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Malicious Data Attacks on the Smart Grid
Oliver Kosut, Liyan Jia, Robert J. Thomas, and Lang Tong

Abstract— Malicious attacks against power systems are inves-
tigated, in which an adversary controls a set of meters and is
able to alter the measurements from those meters. Two regimes
of attacks are considered. The strong attack regime is where
the adversary attacks a sufficient number of meters so that the
network state becomes unobservable by the control center. For
attacks in this regime, the smallest set of attacked meters capable
of causing network unobservability is characterized usinga graph
theoretic approach. By casting the problem as one of minimizing
a supermodular graph functional, the problem of identifying the
smallest set of vulnerable meters is shown to have polynomial
complexity. For the weak attack regime where the adversary
controls only a small number of meters, the problem is examined
from a decision theoretic perspective for both the control center
and the adversary. For the control center, a generalized likelihood
ratio detector is proposed that incorporates historical data. For
the adversary, the tradeoff between maximizing estimationerror
at the control center and minimizing detection probability of
the launched attack is examined. An optimal attack based on
minimum energy leakage is proposed.

Index Terms—Power system state estimation, false data attack,
bad data detection, power network observability, smart grid
security.

I. I NTRODUCTION

Future smart grids will likely to be more tightly integrated
with the cyber infrastructure for sensing, control, scheduling,
dispatch, and billing. Already the current power grid relies on
computer and communication networks to manage generation
and facilitate communications between users and suppliers.
While such integration is essential for a future “smart” grid,
it also makes the power grid more vulnerable to cyber-
attacks by adversaries around the globe. It has already been
widely reported that the United State electrical grid has been
penetrated by cyber spies [1].

We consider in this paper strategies of covert attack by
adversaries on meters of the smart grid by injecting malicious
data with the goal of biasing power system state estimation.If
successful, such attacks may mislead the control center to take
erroneous actions, or at the minimum, make the control center
distrust the state estimate. Since some real-time markets use
state estimation to determine location marginal prices (LMPs)
[2], [3], malicious attacks also have impacts on real-time
electricity markets.

Also considered in this paper are counter measures to
malicious data attack at the control center in the form of attack
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detection. The problem of detecting malicious data attack can
be viewed as a form of classical bad data detection. It is
however important to note that, because the adversary can
choose the site of attack judiciously and design attack data
carefully, it is far more difficult to detect malicious data attacks
than to detect random errors in the power systems. We will
examine attacks with different degrees of sophistication.

The problem of malicious data attack on the power grid
was first studied in [4], in which it was observed that there
exist cooperative attacks on meters that all known bad data
techniques will fail to detect. The authors of [4] gave a method
to adjust measurements at a few meters in the grid in such a
way that bad data detector will fail to perceive the corruption
of the data and the estimate of network state can be perturbed
arbitrarily in certain subspace.

We view the existence of these “unobservable” attacks as
a fundamental limit on the detectability of malicious data
attacks. Given that this fundamental limit depends on the
number of meters that can be corrupted by the adversary, it is
therefore natural to divide the attack into two different regimes.
The strong attack regime is when the adversary is able to
access a sufficient number of meters to launch an unobservable
attack. Attacks in this regime cannot be detected by the control
center (even if there is no measurement error). Theweak attack
regime, on the other hand, is when the adversary does not have
access to a sufficient number of meters; their attacks can be
detected, though imperfectly due to measurement errors.

The strong and weak regimes are divided by the smallest
numberχ∗ of meters to which the adversary must have access
in order to launch an unobservable attack. The quantityχ∗ can
be defined as asecurity index for the power network. As we
will see, in a network with a more connected topology, or more
redundant meters, the adversary must compromise a larger
number of meters to perform this attack, and therefore the
network is more secure. Thus quantifyingχ∗ is of theoretical
and practical importance.

A. Summary of Results and Contributions

The main results in the study of malicious data attack
in the strong attack regime are the characterization of the
smallest numberχ∗ of adversarily-controlled meters such that
an unobservable attack exists and obtaining this smallest size
attack. In Sec. III, we show a connection between the classical
notion of unobservability and the attack discovered in [4];this
justifies our use of the termunobservable to describe these
attacks. This insight transforms the problem of finding the
smallest unobservable attack into the problem of finding the
smallest set of meters that, if removed, renders the network
unobservable. We tackle this problem in a strictly graph
theoretic manner, relying only on the network topology (line
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diagram) without making use of specific network parameters.
By exploiting the submodularity of certain graph functionals,
we show that smallest size unobservable attack can be identi-
fied in polynomial time.

In the weak attack regime, the adversary has access to too
few meters to perform an unobservable attack; therefore, it
is possible to detect its presence. In Sec. IV, we investigate
the problem in this regime, developing strategies to detect
and localize malicious attacks. Under a classical decision
theoretic detection formulation, we investigate the tradeoff
between detection probability and false alarm. Because the
adversary can choose where to attack the network and design
the injected data, the problem of detecting malicious data
cannot be formulated as a simple hypothesis test, and the
uniformly most power test does not exist in general. We
propose a detector based on the generalized likelihood ratio
test (GLRT). The GLRT is not optimal in general, but it is
known to perform well in practice and it has well established
asymptotic optimality [5], [6], [7]. In other words, if the
detector has many data samples, the detection performance of
GLRT is close to optimal. The GLRT itself requires solving a
combinatorial optimization problem. This makes it infeasible
to use to detect a large number of corrupted meters. We there-
fore also study a detector using a convex regularization of the
optimization problem, based onL1 norm minimization. The
convexity makes the optimization much easier to compute, but
with potential sacrifices in performance. We provide numerical
results for the true GLRT itself when it is feasible to use it,
and the convex relaxation for larger scale problems.

We note that the proposed detector has a different structure
from those used in conventional bad data detectors which
usually employ a test on the state estimator residues errors[8],
[9], [10]. The proposed the GLRT detector does not compute
explicitly the residue error. We show, however, that when there
is at most one attacked meter (a single attacked data), the
GLRT is identical to the classical largest normalized residue
(LNR) test using the residue error from the minimum mean
square error (MMSE) state estimator.

Next we investigate malicious data attack from the per-
spective of an adversary who must make a tradeoff between
inflicting the maximum damage and being detected by the
control center. We define in Sec. V the notion ofAttacker
Operating Characteristic (AOC) that characterizes the tradeoff
between the probability of being detected vs. resulting (extra)
mean-square error at the state estimator. We consider the AOC
to be dual to the classicalReceiver Operating Characteristic
(ROC), which characterizes the control center’s tradeoff.We
formulate the problem of optimal attack as minimizing the
probability of being detected subject to causing the mean
square error (MSE) to increase beyond a predetermined level.
Unlike the strong attack regime, in which an unobservable
attack is always the most damaging action for the adversary,
in the weak attack regime, it is much less clear what the
adversary should do. In particular, finding the attack with the
optimal AOC is intractable. We present a heuristic that allows
us to obtain attacks with minimum attack power leakage to the
detector while increasing the mean square error at the state
estimator beyond a predetermined objective. This heuristic

reduces to an eigenvalue problem that can be solved off line.
We also present a proof-of-concept analysis of the effect of

a malicious data attack on the electricity market. In Sec. VIwe
describe how the locational marginal price (LMP) is calculated
in the day-ahead and real-time power markets. In particular,
the real-time price is determined based on the state estimator
output, therefore it is vulnerable to malicious data attacks.

Finally, in Sec. VII we conduct numerical simulations on
a small scale example using the IEEE 14-bus network. For
the control center, we present simulation results that compare
different detection schemes based on theReceiver Operating
Characteristics (ROC) that characterize the tradeoff between
the probability of attack detection vs. the probability of
false alarm. We show that there is a substantial difference
between the problem of detecting randomly appearing bad
data from detecting malicious data injected by an adversary.
Next we compare the GLRT detector with two classical de-
tection schemes: theJ(x̂) detector and the (Bayesian) largest
normalized residue (LNR) detector [8], [9]. Our test shows
improvement over the two well established detection schemes.
From the adversary perspective, we compare theAttacker
Operating Characteristics (AOC). Our result shows again that
the GLRT detector gives higher probability of detection than
that those of conventional detectors for the same amount MSE
increase at the state estimator. We also provide simulation
results on the electricity market, illustrating that even an
attack in the weak attack regime can affect prices with a low
probability of being detected.

B. Related Work

The study of malicious data attack is fairly recent. Liu,
Ning, and Reiter was the first to address cyber-attack on power
system state estimation in [4] where the authors obtained an
algebraic condition for the existence of unobservable attacks.
They also found that, for many standard networks, unobserv-
able attack can be launched using only a limited number of
meters.

In the strong attack regime, a fundamental problem is
to characterizeχ∗—the smallest number of meters required
for unobservable attack [11], [12], [13]. Sandberg, Teixeira,
and Johansson are the first to introduce the measure of the
vulnerability of a network to malicious data attack [14] by
defining a security index as the minimum number of meters
to perform an unobservable attack including a given meter.
Such an index is a function of the included meter, and finding
such an index is difficult in general though [12] provided a
lower bound; see [13] for a specific algorithm. The security
indexχ∗ considered in [11] and in this paper does not impose
restrictions on which meter to include in the set of attacking
meters and is a function of the network topology only. The
graph theoretic approach to finding security index has its root
in the classical work of Clements, Krumpholz and Davis [15]
who established the relation of network observability and the
graph theoretic notion of spanning tree. It is this relationthat
allows us to formulate an optimization involving a submodular
function.

Introducing redundant and, more importantly, trustworthy
measurements is the key to defending malicious data attack.
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The use of PMUs, for example, will in general reduce the
vulnerability of the network, provided that PMU measure-
ments themselves are secure. The authors of [16] found that,in
order to protect a network against all unobservable attacks, a
minimum size set of measurements that by themselves ensure
observability need to be included. This result is corroborated
and enhanced by the graph theoretic techniques presented
in this paper. We note that the use of PMUs does not
fundamentally change the formulation of the problem.

In the weak attack regime, the problem of detecting ma-
licious attack was first considered in the precursors of the
current paper in [17], [18], [11]. There is a natural connection
between the problem studied here and the classical bad data
detection as part of the original formulation of state estimation
[8]. See [19] for an earlier comparison study. Malicious data
attack can be viewed as theworst interacting bad data injected
by an adversary. To this end, very little is known about the
worst case scenario although the detection of interacting bad
data has been considered [9], [20], [21], [22].

Finally, the impact of attack on real-time market is studied
in [23], [24]. The influence of false data attacks on electricity
markets is studied in [24]. A method is given to find attacks
that influence LMPs at certain buses, which could be employed
by a malicious intruder to turn a profit. In this paper, we focus
on the effect on the LMP prices through the attacks on state
estimation. See Sec. VI.

II. T HE NETWORK AND ATTACK MODELS

We adopt a graph-theoretic model for the power system
with an undirected graph(V, E), whereV represents the set
of buses, andE is the set of transmission lines. Each line
connects two meters, so each elemente ∈ E is an unordered
pair of buses inV . Fig 1 shows the graph structure of the
IEEE 14-bus test system, which we use in our simulations.
The control center receives measurements from various meters
deployed throughout the system, from which it performs state
estimation. Meters come in two varieties: transmission line
flow meters, which measure the power flow through a single
transmission line, and bus injection meters, which measure
the total outgoing flow on all transmission lines connected to
a single bus. Therefore each meter is associated with eithera
bus inV or a line inE. We allow for the possibility of multiple
meters on the same bus or line. Indeed, in our simulations, we
assume that a meter is placed in every bus, and two meters on
every line, one in each direction.

We assume a standard DC power flow model from a
linearized version of the AC power flow model. In the absence
of attack, the control center obtains meter measurements

z = Hx + e, e ∼ N (0,Σe), (1)

where z ∈ R
m is the vector of power flow measurements,

x ∈ R
n is the system state, ande is the Gaussian measurement

noise with zero mean and diagonal covariance matrixΣe. Note
we are assuming the measurement noise to be zero-mean. If
this were not the case, as long as the mean is known, it can
simply be subtracted off with no impact on our results, but we
make this assumption for convenience.

Fig. 1. IEEE 14 bus test system.

The measurement matrixH depends on the topology of the
network, the susceptance of each transmission line, and the
placement of the meters. The matrixH is generated from this
information as follows. Suppose(i, j) ∈ E; that is, busesi
and j are connected by a transmission line. The DC power
flow through this line from busi to j is Bij(xi − xj), where
Bij is the susceptance of the line(i, j). We may also write
this power flow ashijx, where

hij =
[ 0 · · · 0 Bij

︸︷︷︸

ith element

0 · · · 0 −Bij
︸ ︷︷ ︸

jth element

0 · · · 0 ].

(2)
Therefore, if a meter measures the flow through line(i, j),
the associated row ofH is given byh(i,j). A bus injection
meter measures the total power flow on all lines incident to
a particular node. Therefore the row ofH associated with a
meter on busi is given by

∑

j:(i,j)∈E

hij . (3)

In the presence of malicious data attack, the data collected
at the control center satisfy

z = Hx + a + e (4)

where vectora is malicious data injected by an adversary. The
injected vectora is sparse with respect to the meters controlled
by the adversary. That is,ai 6= 0 only if the ith meter is
controlled by the adversary. In general, we assume that the
adversary may control any set of up tok meters. Therefore
we impose the constrainta ∈ Ak = {a : ‖a‖0 = k}, which is
the set of sparse vectors with at mostk nonzero entries.

We assume that the adversary has access to network parame-
tersH and is able to coordinate attacks from different meters.
These assumptions, and that the adversary may choose any
set of k meters it likes, give the adversary more power than
perhaps possible in practice, which is a well adopted practice
when analyzing security. Thus the results we obtain are in
general conservative.
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III. T HE STRONG ATTACK REGIME

We consider in this section the case when the adversary
is able to launch an attack from a sufficiently large number
of well chosen meters. Attacks in the so-called strong attack
regime are defined by the attack given in [4]. In particular, an
attack vectora belongs to the strong attack regime ifa = Hc

for somec. For such an attack, we have

z = Hx + a + e = H(x + c) + e.

Thereforex is indistinguishable fromx + c. If both x and
x + c are valid network states, the adversary’s injection of
dataa when the true state isx will lead the control center to
believe that the true network state isx + c. Because vectorc
can be scaled arbitrarily, the adversary can perturb the network
state (in the view of control center) arbitrarily.

Since no detector can distinguishx from x + c, we call
hereafter an attack vectora unobservable if it has the forma =
Hc. Note that it is unlikely that random bad dataa will satisfy
a = Hc. An adversary, on the other hand, can synthesize its
attack vector to satisfy the unobservable condition.

The attacks in the strong attack regime is defined by the
algebraic condition that ak-sparse vector satisfyinga = Hc

for some vectorc. Given a network and the corresponding
factor matrix H, we defineχ∗ as the smallestk such that
a = Hc ∈ Ak for somec. Equivalent,χ∗ is given by

χ∗ = min
a:a=Hc
for somec

||a||0 (5)

where||a||0 is the number of non-zero entries ina.
In this section, we characterizeχ∗ and find the corre-

sponding attacka. It is interesting to note that, although the
definition given in (5) seems to suggest thatχ∗ depends on
H, our result shows thatχ∗ depends only on the topology of
the network, not on specific values of the matrixH.

A. Unobservable Attacks and Network Observability

We establish first a connection between the unobservable
attack and the classical notion of network observability [25].
The following theorem shows that the algebraic condition that
defines the unobservable attack is equivalent to the classical
network unobservability condition [25].

Theorem 1: A k-sparse attack vectora comprises an unob-
servable attack if and only if the network becomes unobserv-
able when thek meters associated with the nonzero entries
of a are removed from the network; that is, the(m − k) × n
submatrix ofH taken from the rows ofH corresponding to
the zero entries ofa does not have full column rank.

Proof: Without loss of generality, letH be partitioned
into HT = [HT

1 | HT
2], and submatrixH1 does not have

full column rank, i.e. there exists a vectorc 6= 0 such that
H1c=0. We now havea = Hc ∈ Ak, which is unobservable
by definition. Conversely, consider an unobservablea = Hc ∈
Ak. Without loss of generality, we can assume that the first
m−k entries ofa are zero. We therefore haveH1c = 0 where
H1 is the submatrix made of the firstm − k rows of H.

The implication from the above theorem is that the attack
discovered in [4] is equivalent to removingk meters from the

network, thus making the network not observable. With this
perspective, it is in some sense not surprising that such an
attack exists: if an adversary controls a set of meters whose
absence makes the system unobservable, then there must be
some aspect of the system state that can only be learned
through those meters. Thus, the adversary has complete control
over what the control center learns about this aspect of the
state.

We further note that even though an unobservable attack
is equivalent to the network being made unobservable, the
adversarial attack is still much more destructive. When the
network is unobservable because there are insufficient meters,
the control center knows; it knows exactly what aspects about
the system state it can gather information about, and which it
cannot. However, in the case of an unobservable adversarial
attack, the control center does not know it is under attack, nor
which of several possible attacks is being executed. Therefore
the situation is much more precarious, because the control
center does not even know what it does not know.

B. Unobservable Attacks on AC Power Flow

Our primary focus on this paper is on the DC power
flow model, but we briefly note here that because of the
connection made by Theorem 1 between unobservable attacks
and classical unobservability, unobservable attacks can be
constructed even under the more realistic, and nonlinear, AC
power flow model. In particular, observability is the same
for both models, so if the adversary controls enough meters
the absence of which makes the system unobservable, it
can similarly manipulate the control center’s estimate of the
unobservable part of the state, even under the nonlinear model.

To be more precise, we may write the AC power flow model
as follows. The state of each busi is given by its voltage
magnitude|Vi| and its phaseθi. The statex is the vector
composed of all voltages and all phases. A meter sitting at
busi and measuring the flow through line(i, j) ∈ E measures
the real and reactive power flows through this line. We denote
this hij(x), which can be written

hij(x) =

[
Pij

Qij

]

=

[
|Vi|

(
|Vj |Gij cos θij + |Vj |Bij sin θij − |Vi|Gij

)

|Vi|
(
|Vj |Gij sin θij − |Vj |Bij cos θij + |Vi|Bij

)

]

(6)

whereθij = θi − θj, andBij andGij are the susceptance and
conductance of line(i, j) respectively. Note that (6) is the AC
equivalent of (2). A meter measuring the total power flow at
bus i measures

∑

j:(i,j)∈E

hij(x). (7)

Again, (7) is the AC equivalent of (3). Leth(x) be the
complete vector of measurements given the statex. For a set of
metersA, let hA(x) be the subvector of measurements taken
by just these meters.

Even though the measurement equations for AC power flow
are nonlinear, it is clear from (6) and (7) that the phases only
enter asθi − θj for (i, j) ∈ E. Suppose the true state were
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x, and the adversary constructs a vectorx′ which changes
only the phases, and moreover has the property that the phase
differencesθi − θj do not differ betweenx′ and x except
for lines (i, j) only observed by meters controlled by the
adversary. Thus, if the set of adversarial meters isS, hSc(x) =
hSc(x′), whereS

c is the set of honest meters. That is, the
non-adversarial meters cannot distinguishx from x′, so if the
adversary replaceshS(x) with hS(x′), the control center will
mistakex for x′. Because the phase differences enter linearly
into the measurement equations, these phase alterations can be
made arbitrarily large without detection by the control center.
In this sense, the attack behaves similarly to the unobservable
attack for the DC model. Moreover, because the phases enter
linearly in the measurement equations in exactly the same way
that the states enter into the linear measurement equations
for the DC model (2), (3), this attack exists exactly when an
unobservable attack on the DC model exists.

Observe that the attack described to manipulate the phase
estimates relies on the adversary being able to calculate
hS(x′). Depending on the adversary’s knowledge of the system
state, this may be much harder to do than to calculated the bad
data for an unobservable attack in the DC model. Recall that in
the DC model, the added vectora depends only on network
characteristics, and not on the current state. To perform the
attack, the adversary need only add this pre-computed vector
to the true measurements. Because of the nonlinearity of
the functionh, to perform the attack on the AC model the
adversary would need to know the exact network state, even
at buses where it controls no meters. However, since the DC
model is a linearization of the AC model, small versions of the
DC attack would work approximately on the AC model. It may
be possible for the control center to employ the nonlinearity
of the true system in order to better detect linear attacks, but
this is beyond the scope of this paper.

C. Graph-Theoretic Characterization of Minimum Size Unob-
servable Attacks

Given a line diagram of a power network and the locations
of meters, the vulnerability of the network can be characterized
by the smallest number of meters that the network can be made
unobservable by an adversary. From Theorem 1, we know
that there is an unobservablek-sparse attack vectora if and
only if it is possible to removek rows from H and cause
H not to have full column rank. This algebraic condition,
however, is difficult to use to determine the the minimum size
of an unobservable attack. We develop here a graph theoretic
approach by exploiting the extra structure onH imposed by
the network topology.

The following theorem exactly characterizes the security
index χ∗, the smallest number of meters to make the system
unobservable. The proof builds on the result of [15], which
gave an efficient method to determine the observability of a
network based only on its topology. In the sequel, denote|X|
as the number of elements in a setX.

Theorem 2 (Characterization of security index χ∗): For a
set of linesA ⊆ E, let g(A) be the set of meters either on
lines in A or on buses adjacent to lines inA. Let h(A) be

the number of connected components in the graph(V, E \A);
i.e., the original graph after all lines inA have been removed.
The security indexχ∗ is given by

χ∗ = min
A⊆E

|g(A)| − h(A) + 2. (8)

Moreover, this quantity may be calculated in polynomial time
in the size of the network.

We prove Theorem 2 with Lemma 1 and Lemma 2 below.
The first shows that it is possible to remove a set of meters
of size given in (8) and make the system unobservable. The
second allows us to conclude that it is impossible to remove
fewer meters than the quantity given in (8) to make the system
unobservable.

Lemma 1: For all A ⊆ E, removing an arbitrary subset of
g(A) of size|g(A)|−h(A)+2 makes the system unobservable.

Proof: Let V̄ and Ē be the sets of buses and lines respec-
tively with a meter placed on them. Theorem 5 in [15] states
that the power system given by(V, E, V̄, Ē) is observable if
and only if there exists aF ⊆ E comprising a spanning tree
of V and an assignment function

φ : F → V̄ ∪ Ē (9)

satisfying:

1) If l ∈ Ē, thenφ(l) = l.
2) If φ(l) ∈ V̄, then linel is incident to the busφ(l).
3) If l1, l2 ∈ F are distinct, thenφ(l1) 6= φ(l2).

The principle behind this theorem is that a bus injection meter
may “impersonate” a single line meter on a line incident to
the bus. If a busb = φ(l) for some linel, this represents
the meter atb impersonating a meter on linel. The system
is observable if and only if a spanning treeF exists made up
of transmission lines with either real meters or impersonated
meters by bus meters.

Not including the lines inA, the network splits intoh(A)
separate pieces. Therefore, any spanning treeF must include
at leasth(A) − 1 lines in A. Any assignmentφ satisfying
the conditions above must therefore employ at leasth(A)− 1
meters ing(A). Hence, if any|g(A)| − h(A) + 2 of these
meters are removed from the network, onlyh(A)− 2 remain,
which is not enough to create a full spanning tree, so the
network becomes unobservable. �

Example 1: Consider the IEEE 14-bus test system, shown
in Fig. 1. TakeA = {(7, 8)}. Since bus 8 is only connected to
the system through bus 7, removing this line from the network
cuts it into two pieces. Thereforeh(A) = 2. The set of meters
g(A) consists of meters on the line(7, 8), and bus injection
meters at bus 7 and 8. Theorem 1 states that if we remove
|g(A)| meters from this set—that is, all the meters ing(A)—
the system becomes unobservable. In our simulation examples,
we assume there are two meters on each line, therefore it
takes 4 meters to execute an unobservable attack. Furthermore,
it is not hard to employ Theorem 1 to find similar 4-sparse
unobservable attacks on the 30-bus, 118-bus, and 300-bus test
systems.

Lemma 1 shows that the quantity on the right hand side of
(8) is an upper bound onχ∗. We now show that it is a lower
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Input : A line l∗ for which adding a meter makes the system
observable, as well as a spanning treeF and functionφ
certifying this.
Output : A set A ⊆ E for which |g(A)| − h(A) + 2 ≤ 0.

1: B := {l∗};
2: m := 1;
3: W := ∅;
4: Let V1, V2 be split onB in F;
5: Let A be the set of lines joiningV1 to V2;
6: while g(A) \ W 6= ∅ do
7: Let v be an element ofg(A) \ W;
8: W := W ∪ {v};
9: Let l′ be the line inF for which φ(l′) = v; If there is

no such line, terminate the loop;
10: B := B ∪ {l′};
11: m := m + 1;
12: Let V1, . . . , Vm+1 be a partition ofV given by the

connected components afterB is removed fromF;
13: Let A be the set of lines joiningVi to Vj for any i, j.
14: end while

Fig. 2. Algorithm to find a setA satisfying the conditions of Lemma 2.

bound as well. If it were not, there would exist a set of meters
of size M that if removed, make the system unobservable,
whereL < |g(A)|−h(A)+2 for eachA. Consider the system
after theseM meters have been removed. Letg′(A) be the
value ofg after removal of these meters. Note thath does not
depend on the meters in the network so it does not change.
SinceL meters have been removed in total,|g′(A)| ≥ |g(A)|−
M . Hence

|g′(A)| − h(A) + 2 ≥ |g(A)| − h(A) + 2 − M > 0. (10)

This means that for the system after the meters are removed,
the quantity in (8) is strictly positive, but the system is unob-
servable. The following lemma states that this is impossible,
allowing us to conclude that there is a contradiction, and so
(8) holds with equality.

Lemma 2: If the network is unobservable, then there exists
a set of metersA for which |g(A)| − h(A) + 2 ≤ 0.

Proof: Assume without loss of generality that adding a
meter to a single line can recover observability. Letl∗ be such
a line. Again using the equivalent condition to observability
proved in [15], there must exist a spanning treeF and a
function φ satisfying properties (1)–(3) listed above, when a
meter is included on linel∗. It must be thatl∗ ∈ F, because if
not the network would be observable to begin with. SinceF is
a spanning tree, removing any line from it splits the network
into two connected components. In particular, letV1 and V2

be the sets of buses in the two connected components whenl∗

is removed fromF. Let A1 be the set of lines between nodes
in V1 and nodes inV2. Certainly thenh(A1) = 2. Thus if
g(A1) = ∅, then |g(A1)| − h(A1) + 2 = 0, so we are done.
Otherwise, we claim that the algorithm given in Fig. 2 outputs
a setA for which |g(A)| − h(A) + 2 ≤ 0.

To prove correctness of this algorithm, we show the follow-
ing loop invariants:

1) Every busv ∈ W is incident to two lines each connected
to a differentVi set.

2) For every linel ∈ A, if a meter were added tol, the
system would become observable.

3) There are no line meters in the original network (without
a meter onl∗) on A.

4) For eachv ∈ g(A) \ W, there exists a linel′ in F for
which φ(l′) = v.

Proof at entrance to the loop: Statement (1) holds trivially,
as W is empty. At entrance to the loop, the only lines inA

are those connectingV1 to V2. If there were a meter on a
line connectingV1 to V2, the network would be observable.
This proves statement (2). Similarly, the network would be
observable if there were a meter on any line connectingV1 to
V2, which proves statement (3). SinceW = ∅, g(A) \ W =
g(A). If the meter at somev ∈ g(A) were assigned to no
line in F, then it could be assigned to its incident line inA,
in which case the network would be observable. This proves
statement (4).

Induction step: We assume that statements (1)–(4) hold at
the start of an iteration of the loop, and show that they hold
again at the end.

When v is chosen in line 7, it is an element ofg(A).
Thereforev must be incident to some linel ∈ A. Moreover,
since statement (4) holds at the end of the previous iteration,
there exists anl′ ∈ F with φ(l′) = v, which must also be
incident to v. This l′ is added toB in line 10. Note that
because only a single element is added toB, when theVi are
recalculated in line 12, one set splits into two; the rest stay as
they were previously. Therefore theVi set to whichl connects
remains the same, wherel′ connects to a newly createdVi set.
Therefore statement (1) holds at the end of the loop iteration.

By statement (3), there are no line meters onA, so it
principle we may add a meter to any line inA. Take any
l ∈ A and add a meter to it. Linel connects two of theVi

sets, which were previously connected by some line inF. We
alter F and φ in the following way, to includel and restore
their necessary properties. The bus meter that had previously
been assigned to a line bridging the gulf between the same
two Vi sets bridged byl can instead be assigned to the other
incident line to a differentVi whose existence was proved in
statement (1). This frees up a different bus meter, which then
may be assigned to a line bridging another gulf, and so on
until reaching a bus meter bridging the gulf originally bridged
by l∗. This connects all theVi sets, and therefore the network
would be observable. This proves statement (2).

Consider the lines newly added toA in line 13. These lines
bridge the same gulf asl′. If there were a meter on any of
these lines, then the bus on meterv need not be assigned to
l′. By a similar argument as above, it could be reassigned all
the way back tol∗, so it may be removed and the network
would still be observable. This proves statement (3).

Suppose there were a busv ∈ g(A) \ W for which there
were no linel′ satisfyingφ(l′) = v. Bus v must be incident
to a line l ∈ A. By statement (3),l does not have a meter,
so the meter on busv could be used to simulate a meter on
l. This effectively adds a meter tol; but by statement (2),
adding a meter to a line inA brings observability. Since the
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network is unobservable, there can be no such busv. This
proves statement (4).

We have established all four loop invariants. In particular,
statement (4) implies that the loop never terminates prema-
turely at line 9, so when the loop concludesg(A) = W.
Note that after every iteration of the loop,|W| = m − 1 and
h(A) = m + 1. Therefore

|g(A)| − h(A) + 2 = |W| − h(A) + 2 (11)

= (m − 1) − (m + 1) + 2 = 0. (12)

�

All that remains to prove Theorem 2 is to show that the
quantity on the right hand side of (8) can be calculated in
polynomial time. We make use of the theory of submodular
functions. A submodular function is a real-valued functionf
defined on the collection of subsets of a setW such that for
any A, B ⊆ W ,

f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B). (13)

Moreover, a functionf is supermodular if−f is submodular.
There are several known techniques to find the setA ⊆ W
minimizing f(A) in time polynomial in the size ofW [26],
[27], [28]. It is not hard to see that|g(A)| is submodular in
A, and h(A) is supermodular. Therefore, their difference is
submodular, so it can be efficiently minimized. This concludes
the proof of Theorem 2.

IV. T HE WEAK ATTACK REGIME

In this section, we study the problem in the weak attack
regime, where the adversary cannot or does not perform an
unobservable attack as described in Sec. III. In this regime, it
is sometimes possible to detect the adversary’s presence, and
so we study detectors to do so.

In our analysis of the weak attack regime, we use mean
square error as our metric for the the amount of damage done
by an attack. In particular, we will seek strategies by the
control center that minimize the mean square error for arbitrary
attacks by the adversary. Mean square error is a very generic
measure that gives a sense of how far the control center’s
estimate is from the truth. However, for certain specific uses
of the state estimate, it may be not give a precise picture
of the impact of the adversary. For example, in Sec. VI, we
study adversarial attacks on electricity markets, and we use
revenue change as our measure of adversary impact, which is
more relevant to that application of the state estimate. Here,
we want a measure that is more broadly applicable, if possibly
less precise, so we adopt mean square error.

A. A Bayesian Framework and MMSE Estimation

We consider in this paper a Bayesian framework where the
state variables are random vectors with Gaussian distribution
N (µx,Σx). We assume that, in practice, the meanµx and
covarianceΣx can be estimated from historical data. By
subtracting the mean from the data, we can assume without
loss of generality thatµx = 0.

In the absence of an attack, i.e.a = 0 in (4), (z,x) are
jointly Gaussian. The minimum mean square error (MMSE)
estimator of the state vectorx is a linear estimator given by

x̂(z) = argmin
x̂

E(‖x − x̂(z)‖2) = Kz (14)

where

K = ΣxH
T(HΣxH

T + Σe)
−1. (15)

The minimum mean square error, in the absence of attack, is
given by

E0 = min
x̂

E(||x − x̂(z)||2) = Tr (Σx − KHΣx) .

If an adversary injects malicious dataa ∈ Ak but the control
center is unaware of it, then the state estimator defined in (14)
is no longer the true MMSE estimator (in the presence of
attack); the estimator̂x = Kz is a “naive” MMSE estimator
that ignores the possibility of attack, and it will incur a higher
mean square error (MSE). In particular, it is not hard to see
that the MSE in the presence ofa is given by

E0 + ‖Ka‖2
2. (16)

The impact on the estimator from a particular attacka is
given by the second term in (16). To increase the MSE at the
state estimator, the adversary necessarily has to increasethe
“energy” of attack, which increases the probability of being
detected at the control center.

B. Statistical Model and Attack Hypotheses

We now present a formulation of the detection problem
at the control center. We assume a Bayesian model where
the state variables are random with a multivariate Gaussian
distributionx ∼ N (0,Σx). Our detection model, on the other
hand, is not Bayesian in the sense that we do not assume any
prior probability of the attack nor do we assume any statistical
model for the attack vectora.

Under the observation model (4), we consider the following
composite binary hypothesis:

H0 : a = 0 versus H1 : a ∈ Ak \ {0}. (17)

Given observationz ∈ R
m, we wish to design a detectorδ :

R
m → {0, 1} with δ(z) = 1 indicating a detection of attack

(H1) andδ(z) = 0 the null hypothesis.
An alternative formulation, one we will not pursue here, is

based on the extra MSE‖Ka‖2
2 at the state estimator. See

(16). In particular, we may want to distinguish, for‖a‖0 ≤ k,

H′
0 : ‖Ka‖2

2 ≤ C, versus H′
1 : ‖Ka‖2

2 > C. (18)

Here both null and alternative hypotheses are composite and
the problem is more complicated. The operational interpre-
tation, however, is significant because one may not care in
practice about small attacks that only marginally increasethe
MSE of the state estimator.
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C. Generalized Likelihood Ratio Detector with L1 Norm
Regularization

For the hypotheses test given in (17), the uniformly most
powerful test does not exist. We propose a detector based
on the generalized likelihood ratio test (GLRT). We note in
particular that, if we have multiple measurements under the
samea, the GLRT proposed here is asymptotically optimal in
the sense that it offers the fastest decay rate of miss detection
probability [29].

The distribution of the measurementz under the two hy-
potheses differ only in their means:

H0 : z ∼ N (0,Σz)

H1 : z ∼ N (a,Σz), a ∈ Ak \ {0}

whereΣz , HΣxH
T + Σe. The GLRT is given by

L(z) ,
max
a∈Ak

f(z|a)

f(z|a = 0)

H1

≷
H0

τ, (19)

where f(z|a) is the Gaussian density function with mean
a and covarianceΣz, and the thresholdτ is chosen from
considering the null hypothesis at a certain false alarm rate.
This is equivalent to

min
a∈Ak

aTΣ−1
z a − 2zTΣ−1

z a
H0

≷
H1

τ. (20)

Thus the GLRT reduces to solving

minimize aTΣ
−1
z a − 2zTΣ

−1
z a

subject to ‖a‖0 ≤ k.
(21)

For a fixed sparsity pattern, i.e. if we know the support but
not necessarily the actual values ofa, the above optimization is
easy to solve. In other words, if we know a small set of suspect
meters from which malicious may be injected, the above test
is easily computable. The sparsity condition ona makes the
above optimization problem non-convex, but for smallk it can
be solved exactly simply by exhaustively searching throughall
sparsity patterns. For largerk, this is not feasible. It is a well
known technique that (21) can be approximated by a convex
optimization:

minimize aTΣ−1
z a − 2zTΣ−1

z a

subject to ‖a‖1 ≤ ν
(22)

where theL1 norm constraint is a heuristic for the sparsity
of a. The constantν needs to be adjusted until the solution
involves an a with sparsity k. This requires solving (22)
several times. A similar approach was taken in [30].

D. Classical Detectors with MMSE State Estimation

We will compare the performance of the GLRT detector
with two classical bad data detectors [8], [9], both based on
the residual errorr = z−Hx̂ resulted from the MMSE state
estimator.

The first is theJ(x̂) detector, given by

rTΣ
−1
e r

H1

≷
H0

τ. (23)

The second is the largest normalized residue (LNR) test given
by

max
i

|ri|

σri

H1

≷
H0

τ, (24)

whereσri
is the standard deviation of theith residual error

ri. We may regard this is a test on thel∞-norm of the
measurement residual, normalized so that each element has
unit variance.

The asymptotic optimality of the GLRT detector implies
a better performance of GLRT over the above two detectors
when the sample size is large. For the finite sample case,
numerical simulations shown in Sec VII confirm that the
GLRT detector improves the performance of theJ(x̂) and
LNR detectors. The interesting exception is the case when only
one meter is under attack, i.e.‖a‖0 = 1 andΣe = σ2

eI. In this
case, the GLRT turns out to be identical to the LNR detector.
Therefore, the GLRT can be viewed as a generalization of the
LNR detector, in that it can be tuned to any sparsity level.
Moreover, this provides some theoretical justification forthe
LNR detector. The equivalence of the two detectors is stated
and proved in the following Proposition.

Proposition 1: When k = 1, the GLRT detector given in
(20) is equivalent to the LNR detector given in (24).

Proof: If k = 1, the left hand side of (20) becomes

min
i

min
ai

(Σ−1
z )iia

2
i − 2zT (Σ−1

z )iai (25)

where(Σ−1
z )ii is theith diagonal element ofΣ−1

z , and(Σ−1
z )i

is theith row ofΣ−1
z . The second minimization can be solved

in closed form, so (25) becomes

−max
i

[zT (Σ−1
z )i]

2

(Σ−1
z )ii

. (26)

We may therefore write the GLRT as

max
i

|zT (Σ−1
z )i|

√

(Σ−1
z )ii

H1

≷
H0

τ. (27)

The vector of numerators in (27) is given byr′ = Σ−1
z z. Note

that the covariance matrix ofr′ is simply Σ−1
z . Therefore we

may regard (27) as a test on the maximum element of ther′

after each element is normalized to unit variance.
We now show thatr′ is just a constant multiple ofr,

meaning that (27) is identical to (24), saving a constant factor.
Recall thatr = (I− HK)z, where

I − HK = I − HΣxH
T (HΣxH

T + Σe)
−1

= (HΣxH
T + Σe − HΣxH

T )(HΣxH
T + Σe)

−1

= ΣeΣ
−1
z = σ2

eΣ
−1
z .

Thusr = σ2
er

′; the two detectors are identical.

V. ATTACK OPERATING CHARACTERISTICS ANDOPTIMAL

ATTACKS

We now study the impact of malicious data attack from the
perspective of an attacker. We assume that the attacker knows
the (MMSE) state estimator and the (GLRT) detector used
by the control center. We also assume that the attacker can
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choosek meters arbitrarily in which to inject malicious data.
In practice, however, the attacker may be much more limited.
Thus our results here are perhaps more pessimistic than in
reality.

A. AOC and Optimal Attack Formulations

The attacker faces two conflicting objectives: maximizing
the MSE by choosing the best data injectiona vs. avoiding
being detected by the control center. The tradeoff between
increasing MSE of the state estimator and lower the prob-
ability of detection is characterized byattacker operating
characteristics (AOC), analogous to the receiver operating
characteristics (ROC) at the control center. Specifically,AOC
is the probability of detection of the detectorPr(δ(z) = 1 | a)
as a function of the extra MSEE(a) = E0 + ‖Ka‖2

2 (16) at
the state estimator, whereE0 is the MMSE in the absence of
attack.

The optimal attack in the sense of maximizing the MSE
while limiting the probability of detection can be formulated
as the following constrained optimization

max
a∈Ak

‖Ka‖2
2 subject to Pr(δ(z) = 1|a) ≤ β, (28)

or equivalently,

min
a∈Ak

Pr(δ(z) = 1|a) subject to ‖Ka‖2
2 ≥ C. (29)

In order to evaluate the true worst-case performance for any
detector, (28) or (29) would need to be solved. This is very
difficult, due to the lack of analytical expressions for the detec-
tion error probabilityPr(δ(z) = 1|a). We propose a heuristic
for Pr(δ(z) = 1|a), which will allow us to approximate the
above optimization with one that is easier to solve.

B. Minimum Residue Energy Attack

Given the naive MMSE state estimatorx̂ = Kz (14-15),
the estimation residue error is given by

r = Gz, G , I− HK (30)

Substituting the measurement model, we have

r = GHx + Ga + Ge.

where Ga is the only term from the attack. Therefore, an
attack vectora will be more difficult to detect at the control
center if Ga is small. Recall from (16) that the damage in
MSE done by injectinga is ‖Ka‖2

2. We therefore consider
the following equivalent problems:

max
a∈Ak

‖Ka‖2
2 subject to ‖Ga‖2

2 ≤ η, (31)

or equivalently,

min
a∈Ak

‖Ga‖2
2 subject to ‖Ka‖2

2 ≥ C. (32)

The above optimizations remain difficult due to the constraint
a ∈ Ak. However, given a specific sparsity patternS ⊂
{1, · · · , n} for which ai = 0 for all i /∈ S, solving the optimal
attack vectora for the above two formulations amounts to a
standard generalized eigenvalue problem.

In particular, for fixed sparsity patternS, let aS be the
nonzero subvector ofa, KS the corresponding submatrix of
K, andGS similarly defined. The problem (32) becomes

min
u∈Rk

‖GSu‖
2
2 subject to ‖KSu‖

2
2 ≥ C. (33)

Let QG , GT
S
GS, QK , KT

S
KS. It can be shown that the

optimal attack pattern has the form

a∗
S =

√

C

‖KSv‖2
2

v (34)

wherev is the generalized eigenvector corresponding to the
smallest generalized eigenvalueλmin of the following matrix
pencil

QGv − λminQKv = 0.

This k dimensional symmetrical generalized eigenvalue prob-
lem can be solved using the QZ algorithm [31].

VI. ATTACKS ON ELECTRICITY MARKETS

Since malicious attacks can change the state estimation
significantly even in the weak regime, it is natural to consider
the impact of an attack on the electricity market, since it makes
use of state estimation to set prices and calculate payment.

Most deregulated electricity markets in the United States
consist of two components: a day-ahead market and a real-time
market. In the the day-ahead market, given the load forecast
L , based on the DC lossless model, the following problem is
solved to findP∗, the vector of predicted power generated at
each bus:

minimize
∑

i CiPi

subject to
∑

i Pi −
∑

j Lj = 0

P min
i ≤ Pi ≤ P max

i∑

i SkiPi −
∑

j SkjLj ≤ T max
k

(35)

where Lj is the forecast load at busj, P min
i and P max

i are
the lower and upper capacity bound for the generator at bus
i, T max

k is the line flow limit for branchk, andSki is the shift
factor of branchk to busi with respect to the reference bus.
In particular,Ski is the amount the flow in branchk would
change if one additional MW were transfered from busi to
the reference bus. The solutionP ∗ to (35) is the economic
dispatch, and the locational marginal price (LMP) at busi is
given by

λ∗
i = λ −

∑

k

Skiµk (36)

whereλ, µ are the dual variables corresponding to the equation
and line flow constraints respectively.

The real-time market prices are based on the state estima-
tion, which yields an estimatêPi for the power generated at
bus i and L̂i for the power load at busi. Based on these,
we can calculate the power flow through each line; a line is
said to becongested if the estimated power flow through it
exceeds the line flow limitT max

k . Let Ĉ be the set of congested
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lines. The real-time market uses the following incremental
OPF formulation around the operating point found in (35):

minimize
∑

Ci∆Pi −
∑

Cj∆Lj

subject to
∑

∆Pi =
∑

∆Lj

∆P min
i ≤ ∆Pi ≤ ∆P max

i∑

i

Ski∆Pi +
∑

j

Skj∆Lj ≤ 0, for all k ∈ Ĉ.

(37)
In our simulations, the upper and lower bound of∆Pi are
chosen as 0.1MW and -2MW. The real-time LMP is calculated
as

λ̂i := λ̂ −
∑

j∈Ĉ

Ajiµ̂j (38)

where λ̂ and µ̂j are the dual variables corresponding to the
linear constraint and line flow constraints respectively.

In the day-ahead market, the operator calculates the eco-
nomic dispatch, yieldingP∗ and λ∗; the generator at bus
i receivesP ∗

i λ∗
i , and the customer at busj pays Ljλ

∗
j . In

the real time market, the operator uses the state estimate
to calculate the real-time LMP̂λ, then the generator at bus
i receives (P̂i − P ∗

i )λ̂i and the customer at busj pays
(L̂j − Lj)λ̂j . Note thatP̂i and L̂j are calculated from the
state estimate, and so may be influenced by the adversary.

Hence, in the real-time market, we see that state estimation
is involved in two parts: the calculation of the congestion
pattern, and the estimation of generations and loads. The real-
time LMP is determined entirely by the congestion pattern.
Under the simple scenario that every participant follows the
day-ahead optimal dispatch, the differences between the day-
head dispatch and the estimation of generations and loads are,

P̂− P∗ = HPKz − P∗ = (HP K)(e + a) (39)

L̂ − L = HLKz − L∗ = (HLK)(e + a) (40)

whereH, K, z, e, anda are the same as in previous sections,
andHP andHL are the corresponding part inH to generation
and load respectively.

Finally, the real-time revenue for a generator at busi is
given by

(HP K)i(e + a)λ̂i (41)

where(HP K)i is the ith row of HP K.
In Sec. VII, we present numerical simulations of malicious

data attacks in the weak regime on the IEEE 14-bus test
system. We illustrate that with some probability of detection,
the adversary can inject an attack vector to alter real-timeLMP
and potentially make a profit.

VII. N UMERICAL SIMULATIONS

A. GLRT Performance

We present some simulation results on the IEEE 14 bus
system shown in Fig. 1 to compare the performance of the
GLRT with theJ(x̂) test and the LNR test [8], [9]. For various
sparsity levels, we find the minimum energy residue attack
as discussed in Sec. V-B. The adversary may then scale this
attack vector depending on how much it wishes to influence
the mean square error. We plot both the ROC and AOC curves
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Fig. 3. Above: ROC Performance of GLRT for the 2 sparsity case. MSE
with attack is 8db. SNR=10db. Below: AOC Performance of GLRTfor the 2
sparsity case. False alarm rate is 0.05. SNR=10dB.

for various sparsity levels and all three detectors. For theAOC
curve, we fix a probability of false alarm and vary the length
of the attack vector along the direction minimizing the energy
residue, plotting the MSE vs. the probability of detection.For
the ROC curve, we fix the length of the attack vector, but vary
the detector’s threshold and plot the probability of false alarm
vs. probability of detector. In our simulations, we characterize
the mean square error increase at the control center using
the ratio between the resulting MSE from the attack and the
MSE under no attack (i.e.a = 0) in dB. We assume that
the prior distribution on the state is given byΣx = Iσ2

x,
and measurement noise distribution is given byΣe = Iσ2

e .
We characterize the noise level in terms of SNR, defined as
10 log

σ2

x

σ2
e

.

Fig. 3 shows the ROC and AOC curves for the worst-case
2-sparse attack. We implement the GLRT using exhaustive
search over all possible sparsity patterns. This is feasible
because of the low sparsity level, so we need not resort to the
L1 minimization as in (22). Observe that the GLRT performs
consistently better than the other two conventional detectors.

Fig. 4 shows the ROC and AOC curves for the worst-
case 3-sparse attack, again using exhaustive search for the
GLRT. Interestingly, the LNR test outperforms the GLRT at
this sparsity level. We believe the reason for this is that the
GLRT has little recourse when there is significant uncertainty
in the sparsity pattern of the attack. In particular, the meters
being controlled by the adversary here are the bus injection
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meter at bus 1, and the two meters on the transmission line
between bus 1 and 2. These constitute three of the seven meters
that hold any information about the state at bus 1. Thus, it may
be difficult for the detector to determine which of the several
meters around bus 1 are the true adversarial meters. The GLRT
does not react to this uncertainty: it can only choose the most
likely sparsity pattern, which is often wrong. Indeed, in our
simulations the GLRT identified the correct sparsity pattern
only 4.2% of the time.
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Fig. 4. Above: ROC Performance of GLRT for the 3 sparsity case. MSE
with attack is 10db. SNR=10db. Below: AOC Performance of GLRT for 3
sparsity case. False alarm rate is 0.05. SNR=10dB

Continuing our analysis of 3-sparsity attacks, we conduct
simulations when the adversaries are placed randomly in
the network, instead of at the worst-case meters. Once their
random meters are chosen, we find the worst-case attack
vector using the energy residual heuristic. This simulatesthe
situation that the adversaries cannot choose their locations,
but are intelligent and cooperative in their attack. The resulting
performance of the three detectors is shown in Fig. 5. Observe
that we have recovered the outperformance of the GLRT as
compared to the conventional detectors, if only slightly. When
the placement of the adversaries is random, they are not as
capable of cooperating with one another, therefore their attack
is easier to detect.

We increase the sparsity level to 6, at which it is impossible
to perform exhaustive search for the GLRT. At this sparsity
level, it becomes possible to perform an unobservable attack,
so it is not as illuminating to choose the worst-case sparsity
pattern, as that would be very difficult to detect. Instead,
we again choose the sparsity pattern randomly but optimize
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Fig. 5. Above: ROC Performance of GLRT under random attack for 3
sparsity case. MSE with attack is 6dB. SNR=10dB. Below: AOC Performance
of GLRT under random attack for 3 sparsity case. False alarm rate is 0.05.
SNR=10dB

the attack within it. Fig. 6 compares the performance of the
GLRT implemented viaL1 minimization as in (22) to the two
conventional detectors. Note again that the GLRT outperforms
the others.
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Fig. 6. ROC Performance of GLRT under random attack for 6 sparsity case.
MSE with attack is 6db. SNR=10db.

B. Residue Energy Heuristic

We present some numerical evidence that the residue energy
described in Sec. V-B works well as a heuristic in that
it is roughly increasing with the probability of detection
Pr(δ(z) = 1|a) no matter what detector is used. For theJ(x̂)
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Fig. 7. Comparison of the residue energy heuristic with the true detection
probability for 1-sparse attack vectors for bothJ(x̂) and LNR detectors. False
alarm rate is 0.05. SNR is 10dB. Attack MSE is 3dB.

and LNR detectors, we consider the detection probability for
all 1-sparse vectorsa satisfying‖Ka‖2

2 = C on the 14-bus
test system. We plot in Fig. 7 the value of the residue energy
vs. the true probability of detector ofa for both detectors.
Observe that the scatter plots are roughly increasing.

We evaluate the performance of the residue energy heuristic
on 2-sparse vectors in the following way. For each pair of
entries i, j of a, we optimize (32) wherea is constrained
to have sparsity pattern{i, j}. We then evaluate the true
probability of detection for the two detectors, with the same
parameter values as above. The results are shown in Fig. 8
for the J(x̂) and LNR detectors. Again, the heuristic appears
to track the true probabilities reasonably well. This provides
some justification for our use earlier in the ROC and AOC
curves of approximating the worst-case performance of these
detectors by assume the maximum residue energy attack.

C. Electricity Markets

In IEEE 14-bus system, we assume the generators at 1, 2, 3,
6 and 8 can generate real power, with the cost 15, 31, 30, 10,
and 20 respectively. We assume the forecasted load at every
buses is 100MW. In the day-ahead market, the congestion
pattern is branch 1-2 and 8-7. The LMPs at bus 1, 2, 3, 6,
8 are 15, 31, 29.25, 27.02, and 20. Table. I shows that the
adversary can disturb the real-time LMP. The leftmost column
is the possible congestion pattern the adversary can induce
by injecting an attack vector under detection probability 0.5.
Each row shows the real-time LMPs with the corresponding
congestion pattern. Note that if the congestion pattern is the
same as the economic dispatch, the LMPs are the same as the
day-ahead market.

Fig. 9 plots the real-time revenue of generation at bus 1
versus detection probability. We compare the effect of an
attack on a single meter and an attack on two meters.

VIII. C ONCLUSIONS

We studied both adversarial schemes and countermeasures
for the control center for malicious data attacks. The problem
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Fig. 8. Comparison of the residue energy heuristic with the true detection
probability for 2-sparse attack vectors. False alarm rate is 0.05. SNR is 10dB.
Attack MSE is 3dB. Above: Scatter plot for theJ(x̂) detector. Below: Scatter
plot for the LNR detector.

TABLE I

THE EFFECT OFMALICIOUS DATA ATTACK ON REAL-T IME MARKET

PRICE

congestion pattern λ1 λ2 λ3 λ6 λ8

none 31 31 31 31 31
8-7 31 31 31 31 20
1-2 15 31 29.25 27.03 27.55
1-2 and 8-7 15 31 29.25 27.03 20

was divided into two regimes: the strong attack regime, in
which so-call unobservable attacks exist, and the weak attack
regime, in which they do not. The boundary between these
regimes isχ∗, the size of the smallest unobservable malicious
data attack, which can be considered a security index for a
power system. We provided a characterization ofχ∗, which
allows for it to be calculated in a computationally efficient
manner making use of submodular function minimization. In
the weak attack regime, we studied the generalized likelihood
ratio test as a detector for this problem; in particular, this
detector was implemented using convex optimization viaL1

norm regularization. We also provided a residue energy heuris-
tic to find particularly damaging attacks in this regime. We
applied these weak regime techniques to determine the effect
of malicious data attacks on prices in electricity markets.
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Fig. 9. Real-time revenue of generation at bus 1 versus the detection probability. We compare the effect of single attackat bus 6 and a dual attack on buses
1 and 6.
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