
are constructed to minimize the residue energy of attack while
guaranteeing a certain level of increase of mean square error. For
the control center, a computationally efficient algorithm is derived
to detect and localize attacks using the generalized likelihood
ratio test regularized by an L1 norm penalty on the strength of
attack.

I. I NTRODUCTION

Future smart grid will likely to be more tightly integrated
with the cyber infrastructure for sensing, control, scheduling,
dispatch, and billing. Already utilities company are rely on
computer networks to manage generation and facilitate two
way communications between users and suppliers. While such
integration are essential for the grid to be smart, it also makes
this vital physical infrastructure more vulnerable to cyber-
attacks by adversaries around the globe. It has already been
widely reported that the United State electrical grid has been
penetrated by cyber spies, and there has been report that an
experimental cyber attack launched by researchers caused a
generator self-destruct [1]

The nature of attacks on smart grids can be very different
from that on communication networks such as the Internet. The
objective of an adversary may not be just gaining unauthorized
information; an adversary could in theory cripple the power
grid by attacking the energy management system (EMS) which
collects data from remote meters and produces estimates of
system states at the intervals of roughly 15 minutes. If an
adversary is able to hack into the power grid and generates
fake meter data, the energy management system at the control
center may be misled by the state estimator, potentially making
erroneous decisions on contingency analysis, dispatch, oreven
billing.

We consider in this paper strategies of covert attack by
adversaries on meters of the smart grid by injecting malicious
data with the goal of biasing power system state estimation.If
successful, such attacks may mislead the control center to take
erroneous actions that are detrimental to the network, or atthe
minimum, make the control center distrust state estimation.

Also considered in this paper are counter measures to
malicious data attack at the control center in the form of attack
detection. The problem of detecting malicious data attack can
be viewed as a form of classical bad data detection. It is
however important to note that, because the adversary can
choose the site of attack judiciously and design attack data
carefully, it is far more difficult to detect malicious data attacks
than to detect random errors in the power systems. We will
examine attacks with different degrees of sophistication.

A. Summary of Results and Contributions

It was first discovered in [2] that in some cases, it is possible
for the adversary to arbitrarily perturb the state estimator
without being detected by the any bad data detector. We
will discuss in Sec. III the close relationship between these
highly damaging attacks and the classical notion of power
system observability [3]. As such, we refer to these attacks
as unobservableattacks. There are two primary regimes in
which malicious data attacks occur, depending on whether the
adversary controls enough meters to execute this unobservable
attack. The two regimes have quite different behavior, and we
present results in both.

In the case that the adversary may perform an unobservable
attack, it is important to know how susceptible a power system
is to such an attack. In particular, we are interested in the
smallest number of meters that must be compromised by the
adversary in order to perform such an attack. In Sec. III, we
present an efficient algorithm to find small sets of meters that,
if controlled by the adversary, could cause an unobservable
attack. The algorithm is based on the purely topological
conditions for observability developed in [4]. As such, it is
graph-theoretic in nature and uses techniques of submodular
function minimization [5], [6], [7]. Our algorithm can help
learn how vulnerable a power system is to such an attack, and
where the attack might take place.

We also investigate the worst malicious data attacks in
the regime that the adversary cannot perform an unobserv-
able attack. We develop a heuristic that allows us to obtain
attacks that minimize attack power leakage to the detector
while increasing the mean square error at the state estimator
beyond a predetermined objective. This heuristic reduces to
an eigenvalue problem that can be solved off line.

It is obviously important to develop countermeasures to
these malicious attacks. To that end, we study detectors that
can identify these attacks if they take place. In Sec. IV, we
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present a decision theoretic formulation of detecting malicious
data injection by an adversary. Because the adversary can
choose where to attack the network and design the injected
data, the problem of detecting malicious data cannot be
formulated as a simple hypothesis test, and the uniformly most
powerful test does not exist in general. We study a detector
based on the generalized likelihood ratio test (GLRT) that
was originally introduced in our prior work [8]. GLRT is not
optimal in general, but it is known to perform well in practice
and it has well established asymptotic optimality [9], [10],
[11]. In other words, if the detector has many data samples,
the detection performance of GLRT is close to optimal.

When guarding against attacks with large numbers of me-
ters, it is infeasible to use the GLRT itself, because it requires
searching over an exponentially large number of possible
attacks. Therefore, we extend our prior work in [8] to develop
a more practical technique based onl1 norm minimization.
This is based on the well-known nature of thel1 norm as a
heuristic to find sparse solutions to optimization problems.

Finally, in Sec. V, we conduct numerical simulations on
a small scale example using the IEEE 14 bus network. We
compare the GLRT detector with two classical detection
schemes: theJ(x̂) detector and the (Bayesian) largest nor-
malized residue (LNR) detector [12], [13].

B. Related Work

The first paper that addresses cyber-attack on power system
state estimation appears to be [2], which inspired the work
presented here. Lin, Ning, and Reiter consider the problem of
malicious data attack under a deterministic model of network
state variables and arbitrary attack patterns. They obtaina
simple condition under which the attack we refer to as the
unobservable attack exists, in which case the attack may
increase the state estimation error arbitrarily. The authors of [2]
also found that for many standard networks, the undetectable
conditions are easily met if the adversary can control only a
limited number of meters.

Another relevant recent work is by Gorinevsky, Boyd, and
Poll [15] where a quadratic programming formulation for
estimating faults is presented. The main difference between the
approach in [15] and ours is that the formulation in [15] has
the interpretation that the attack vector has the Laplacianprior
and the state variables deterministic whereas, in this paper, the
state vector is Gaussian and attack vector deterministic.

Bad data detection is a classical problem that is part of
the original formulation of state estimation [12]. See [16]
for an earlier comparison study. Malicious data attack can
be viewed as theworst interacting bad datainjected by an
adversary. To this end, very little is known about the worst
case scenario although the detection of interacting bad data
has been considered [13], [17], [18], [19].

II. PROBLEM FORMULATION

A power system is composed of a collection of busses,
transmission lines, and power flow meters. We adopt a graph-
theoretic model for such a system. Therefore the power system
is modeled as an undirected graph(V,E), whereV represents

the set of busses, andE is the set of transmission lines.
Each line connects two meters, so each elemente ∈ E is
an unordered pair of busses inV. Fig 1 shows the graph
structure of the IEEE 14-bus test system, which we use in our
simulations. The control center receives measurements from
various meters deployed throughout the system, from which
it performs state estimation. Meters come in two varieties:
transmission line flow meters, which measure the power flow
through a single transmission line, and bus injection meters,
which measure the total outgoing flow on all transmission lines
connected to a single bus. Therefore each meter is associated
with either a bus inV or a line in E. We allow for the
possibility of multiple meters on the same bus or line. Indeed,
in our simulations, we assume that a meter is placed in every
bus, and two meters on every line, one in each direction.

Fig. 1. IEEE 14 bus test system.

The graph-theoretic model for the power system yields the
following DC power flow model, a linearized version of the
AC power flow model:

z = Hx+ a+ e (1)

e ∼ N (0,Σe),

a ∈ Ak = {a ∈ R
m : ‖a‖0 ≤ k}

wherez ∈ R
m is the vector power flow measurements,x ∈ R

n

the system state,e the Gaussian measurement noise with zero
mean and covariance matrixΣe, and vectora is malicious data
injected by an adversary. Here we assume that the adversary
can at most controlk meters,i.e., a is a vector with at most
k non-zero entries (‖a‖0 ≤ k). A vector a is said to have
sparsityk if ‖a‖0 = k. TheH matrix in (1) arises from the
graph theoretic model as follows. For each transmission line
(b1, b2) ∈ E, the DC power flow through this line from busb1
to busb2 is given by

[ 0 · · · 0 Y(b1,b2)
︸ ︷︷ ︸

b1th element

0 · · · 0 −Y(b1,b2)
︸ ︷︷ ︸

b2th element

0 · · · 0 ] x

(2)
where A(b1,b2) is the susceptance of the transmission line
(b1, b2). Let h(b1,b2) be the row vector in (2). If a meter
measures the flow through the transmission line connecting
bussesb1 and b2, then the associated row ofH is given by
h(b1,b2). If a meter measures the power injection for busb1,
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then the associated row ofH is given by
∑

b2:(b1,b2)∈E

h(b1,b2). (3)

A. A Bayesian Framework and MMSE Estimation

We consider in this paper a Bayesian framework where the
state variables are random vectors with Gaussian distribution
N (µx,Σx). We assume that, in practice, the meanµx and
covarianceΣx can be estimated from historical data. By
subtracting the mean from the data, we can assume without
loss of generality thatµx = 0.

In the absence of an attack,i.e., a = 0 in (1), (z,x) are
jointly Gaussian. The minimum mean square error (MMSE)
estimator of the state vectorx is a linear estimator given by

x̂(z) = argmin
x̂

E(‖x− x̂(z)‖2) = Kz (4)

where
K = ΣxH

T(HΣxH
T +Σe)

−1. (5)

The minimum mean square error, in the absence of attack, is
given by

E0 = min
x̂

E(||x− x̂(z)||2) = Tr (Σx −KxHΣx) .

If an adversary injects malicious dataa ∈ Ak but the control
center is unaware of it, then the state estimator defined in (4)
is no longer the true MMSE estimator (in the presence of
attack); the estimator̂x = Kz is a “naive” MMSE estimator
that ignores the possibility of attack, and it will incur a higher
mean square error (MSE). In particular, it is not hard to see
that the MSE in the presence ofa is given by

E0 + ‖Ka‖22. (6)

The impact on the estimator from a particular attacka is
given by the second term in (6). To increase the MSE at the
state estimator, the adversary necessarily has to increasethe
“energy” of attack, which increases the probability of being
detected at the control center.

III. STRATEGIES FORMALICIOUS ATTACKS

A. Unobservable Attacks

Liu, Ning and Reiter observe in [2] that if there exists a
nonzerok-sparsea for which a = Hc for somec, then

z = Hx+ a+ e = H(x+ c) + e.

Thus as a deterministic quantity,x is observationally equiva-
lent tox+c. Therefore, if bothx andx+c are valid network
states, the adversary’s injection of dataa when the true state is
x will lead the control center to believe that the true network
state isx+ c, and vectorc can be scaled arbitrarily. Since no
detector can distinguishx from x + c, we call hereafter an
attack vectora unobservableif it has the forma = Hc.

Note that it is unlikely that random bad dataa will satisfy
a = Hc. But an adversary can synthesize their attack vector
to satisfy the unobservable condition. The following theorem
provides insight into the adversary action by showing that an

unobservable attack is closely related to the classical network
observability conditions [3].

Theorem 1:A k-sparse attack vectora comprises an unob-
servable attack if and only if the network becomes unobserv-
able when thek meters associated with the nonzero entries
of a are removed from the network;i.e., the (m − k) × n
submatrix ofH taken from the rows ofH corresponding to
the zero entries ofa does not have full column rank.

Proof: Without loss of generality, letH be partitioned into
HT = [HT

1 | HT
2], and submatrixH1 does not have full column

rank, i.e., there exists a vectorc 6= 0 such thatH1c=0. We
now havea = Hc ∈ Ak, which is unobservable by definition.
Conversely, consider an unobservablea = Hc ∈ Ak. Without
loss of generality, we can assume that the firstm− k entries
of a are zero. We therefore haveH1c = 0 whereH1 is the
submatrix made of the firstm− k rows ofH. �

The implication from the above theorem is that the attack
discovered in [2] is equivalent to removingk meters from the
network thus making the network not observable.

B. Graph-Theoretic Approach to Minimum Size Unobservable
Attacks

To know how susceptible a power system is to this highly
damaging unobservable attack, it is important to know how
few meters that must be controlled by the adversary before
one can be performed. From Theorem 1, we know that there
is an unobservablek-sparse attack vectora if and only if it is
possible to removek rows fromH and causeH not to have
full column rank. Finding the minimum suchk for an arbitrary
H is a hard problem. However, it becomes easier given the
extra structure onH imposed by the network topology.

We now give a simple method to find sets of meters whose
removal make the system unobservable. Moreover, we show
that it is possible to efficiently minimize the size of the setof
meters produced by this method; thereby one may efficiently
compute small sets of meters from which an adversary may
execute an unobservable attack.

For a set of linesA ⊆ E, let g(A) be the set of meters either
on lines inA or on busses adjacent to lines inA. Let h(A) be
the number of connected components in the graph(V,E \A);
i.e., the original graph after all lines inA have been removed.
The following theorem gives a simple method for determining
a number of meters ing(A) to remove from the network to
make it unobservable. The proof relies on [4], which gave an
efficient method to determine the observability of a network
based only on its topology.

Theorem 2 (Sufficient condition for unobservable attacks):
For all A ⊆ E, removing an arbitrary subset ofg(A) of size
|g(A)| − h(A) + 2 makes the system unobservable.

Proof: Let V̄ and Ē be the sets of busses and lines respec-
tively with a meter placed on them. Theorem 5 in [4] states
that the power system given by(V,E, V̄, Ē) is observable if
and only if there exists aF ⊆ E comprising a spanning tree
of V and an assignment function

φ : F → V̄ ∪ Ē (7)

satisfying:
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1) If l ∈ Ē, thenφ(l) = l.
2) If φ(l) ∈ V̄, then linel is incident to the busφ(l).
3) If l1, l2 ∈ F are distinct, thenφ(l1) 6= φ(l2).

The principle behind this theorem is that a bus injection meter
may “impersonate” a single line meter on a line incident to
the bus. If a busb = φ(l) for some linel, this represents
the meter atb impersonating a meter on linel. The system
is observable if and only if a spanning treeF exists made up
of transmission lines with either real meters or impersonated
meters by bus meters.

Not including the lines inA, the network splits intoh(A)
separate pieces. Therefore, any spanning treeF must include
at leasth(A) − 1 lines in A. Any assignmentφ satisfying
the conditions above must therefore employ at leasth(A)− 1
meters ing(A). Hence, if any|g(A)| − h(A) + 2 of these
meters are removed from the network, onlyh(A)− 2 remain,
which is not enough to create a full spanning tree, so the
network becomes unobservable. �

Example 1:Consider the IEEE 14-bus test system, shown
in Fig. 1. TakeA = {(7, 8)}. Since bus 8 is only connected to
the system through bus 7, removing this line from the network
cuts it into two pieces. Thereforeh(A) = 2. The set of meters
g(A) consists of meters on the line(7, 8), and bus injection
meters at bus 7 and 8. Theorem 2 states that if we remove
|g(A)| meters from this set—that is, all the meters ing(A)—
the system becomes unobservable. In our simulation examples,
we assume there are two meters on each line, therefore it
takes 4 meters to execute an unobservable attack. Furthermore,
it is not hard to employ Theorem 2 to find similar 4-sparse
unobservable attacks on the 30-bus, 118-bus, and 300-bus test
systems.

Theorem 2 provides a method to find unobservable attacks,
but we would like to find attacks using as few meters as
possible. We use the theory of submodular functions to show
that the quantity|g(A)|−h(A)+2 can be efficiently minimized
over all sets of edgesA. This significantly increases the
usefulness of Theorem 2, because it means we can efficiently
find small unobservable attacks for arbitrary power systems.

A submodular function is a real-valued functionf defined
on the collection of subsets of a setW such that for any
A,B ⊆ W ,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B). (8)

Moreover, a functionf is supermodular if−f is submodular.
There are several known techniques to find the setA ⊆ W
minimizing f(A) in time polynomial in the size ofW [5],
[6], [7]. It is not hard to see that|g(A)| is submodular in
A, and h(A) is supermodular. Therefore, their difference is
submodular, so it can be efficiently minimized.

C. Minimum Residue Energy Attack

We now consider the problem of finding the worst attack in
the regime that the adversary cannot perform an unobservable
attack. In this regime, it is not possible to select ana vector
that will never be detected by the control center. The best
choice for the adversary will be to select an attack vector that

is particularly damaging to the control center’s state estimate
without being easily detectable. There will thus be a trade-
off for the adversary between cause large errors in the state
estimate and being detected with low probability. We introduce
a method based on a residue energy heuristic to approach this
trade-off.

Given the naive MMSE state estimatorx̂ = Kz (4-5), the
estimation residue error is given by

r = Gz, G , I−HK (9)

Substituting the measurement model, we have

r = GHx+Ga+Ge.

whereGa is the only term from the attack. Therefore, an
attack vectora will be more difficult to detect at the control
center ifGa is small. Recall from (6), the damage in MSE
done by injectinga is ‖Ka‖22. We therefore consider the
following equivalent problems:

max
a∈Ak

‖Ka‖22 subject to ‖Ga‖22 ≤ η, (10)

or equivalently,

min
a∈Ak

‖Ga‖22 subject to ‖Ka‖22 ≥ C. (11)

The above optimizations remain difficult due to the constraint
a ∈ Ak. However, given a specific sparsity patternS ⊂
{1, · · · , n} for which ai = 0 for all i /∈ S, solving the optimal
attack vectora for the above two formulations is a standard
generalized eignevalue problem.

In particular, for fixed sparsity patternS, let aS be the
nonzero subvector ofa, KS the corresponding submatrix of
K, andGS similarly defined. The problem (11) becomes

min
u∈Rn−k

‖GSu‖
2
2 subject to ‖KSu‖

2
2 ≥ C. (12)

Let QG , GT
S
GS, QK , KT

S
KS. It can be shown that the

optimal attack pattern has the form

a∗
S
=

√

C

‖KSv‖22
v (13)

wherev is the generalized eigenvector corresponding to the
smallest generalized eigenvalueλmin of the following matrix
pencil

QGv − λminQKv = 0.

The k dimensional symmetrical generalized eigenvalue prob-
lem can be solved the QZ algorithm [21].

IV. D ETECTION OFMALICIOUS DATA ATTACK

A. Statistical Model and Attack Hypotheses

We now present a formulation of the detection problem
at the control center. We assume a Bayesian model where
the state variables are random with a multivariate Gaussian
distributionx ∼ N (0,Σx). Our detection model, on the other
hand, is not Bayesian in the sense that we do not assume any
prior probability of the attack nor do we assume any statistical
model for the attack vectora.
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Under the observation model (1), we consider the following
composite binary hypothesis:

H0 : a = 0 versus H1 : a ∈ Ak \ {0}. (14)

Given observationz ∈ R
m, we wish to design a detectorδ :

R
m → {0, 1} with δ(z) = 1 indicating a detection of attack

(H1) andδ(z) = 0 the null hypothesis.

B. Generalized Likelihood Ratio Detector withL1 Norm Reg-
ularization

For the hypotheses test given in (14), the uniformly most
powerful test does not exist. We propose a detector based
on the generalized likelihood ratio test (GLRT). We note in
particular that, if we have multiple measurements under the
samea, the GLRT proposed here is asymptotically optimal in
the sense that it offers the fastest decay rate of miss detection
probability [20].

The distribution of the measurementz under the two hy-
potheses differ only in their means

H0 : z ∼ N (0,Σz)

H1 : z ∼ N (a,Σz), a ∈ Ak \ {0}

whereΣz , HΣxH
T +Σe. The GLRT is given by

L(z) ,
max
a∈Ak

f(z|a)

f(z|a = 0)

H1

≷
H0

τ, (15)

wheref(z|a) be the Gaussian density function with meana

and covarianceΣz, and the thresholdτ is chosen from under
null hypothesis for a certain false alarm rate. This is equivalent
to

min
a∈Ak

aTΣ−1
z a− 2zTΣ−1

z a

H0

≷
H1

τ. (16)

Thus the GLRT reduces to solving

minimize aTΣ
−1
z a− 2zTΣ

−1
z a

subject to ‖a‖0 ≤ k.
(17)

For a fixed sparsity pattern,i.e., if we know the support but
not necessarily the actual values ofa, the above optimization is
easy to solve. In other words, if we know a small set of suspect
meters from which malicious may be injected, the above test
is easily computable. The sparsity condition ona makes the
above optimization problem non-convex, but for smallk it can
be solved exactly simply by exhaustively searching throughall
sparsity patterns. For largerk, this is not feasible. It is a well
known technique that (17) can be approximated by a convex
optimization:

minimize aTΣ−1
z a− 2zTΣ−1

z a

subject to ‖a‖1 ≤ ν
(18)

where theL1 norm constraint is a heuristic for the sparsity
of a. The constantν needs to be adjusted until the solution
involves an a with sparsity k. This requires solving (18)
several times.

V. NUMERICAL SIMULATIONS

We present some simulation results on the IEEE 14 bus
system shown in Fig. 1 to compare the performance of the
GLRT with the J(x̂) test and the LNR test [12], [13]. For
various sparsity levels, we find the minimum energy residue
attack as discussed in Sec. III-C. The adversary may then
scale this attack vector depending on how much it wishes
to influence the mean square error. We make two plots to
show performance of the detectors. The first is the standard
Receiver Operating Characteristics(ROC) that characterize
the tradeoff between the probability of attack detection vs. the
probability of false alarm, which we may plot for a single
attack vector. In addition, we plot theAttacker Operating
Characteristic(AOC), which was introduced in [8], and char-
acterizes the tradeoff between the probability of being detected
vs. resulting (extra) mean-square error at the state estimator.
In particular, we fix a probability of false alarm and vary the
length of the attack vector along the direction minimizing the
energy residue. This plot illustrates the trade-off faced by the
adversary between increasing the state estimation error and
minimizing its probability of detection. In our simulations,
we characterize the mean square error increase at the control
center using the ratio between the resulting MSE from the
attack and the MSE under no attack (i.e., a = 0) in dB.

Fig. 2 shows the ROC and AOC curves for the worst-case
2-sparse attack. We implement the GLRT using exhaustive
search over all possible sparsity patterns. This is feasible
because of the low sparsity level, so we need not resort to the
L1 minimization as in (18). Observe that the GLRT performs
consistently better than the other two conventional detectors.
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Fig. 2. Left: ROC Performance of GLRT for 2 sparsity case. MSEwith
attack is 8db. SNR=10db. Right: AOC Performance of GLRT for 2sparsity
case. False alarm rate is 0.05. SNR=10dB. The horizontal axis

Fig. 3 shows the ROC and AOC curves for the worst-
case 3-sparse attack, again using exhaustive search for the
GLRT. Interestingly, the LNR test outperforms the GLRT at
this sparsity level. We believe the reason for this is that the
GLRT has little recourse when there is significant uncertainty
in the sparsity pattern of the attack. In particular, the meters
being controlled by the adversary here are the bus injection
meter at bus 1, and the two meters on the transmission line
between bus 1 and 2. These constitute three of the seven meters
that hold any information about the state at bus 1. Thus, it may
be difficult for the detector to determine which of the several
meters around bus 1 are the true adversarial meters. The GLRT
does not react to this uncertainty: it can only choose the most
likely sparsity pattern, which is often wrong. Indeed, in our
simulations the GLRT identified the correct sparsity pattern
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only 4.2% of the time.
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Fig. 3. Left: ROC Performance of GLRT for 3 sparsity case. MSEwith
attack is 10db. SNR=10db. Right: AOC Performance of GLRT for3 sparsity
case. False alarm rate is 0.05. SNR=10dB

Continuing our analysis of 3-sparsity attacks, we conduct
simulations when the adversaries are placed randomly in
the network, instead of at the worst-case meters. Once their
random meters are chosen, we find the worst-case attack
vector using the energy residual heuristic. This simulatesthe
situation that the adversaries cannot choose their locations,
but are intelligent and cooperative in their attack. The resulting
performance of the three detectors is shown in Fig. 4. Observe
that we have recovered the outperformance of the GLRT as
compared to the conventional detectors, if only slightly. When
the placement of the adversaries is random, they are not as
capable of cooperating with one another, therefore their attack
is easier to detect.
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Fig. 4. Left: ROC Performance of GLRT under random attack for3 sparsity
case. MSE with attack is 6db. SNR=10db. Right: AOC Performance of GLRT
under random attack for 3 sparsity case. False alarm rate is 0.05. SNR=10dB

Finally, we increase the sparsity level to 6, at which it is
impossible to perform exhaustive search for the GLRT. At this
sparsity level, it becomes possible to perform an unobservable
attack, so it is not as illuminating to choose the worst-case
sparsity pattern, as that would be very difficult to detect.
Instead, we again choose the sparsity pattern randomly but
optimize the attack within it. Fig. 5 compares the performance
of the GLRT implemented vial1 minimization as in (18) to
the two conventional detectors. Note again that the GLRT
outperforms the others.

VI. CONCLUSIONS

We present in this paper adversarial strategies for mali-
cious data attacks, as well as countermeasures for the control
center. We present a polynomial-time algorithm to find small
but highly damaging unobservable attacks, and, for the case
that this is impossible, we discussed the minimum residue
energy heuristic to find the worst attacks. We also studied
the generalized likelihood ratio test as a detector for this
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Fig. 5. ROC Performance of GLRT under random attack for 6 sparsity case.
MSE with attack is 6db. SNR=10db.

problem; in particular, this detector was implement using
convex optimization viaL1 norm regularization.
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