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Distributed Source Coding in the
Presence of Byzantine Sensors

Oliver Kosut, Student Member, IEEE, and Lang Tong, Fellow, IEEE

Abstract—The distributed source coding problem is considered
when the sensors, or encoders, are under Byzantine attack; that
is, an unknown group of sensors have been reprogrammed by a
malicious intruder to undermine the reconstruction at the fusion
center. Three different forms of the problem are considered. The
first is a variable-rate setup, in which the decoder adaptively
chooses the rates at which the sensors transmit. An explicit char-
acterization of the variable-rate achievable sum rates is given for
any number of sensors and any groups of traitors. The converse
is proved constructively by letting the traitors simulate a fake
distribution and report the generated values as the true ones. This
fake distribution is chosen so that the decoder cannot determine
which sensors are traitors while maximizing the required rate
to decode every value. Achievability is proved using a scheme in
which the decoder receives small packets of information from a
sensor until its message can be decoded, before moving on to the
next sensor. The sensors use randomization to choose from a set
of coding functions, which makes it probabilistically impossible
for the traitors to cause the decoder to make an error. Two forms
of the fixed-rate problem are considered, one with deterministic
coding and one with randomized coding. The achievable rate
regions are given for both these problems, and it is shown that
lower rates can be achieved with randomized coding.

Index Terms—Byzantine attack, distributed source coding, net-
work security, sensor fusion, Slepian–Wolf coding.

I. INTRODUCTION

WE consider a modification to the distributed source
coding problem in which an unknown subset of sensors

are taken over by a malicious intruder and reprogrammed.
We assume there are sensors. Each time slot, sensors
for observe random variables according to
the joint probability distribution . Each sensor
encodes its observation independently and transmits a mes-
sage to a common decoder, which attempts to reconstruct the
source values with small probability of error based on those
messages. A subset of sensors are traitors, while the rest are
honest. Unbeknownst to the honest sensors or the decoder, the
traitors have been reprogrammed to cooperate to obstruct the
goal of the network, launching a so-called Byzantine attack.
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To counter this attack, the honest sensors and decoder must
employ strategies so that the decoder can correctly reconstruct
source values no matter what the traitors do.

It is obvious that observations made by the traitors are irre-
trievable unless the traitors choose to deliver them to the de-
coder. Thus the best the decoder can hope to achieve is to re-
construct the observations of the honest sensors. A simple pro-
cedure is to ignore the statistical correlations among the obser-
vations and collect data from each sensor individually. The total
sum rate of such an approach is . One expects how-
ever that this sum rate can be lowered if the correlation structure
is not ignored.

Without traitors, Slepian–Wolf coding [1] can be used to
achieve a sum rate as low as

(1)

However, standard Slepian–Wolf coding has no mechanism for
handling any deviations from the agreed-upon encoding func-
tions by the sensors. Even a random fault by a single sensor
could have devastating consequences for the accuracy of the
source estimates produced at the decoder, to say nothing of
a Byzantine attack on multiple sensors. In particular, because
Slepian–Wolf coding takes advantage of the correlation among
sources, manipulating the codeword for one source can alter the
accuracy of the decoder’s estimate for other sources. It will turn
out that for most source distributions, the sum rate given in (1)
cannot be achieved if there is even a single traitor.

In this paper, we are interested in the lowest achievable sum-
rate such that the decoder can reconstruct observations of the
honest sensors with arbitrarily small error probability. In some
cases, we are also interested in the rate region. We note that al-
though the problem setup does not allow the detector to distin-
guish traitors from the honest sensors, an efficient scheme that
guarantees the reconstruction of data from honest sensors is of
both theoretical and practical interest. For example, for a dis-
tributed inference problem in the presence of Byzantine sensors,
a practical (though not necessarily optimal) solution is to attack
the problem in two separate phases. In the first phase, the de-
coder collects data from sensors over multiple access channels
with rate constraints. Here we require that data from honest sen-
sors are perfectly reconstructed at the decoder even though the
decoder does not know which piece of data is from an honest
sensor. In the second step, the received data is used for statistical
inference. The example of distributed detection in the presence
of Byzantine sensors is considered in [2]. The decoder may also
have other side information about the content of the messages
that allows the decoder to distinguish messages from the honest
sensors.
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A. Related Work

The notion of Byzantine attack has its root in the Byzantine
generals problem [3], [4] in which a clique of traitorous generals
conspire to prevent loyal generals from forming consensus. It
was shown in [3] that consensus in the presence of Byzantine
attack is possible if and only if less than a third of the generals
are traitors.

Countering Byzantine attacks in communication networks
has also been studied in the past by many authors. See the
earlier work of Perlman [5] and also more recent review [6],
[7]. An information theoretic network coding approach to
Byzantine attack is presented in [8]. In [9], Awerbuch et al.
suggest a method for mitigating Byzantine attacks on routing
in ad hoc networks. Their approach is most similar to ours
in the way they maintain a list of current knowledge about
which links are trustworthy, constantly updated based on new
information. Sensor fusion with Byzantine sensors was studied
in [10]. In that paper, the sensors, having already agreed upon
a message, communicate it to the fusion center over a discrete
memoryless channel. Quite similar results were shown in [11],
in which a malicious intruder takes control of a set of links in
the network. The authors show that two nodes can commu-
nicate at a nonzero rate as long as less than half of the links
between them are Byzantine. This is different from the current
paper in that the transmitter chooses its messages, instead of
relaying information received from an outside source, but some
of the same approaches from [11] are used in the current paper,
particularly the use of randomization to fool traitors that have
already transmitted.

B. Redefining Achievable Rate

The nature of Byzantine attack require three modifications
to the usual notion of achievable rate. The first, as mentioned
above, is that small probability of error is required only for
honest sources, even though the decoder may not know which
sources are honest. This requirement is reminiscent of [3], in
which the lieutenants need only perform the commander’s order
if the commander is not a traitor, even though the lieutenants
might not be able to decide this with certainty.

The next modification is that there must be small probability
of error no matter what the traitors do. This is essentially the
definition of Byzantine attack.

The final modification has to do with which sensors are al-
lowed to be traitors. Let be the set of honest sensors, and

the set of traitors. A statement that a code
achieves a certain rate must include the list of sets of sensors
that this code can handle as the set of traitors. That is, given
such a list, we say that a rate is achieved if there exists a code
with small probability of error when the actual set of traitors is
in fact on the list. Hence a given code may work for some lists
and not others, so the achievable rates will depend on the spec-
ified list. It will be more convenient to specify not the list of
allowable sets of traitors, but rather the list of allowable sets of
honest sensors. We define to be this list. Thus
small probability of error is required only when . One

special case is when the code can handle any group of at most
traitors. That is,

Observe that achievable rates depend not just on the true set
of traitors but also on the collection , because the decoder’s
willingness to accept more and more different groups of traitors
allows the true traitors to get away with more without being
detected. Thus we see a trade off between rate and security—in
order to handle more traitors, one needs to be willing to accept
a higher rate.

C. Fixed-Rate Versus Variable-Rate Coding

In standard source coding, an encoder is made up of a single
encoding function. We will show that this fixed-rate setup is sub-
optimal for this problem, in the sense that we can achieve lower
sum rates using variable-rate coding. By variable-rate we mean
that the number of bits transmitted per source value by a par-
ticular sensor will not be fixed. Instead, the decoder chooses the
rates at “run time” in the following way. Each sensor has a finite
number of encoding functions, all of them fixed beforehand, but
with potentially different output alphabets. The coding session
is then made up of a number of transactions. Each transaction
begins with the decoder deciding which sensor will transmit,
and which of its several encoding functions it will use. The
sensor then executes the chosen encoding function and trans-
mits the output back to the decoder. Finally, the decoder uses the
received message to choose the next sensor and encoding func-
tion, beginning the next transaction, and so on. Thus a code is
made up of a set of encoding functions for each sensor, a method
for the decoder to choose sensors and encoding functions based
on previously received messages, and lastly a decoding function
that takes all received messages and produces source estimates.

Note that the decoder has the ability to transmit some in-
formation back to the sensors, but this feedback is limited to
the choice of encoding function. Since the number of encoding
functions need not grow with the block length, this represents
zero rate feedback.

In variable-rate coding, since the rates are only decided upon
during the coding session, there is no notion of an -dimen-
sional achievable rate region. Instead, we only discuss achiev-
able sum rates.

D. Traitor Capabilities

An important consideration with Byzantine attack is the in-
formation to which the traitors have access. First, we assume
that the traitors have complete knowledge of the coding scheme
used by the decoder and honest sensors. Furthermore, we al-
ways assume that they can communicate with each other arbi-
trarily. For variable-rate coding, they may have any amount of
ability to eavesdrop on transmissions between honest sensors
and the decoder. We will show that this ability has no effect
on achievable rates. We assume with fixed-rate coding that all
sensors transmit simultaneously, so it does not make sense that
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traitors could eavesdrop on honest sensors’ transmissions be-
fore making their own, as that would violate causality. Thus we
assume for fixed-rate coding that the traitors cannot eavesdrop.

The key factor, however, is the extent to which the traitors
have direct access to information about the sources. We as-
sume the most general memoryless case, that the traitors have
access to the random variable , where is i.i.d. distributed
with according to the conditional distribution

. A natural assumption would be that always
includes for traitors , but in fact this need not be the case.
An important special case is where , i.e.,
the traitors have perfect information.

We assume that the distribution of depends on who the
traitors are, and that the decoder may not know exactly what
this distribution is. Thus each code is associated with a function

that maps elements of to sets of conditional distributions .
The relationship between and is analogous to the rela-
tionship between and . That is, given , the code is willing
to accept all distributions . Therefore a code is de-
signed based on and , and then the achieved rate depends at
run time on and , where we assume and .
We therefore discuss not achievable rates but rather achiev-
able rate functions . In fact, this applies only to vari-
able-rate codes. In the fixed-rate case, no run time rate decisions
can be made, so achievable rates depend only on and .

E. Main Results

The main results of this paper give explicit characteriza-
tions of the achievable rates for three different setups. The
first, which is discussed in the most depth, is the variable-rate
case, for which we characterize achievable sum rate functions.
The other two setups are for fixed-rate coding, divided into
deterministic and randomized coding, for which we give -di-
mensional achievable rate regions. We show that randomized
coding yields a larger achievable rate region than deterministic
coding, but we believe that in most cases randomized fixed-rate
coding requires an unrealistic assumption. In addition, even
randomized fixed-rate coding cannot achieve the same sum
rates as variable-rate coding.

We give the exact solutions later, but describe here some
intuition behind them. For variable-rate, the achievable rates,
given in Theorem 1, are based on alternate distributions on

. Specifically, given , the traitors can simulate
any distribution to produce a fraudulent version of

, then report this sequence as the truth. Suppose that the
overall distribution governing the combination
of the true value of with this fake value of could
be produced in several different ways, with several different
sets of traitors. In that case, the decoder cannot tell which of
these several possibilities is the truth, which means that from
its point of view, many sensors might be honest. Since the
error requirement described in I-B stipulates that the decoder
must produce a correct estimate for every honest sensor, it
must attempt to decode the source values associated with each
potentially honest sensor. Thus the sum rate must be at least the
joint entropy, when distributed according to , of the sources
associated with all potentially honest sensors. The supremum

over all possible simulated distributions is the achievable sum
rate.

For example, suppose . That is, at most one sensor
is honest. Then the traitors are able to create the distribution

no matter which group of
sensors are the traitors. Thus every sensor appears as if it could
be the honest one, so the minimum achievable sum rate is

(2)

In other words, the decoder must use an independent source
code for each sensor, which requires receiving bits
from sensor for all .

The achievable fixed-rate regions, given in Theorem 2, are
based on the Slepian–Wolf achievable rate region. For random-
ized fixed-rate coding, the achievable region is such that for
all , the rates associated with the sensors in fall into
the Slepian–Wolf rate region on the corresponding random vari-
ables. Note that for , this is identical to the
Slepian–Wolf region. For , this region is such that
for all , , which corresponds to the sum rate in
(2). The deterministic fixed-rate achievable region is a subset of
that of randomized fixed-rate, but with an additional constraint
stated in Section VI.

F. Randomization

Randomization plays a key role in defeating Byzantine at-
tacks. As we have discussed, allowing randomized encoding in
the fixed-rate situation expands the achievable region. In ad-
dition, the variable-rate coding scheme that we propose relies
heavily on randomization to achieve small probability of error.
In both fixed and variable-rate coding, randomization is used
as follows. Every time a sensor transmits, it randomly chooses
from a group of essentially identical encoding functions. The
index of the chosen function is transmitted to the decoder along
with its output. Without this randomization, a traitor that trans-
mits before an honest sensor would know exactly the messages
that sensor will send. In particular, it would be able to find
fake sequences for sensor that would produce those same mes-
sages. If the traitor tailors the messages it sends to the decoder
to match one of those fake sequences, when sensor then trans-
mits, it would appear to corroborate this fake sequence, causing
an error. By randomizing the choice of encoding function, the
set of sequences producing the same message is not fixed, so a
traitor can no longer know with certainty that a particular fake
source sequence will result in the same messages by sensor as
the true one. This is not unlike Wyner’s wiretap channel [12], in
which information is kept from the wiretapper by introducing
additional randomness. See in particular Section V-D for the
proof that variable-rate randomness can defeat the traitors in this
manner.

The rest of the paper is organized as follows. In Section II,
we develop in detail the case that there are three sensors and
one traitor, describing a coding scheme that achieves the op-
timum sum rate. In Section III, we formally give the variable-
rate model and present the variable-rate result. In Section IV, we
discuss the variable-rate achievable rate region and give an ana-
lytic formulation for the minimum achievable sum rate for some
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special cases. In Section VI, we give the fixed-rate models and
present the fixed-rate result. In Sections V and VII, we prove
the variable-rate and fixed-rate results respectively. Finally, in
Section VIII, we conclude.

II. THREE SENSOR EXAMPLE

A. Potential Traitor Techniques

For simplicity and motivation, we first explore the
three-sensor case with one traitor. That is, and

Suppose also that the traitor has access to perfect information
(i.e., ). Suppose sensor 3 is the traitor. Sen-
sors 1 and 2 will behave honestly, so they will report and

correctly, as distributed according to the marginal distribu-
tion . Since sensor 3 has access to the exact values of
and , it may simulate the conditional distribution ,
then take the resulting sequence and report it as the truth.
Effectively, then, the three random variables will be distributed
according to the distribution

The decoder will be able to determine that sensors 1 and 2 are
reporting jointly typical sequences, as are sensors 2 and 3, but
not sensors 1 and 3. Therefore, it can tell that either sensor 1 or 3
is the traitor, but not which one, so it must obtain estimates of the
sources from all three sensors. Since the three streams are not
jointly typical with respect to the source distribution ,
standard Slepian–Wolf coding on three encoders will not cor-
rectly decode them all. However, had we known the strategy of
the traitor, we could do Slepian–Wolf coding with respect to the
distribution . This will take a sum rate of

where is the entropy with respect to . In fact we will not
do Slepian–Wolf coding with respect to but rather something
slightly different that gives the same rate. Since Slepian–Wolf
coding without traitors can achieve a sum rate of ,
we have paid a penalty of for the single traitor.

We supposed that sensor 3 simulated the distribution
. It could have just as easily simulated , or

another sensor could have been the traitor. Hence, the minimum
achievable sum rate for all is at least

(3)

In fact, this is exactly the minimum achievable sum rate, as
shown below.

B. Variable-Rate Coding Scheme

We now give a variable-rate coding scheme that achieves .
This scheme is somewhat different from the one we present for
the general case in Section V, but it is much simpler, and it

illustrates the basic idea. The procedure will be made up of a
number of rounds. Communication from sensor in the first
round will be based solely on the first values of , in the
second round on the second values of , and so on. The
principle advantage of the round structure is that the decoder
may hold onto information that is carried over from one round
to the next.

In particular, the decoder maintains a collection rep-
resenting the sets that could be the set of honest sensors. If a
sensor is completely eliminated from , that means it has been
identified as the traitor. We begin with , and then re-
move a set from whenever we find that the messages from
the corresponding pair of sensors are not jointly typical. With
high probability, the two honest sensors report jointly typical
sequences, so we expect never to eliminate the honest pair from

. If the traitor employs the discussed above, for example,
we would expect sensors 1 and 3 to report atypical sequences,
so we will drop from . In essence, the value of con-
tains our current knowledge about what the traitor is doing.

The procedure for a round is as follows. If contains
, do the following.

1) Receive bits from sensor 1 and decode .
2) Receive bits from sensor 2. If there is a se-

quence in jointly typical with that matches this
transmission, decode that sequence to . If not, receive

additional bits from sensor 2, decode , and
remove from .

3) Do the same with sensor 3: Receive bits and
decode if possible. If not, receive addi-
tional bits, decode, and remove from .

If is one of the other two subsets of with two elements,
perform the same procedure but replace sensor 1 with whichever
sensor appears in both elements in . If contains just one
element, then we have exactly identified the traitor, so ignore the
sensor that does not appear and simply do Slepian–Wolf coding
on the two remaining sensors.

Note that the only cases when the number of bits transmitted
exceeds are when we receive a second message from one
of the sensors, which happens exactly when we eliminate an
element from . Assuming the source sequences of the two
honest sensors are jointly typical, this can occur at most twice,
so we can always achieve a sum rate of when averaged over
enough rounds.

C. Fixed-Rate Coding Scheme

In the procedure described above, the number of bits sent by
a sensor changes from round to round. We can no longer do this
with fixed-rate coding, so we need a different approach. Suppose
sensor 3 is the traitor. It could perform a black hole attack, in
which case the estimates for and must be based only
on the messages from sensors 1 and 2. Thus, the rates and

must fall into the Slepian–Wolf achievability region for
and . Similarly, if one of the other sensors was the traitor,
the other pairs of rates also must fall into the corresponding
Slepian–Wolf region. Putting these conditions together gives
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(4)

If the rates fall into this region, we can do three simultaneous
Slepian–Wolf codes, one on each pair of sensors, thereby con-
structing two estimates for each sensor. If we randomize these
codes using the method described in Section I-F, the traitor will
be forced either to report the true message, or report a false mes-
sage, which with high probability will be detected as such. Thus
either the two estimates for each sensor will be the same, in
which case we know both are correct, or one of the estimates
will be demonstrably false, in which case the other is correct.

We now show that the region given by (4) does not include
sum rates as low as . Assume without loss of generality that

achieves the maximum in (3). Summing the last
three conditions in (4) gives

(5)

If , (5) is larger than (3). Hence,
there exist source distributions for which we cannot achieve the
same sum rates with even randomized fixed-rate coding as with
variable-rate coding.

If we are interested only in deterministic codes, the region
given by (4) can no longer be achieved. In fact, we will prove
in Section VII that the achievable region reduces to the trivially
achievable region where for all when ,
though it is nontrivial for . For example, suppose
and . In this case, the achievable region is similar to that
given by (4), but with an additional sensor. That is, each of the 6
pairs of rates must fall into the corresponding Slepian–Wolf re-
gion. In this case, we do three simultaneous Slepian–Wolf codes
for each sensor, construct three estimates, each associated with
one of the other sensors. For an honest sensor, only one of the
other sensors could be a traitor, so at least two of these estimates
must be correct. Thus we need only take the plurality of the three
estimates to obtain the correct estimate.

III. VARIABLE-RATE MODEL AND RESULT

Notation

Let be the random variable revealed to sensor , the
alphabet of that variable, and a corresponding realization.
A sequence of random variables revealed to sensor over
timeslots is denoted , and a realization of it . Let

. For a set , let be the set of
random variables , and define and similarly. By

we mean . Let be the strongly typical set
with respect to the distribution , or the source distribution if
unspecified. Similarly, is the entropy with respect to
the distribution , or if unspecified.

A. Communication Protocol

The transmission protocol is composed of transactions. In
each transaction, the decoder selects a sensor to receive informa-
tion from and selects which of encoding functions it should
use. The sensor then responds by executing that encoding func-
tion and transmitting its output back to the decoder, which then
uses the new information to begin the next transaction.

For each sensor and encoding function
, there is an associated rate . On the th trans-

action, let be the sensor and the encoding function chosen
by the decoder, and let be the number of
such that . That is, is the number of times has
transmitted prior to the th transaction. Note that , , are
random variables, since they are chosen by the decoder based
on messages it has received, which depend on the source values.
The th encoding function for sensor is given by

(6)

where represents randomness generated at the sensor.
Let be the message received by
the decoder in the th transaction. If is honest, then

, where is the randomness
from sensor and is the history of encoding
functions used by sensor so far. If is a traitor, however,
it may choose based on and it may have any amount
of access to previous transmissions and polling
history , . But, it does not have access
to the randomness for any honest sensor . Note again that
the amount of traitor eavesdropping ability has no effect on
achievable rates.

After the decoder receives , if it uses to
choose the next sensor and its encoding function index .
After the th transaction, it decodes according to the decoding
function

Note that we impose no restriction whatsoever on the size of the
total number of transactions . Thus, a code could have arbitrary
complexity in terms of the number of messages passed between
the sensors and the decoder. However, in our below definition
of achievability, we require that the communication rate from
sensors to decoder always exceeds that from decoder to sensors.
Therefore while the number of messages may be very large, the
amount of feedback is diminishingly small.

B. Variable-Rate Problem Statement and Main Result

Let be the set of honest sensors. Define the proba-
bility of error

where . The probability of error
will in general depend on the actions of the traitors. Note again
that we only require small probability of error on the source
estimates corresponding to the honest sensors.
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We define a rate function defined for and
to be -achievable if there exists a code such that,

for all pairs and any choice of actions by the traitors,

and for all , . This last condition requires, as
discussed above, that the feedback rate from the decoder back
to the sensors is arbitrarily small compared to the forward rate.
A rate function is achievable if for all , there is
a sequence of -achievable rate functions such
that

Note that we do not require uniform convergence.
The following definitions allow us to state our main variable-

rate result. For any and , let be the
distribution of given when is distributed according
to . That is

The extent to which provides information about is ir-
relevant to the traitors, since in order to fool the decoder they
must generate information that appears to agree only with
as reported by the honest sensors. Thus it will usually be more
convenient to work with rather than . For any and

, let

(7)

If were the traitors and were distributed according to
, then would be the set of distributions to which the

traitors would have access. That is, if they simulate the proper
from their received , this simulated version of

and the true value of would be jointly distributed according
to . For any , define

That is, for some distribution , for every ,
if the traitors were , they would have access to for some

. Thus any distribution in makes it look to the
decoder like any could be the set of honest sensors, so
any sensor in is potentially honest.

Theorem 1: A rate function is achievable if and only
if, for all ,

(8)

See Section V for the proof.
We offer the following interpretation of this result. Suppose

we placed the following constraint on the traitors’ behavior.
Given , they must produce a value of in an i.i.d. fashion,

then report it as the truth. That is, they choose a value of at
time based only on at time , making each choice in an
identical manner. Then each traitor takes the produced value
of and behaves for the duration of the coding session exactly
as if it were honest and this was the true source sequence. We can
now easily classify all possible behaviors of the traitors simply
by specifying the manner in which they generate from ,
which is given by some distribution . The joint distri-
bution of and will be given by

(9)

By (7), . If is also contained in for some
and , then again by (7), there exists a distribution

such that

(10)

Since (9) and(10) have exactly the same form, the decoder will
not be able to determine whether is the set of honest sensors
with distributed according to , or is the set of honest
sensors with distributed according to . On the other hand, if
for some , for all , then the decoder
should be able to tell that is not the set of honest sensors. We
have not yet said how it might know, but intuition suggests that
it should be possible. Hence, if there is no containing a certain
sensor for which

(11)

then the decoder can be sure that is a traitor and it may be
ignored. Let be the collection of all for which (11)
holds. Every sensor in looks to the decoder like it could
be honest; all the rest are surely traitors. Thus, in order to make
sure that the decoder reconstructs honest information perfectly,
it must recover for all , which means the sum rate
must be at least . Observe that

As already noted, , so . Moreover,
for any , every element of can be produced
with the proper choice of . Hence can be
as high as

but no higher. Thus it makes sense that this rate and no better can
be achieved if we place this constraint on the traitors. Therefore
Theorem 1 can be interpreted as stating that constraining the
traitors in this manner has no effect on the set of achievable rates.

IV. PROPERTIES OF THE VARIABLE-RATE REGION

It might at first appear that (8) does not agree with (3). We
discuss several ways in which (8) can be made more manage-
able, particularly in the case of perfect traitor information (i.e.,

), and show that the two are in fact identical. Let
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be the minimum rate achievable over all and .
Thus by (8), we can write

(12)
This is the quantity that appears in (3). Note also that for perfect
traitor information

(13)

This means that . Therefore (8)
becomes

The following lemma simplifies calculation of expressions of
the form .

Lemma 1: Suppose the traitors have perfect information. For
any , the expression

(14)

is maximized by a satisfying(13) for all such that, for
some set of functions

(15)

Proof: By (13), we need to maximize subject
to the constraints that for each and all ,

. This amounts to maximizing the Lagrangian

Note that for any

Thus, differentiating with respect to gives, assuming
the is a natural logarithm

Setting this to gives

for some set of functions . Therefore setting

satisfies (15), so if are such that (13) is satisfied for all
, will maximize .

Suppose and . If , then
is in and by Lemma 1

maximizes over all . Thus

By similar reasoning, considering and
results in (3). Note that if , then

, so need not be considered in evaluating
(8). Thus we have ignored larger subsets of , since the value
they give would be no greater than the others.

We can generalize to any collection of the form
, in which case

Employing this, we can rewrite (12) for and certain
values of . For , it becomes

Again, relative to the Slepian–Wolf result, we always pay a
conditional mutual information penalty for a single traitor. For

where

For , is given by (2). There is a similar formulation
for , though it is more difficult to write down for
arbitrary .

With all these expressions made up of nothing but en-
tropies and mutual informations, it might seem hopeful that
(14) can be reduced to such an analytic expression for all

. However, this is not the case. For example, consider
. This is irreducible

in the sense that there is no subset that still satisfies
, but there is no simple distribution

made up of marginals of that satisfies Lemma 1,
so it must be found numerically. Still, Lemma 1 simplifies the
calculation considerably.

V. PROOF OF THEOREM 1

A. Converse

We first show the converse. Fix and . Take
any , and any distribution . Since

, there is some such that and are
distributed according to . Since also for all
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and some , if the traitors simulate this and act hon-
estly with these fabricated source values, the decoder will not
be able to determine which of the sets in is the actual set
of honest sensors. Thus, the decoder must perfectly decode the
sources from all sensors in , so if is an -achiev-
able rate function, .

B. Achievability Preliminaries

Now we prove achievability. To do so, we will first need the
theory of types. Given , let be the type of .
Given a type with denominator , let be the set of
all sequences in with type . If is a joint , type with
denominator , then let be the set of sequences

such that have joint type , with the convention that
this set is empty if the type of is not the marginal of .

We will also need the following definitions. Given a distribu-
tion on an alphabet , define the -ball of distributions

Note that the typical set can be written

We define slightly modified versions of the sets of distributions
from Section III-B as follows:

These sets are nearly the same as those defined earlier. We will
eventually take the limit as , making them identical to

and , but it will be necessary to have slightly ex-
panded versions for use with finite block length.

Finally, we will need the following lemma.

Lemma 2: Given an arbitrary length distribution
and a type with denominator on , let be the marginal
distribution of at time and . If
is distributed according to and ,
then .

Proof: Fix an integer . For , let be
independently generated from . Let be the set of types
on superletters in with denominator such that
if . Note that

If , then

But

For any , letting be the marginal type at time gives
. Therefore

(16)

(17)

where (16) holds by [13, Lemma 4.3] and (17) by convexity
of the Kullback–Leibler distance in both arguments. Letting
grow proves the lemma.

The achievability proof proceeds as follows. Section V-C de-
scribes our proposed coding scheme for the case that traitors
cannot eavesdrop. In Section V-D, we demonstrate that this
coding scheme achieves small probability of error when the
traitors have perfect information. Section V-E shows that the
coding scheme achieves the rate function . In Sec-
tion V-F, we extend the proof to include the case that the traitors
have imperfect information. Finally, Section V-G gives a mod-
ification to the coding scheme that can handle eavesdropping
traitors.

C. Coding Scheme Procedure

Our basic coding strategy is for a sensor to transmit a se-
quence of small messages to the decoder until the decoder has
received enough information to decode the sensor’s source se-
quence. After receiving one of these messages, the decoder asks
for another small message only if it is unable to decode the se-
quence. If it can, the decoder moves on to the next sensor. This
way, the rate at which a sensor transmits is as small as pos-
sible. Once each sensor’s source sequence has been decoded,
the decoder attempts to use them to accumulate information
about which sensors could be traitors. It is in this step that it
uses its knowledge of the power of the traitors to tell the differ-
ence between a sensor that could be honest under some circum-
stances and one that is surely a traitor. After this, the decoder
goes back across all the sensors again, repeating the same pro-
cedure for the next block of source values and ignoring those
sensors that it knows to be traitors. The decoder repeats this
again and again, gathering more information about which sen-
sors could be traitors each time. The precise description of the
coding strategy follows.

1) Random Code Structure: Fix . The maximum
number of small messages that could be sent by sensor when
transmitting a certain sequence to the decoder is .
Each of these small messages is represented by a function to
be defined, taking the source sequence as input and producing
the small message as output. In addition, as we discussed in
I-F, it is necessary to randomize the messages at run time in
order to defeat the traitors. Thus, sensor has different but
identically created subcodebooks, each of which is made up of
a sequence of functions, one for each small messages, where



2558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 6, JUNE 2008

is an integer to be defined. Hence the full codebook for
sensor is composed of separate functions. In particular,
for and , let

with to be defined later. Thus, a subcodebook associates with
each element of a sequence of about bits
chopped into small messages of length or . We put
tildes on these functions to distinguish them from the s defined
in (6). The s that we define here are functions we use as pieces
of the overall encoding functions . Each one is constructed by a
uniform random binning procedure. Define composite functions

We can think of as an index of one of
random bins.

2) Round Method: Our coding scheme is made up of
rounds, with each round composed of phases. In the th phase,
transactions are made entirely with sensor . We denote
as the th block of source values, but for convenience, we will
not include the index when it is clear from context. As in the
three-sensor example, all transactions in the th round are based
only on . Thus the total block length is .

The procedure for each round is identical except for the vari-
able maintained by the decoder. This represents the col-
lection of sets that could be the set of honest sensors based on
the information the decoder has received as of the beginning of
round . The decoder begins by setting and then pares
it down at the end of each round based on new information.

3) Encoding and Decoding Rules: In the th phase, if
, the decoder makes a number of transactions with

sensor and produces an estimate of . If ,
then the decoder has determined that sensor cannot be honest,
so it does not communicate with it and sets to a null value.

For , at the beginning of phase , sensor ran-
domly selects a according to the uniform distri-
bution. In the first transaction, sensor transmits .
That is, along with the small message itself, the sensor transmits
the randomly selected index of the subcodebook that it will
use in this phase. As the phase continues, in the th transaction,
sensor transmits .

After each transaction, the decoder must decide whether to
ask for another transaction with sensor , and if not, to decode

. In the random binning proof of the traditional Slepian–Wolf
problem, the decoder decides which sequence in the received
bin to select as the source estimate by taking the one contained in
the typical set. Here we use the same idea, except that instead of
the typical set, we use a different set for each transaction, and if
there is no sequence in this set that falls into the received bin, this
means not that we cannot decode the sequence but rather that
we have not yet received enough information from the sensor
and must ask for another transaction. The set associated with
the th transaction needs to have the property that its size is
less than , the number of bins into which the source
space has been split after messages, so that it is unlikely for

two elements of the set to fall into the same bin. Furthermore,
in order to ensure that we eventually decode any sequence that
might be chosen by the sensor, the set should grow after each
transaction and eventually contain all of .

Now we define this set. First let ,
the sensors up to that are not ignored by the decoder, and let

be the source sequences decoded in this round prior to
phase . The set associated with transaction is

(18)

To be specific, after transactions, if there are no sequences
in matching the received value of , the decoder
chooses to do another transaction with sensor . If there is at
least one such sequence, choose one to be , deciding between
several possibilities arbitrarily.

Observe that

Hence satisfies the size property that were discussed above.
Moreover, it grows with to eventually become . Finally,
we have chosen in particular because it has the property that
when a sequence falls into for the first time, the rate at
which sensor has transmitted to the decoder is close to the en-
tropy of the type of . This means that we can relate the accu-
racy of the decoded sequences to the achieved rate, which will
allow us to prove that the coding scheme achieves the claimed
rate.

4) Round Conclusion: At the end of round , the decoder
produces by setting

(19)

for to be defined such that and as . As we
will show, it is essentially impossible for the traitors to transmit
messages such that the type of the decoded messages does not
fall into , meaning that is always in . This ensures
that the true honest sensors are never ignored and their source
sequences are always decoded correctly.

D. Error Probability

Define the following error events:

The total probability of error is

As we have said but not yet proved, will usually be in
(i.e., does not occur), so we do not lose much by writing
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Let

for , so

Observe that depends only on and , both of
which are independent of all events before round given that

(i.e., occurs), since this is enough to ensure
that is non-null. Since includes , we
can drop all conditioning terms expect it. Note also that
occurs with probability 1. Therefore

so

By (19), if is in but not in , then
. Thus

so

(20)

where we have dropped the conditioning on in the first
term because it influences the probability of only in that
it ensures that for are non-null, which is already
implied by .

We first bound the first term in (20) by showing that for all ,

(21)

If the traitors receive perfect source information, then as we have
already noted in (13), only puts a constraint on the
marginal of distributions, and the same is true of . In par-
ticular, is equivalent to being

typical. Conditioning on implies that
, so

meaning (21) holds for sufficiently large by the AEP. Thus
(21) is only nontrivial if the traitors receive imperfect source
information. This case is dealt with in Section V-F.

We now consider the second term of (20), involving
for honest . Conditioning on ensures

that for honest , so will be non-null. The
only remaining type of is a decoding error. This occurs if for
some transaction , there is an sequence in different
from that matches all thus far received messages. That is, if

However, may contain traitors. Indeed, it may be made en-
tirely of traitors. Thus, we have to take into account that
may be chosen to ensure the existence of such an erroneous .
The sensor’s use of randomizing among the subcodebooks is
the method by which this is mitigated, as we will now prove.

Let

That is, is the number of subcodebooks that if chosen could
cause a decoding error at some transaction. Recall that sensor
chooses the subcodebook randomly from the uniform distribu-
tion. Thus, given and , the probability of an error re-
sulting from a bad choice of subcodebook is .
Furthermore, is based strictly on the codebook, so we can
think of it as a random variable defined on the same probability
space as that governing the random codebook creation. Aver-
aging over all possible codebooks

where the expectation is taken over codebooks.
Let be the set of all codebooks. We define a subset ,

then show that the probability of error can be easily bounded for
any codebook in , and that the probability of a codebook
being chosen in is small. In particular, let be the set of
codebooks for which, for any and ,

, for an integer to be defined later.
Then

(22)

Recall that is the number of subcodebooks that could cause
an error. Since each subcodebook is generated identically,
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is a binomial random variable with trails and probability of
success , where is the probability that one particular sub-
codebooks causes an error. Thus

for sufficiently large . For a binomial random variable with
mean and any , we can use the Chernoff bound to write

(23)

Therefore

if and is sufficiently large. Thus

(24)

Combining (20) with (21), (22), and (24) gives

which is less than for sufficiently large if

and

E. Code Rate

The discussion above placed a lower bound on . However,
for sufficiently large , we can make , meaning it
takes no more than rate to transmit the subcodebook index
at the beginning of the phase. Therefore the rate for phase is
at most , where is the number of transactions
in phase . Transaction must be the earliest one with

, otherwise it would have been decoded earlier. Thus
is the smallest integer for which

meaning

(25)

By (19), for all , ,
meaning

Furthermore, from (21) we know that with probability at least
, . Therefore

(26)

Combining (25) with (26) gives that with high probability, the
rate for all of round is at most

(27)

Whenever , at least one sensor is
eliminated. Therefore the second term in (27) will be nonzero in
all but at most rounds. Moreover, although we have needed
to bound from below, we can still choose it such that
as . Thus if is large enough, the rate averaged over all
rounds is no more than

where as . This is an -achievable rate function.
By continuity of entropy,

so is achievable.

F. Imperfect Traitor Information

We now consider the case that the traitors have access to im-
perfect information about the sources. The additional required
piece of analysis is to prove (21). That is

(28)

where we define for notational convenience and
. Observe that we can drop the hat from

if we wish because of the conditioning term.
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To help explain the task in proving (28), we present a similar
argument to the one we used in Section III-B to interpret The-
orem 1: we impose a constraint on the traitors, then demonstrate
that (28) would be easy to prove under this constraint. Suppose
that, given , the traitors apply a function
to get the sequence , then report this as the
truth. Assuming the decoder successfully decodes so that

, and would be distributed according to

By Lemma 2, the only , types that could be generated from
this distribution with substantial probability are those for which

is close to . Furthermore, we can write

for some . Thus, by (7), so for
some small . This would prove (28).

However, we cannot place any such limitations on the traitors’
behavior. Our goal will be to show that for any action, there ex-
ists a function such that the behavior just described produces
nearly the same effect. Observe that a transmission made by the
traitors is equivalent to a bin, or subset, of : the set of all se-
quences that would produce this transmission if the sensors were
honest. The decoder will choose an element of this bin as ,
making its decision by selecting one that agrees with (specif-
ically, by always taking elements in ). Because the traitors do
not know exactly, they must select their transmitted bin so
that for every likely , the bin contains some sequence agreeing
with it. That is, each element of the bin agrees with a certain set
of s, and the union of all these sets must contain all likely
values of given . We will show that the distribution of
the sizes of these “agreement sets” is highly nonuniform. That
is, even though no single element of the bin agrees with all likely

, a small number of elements of the bin agree with many more
s that the others. Therefore, transmitting this bin is not much

different from choosing one of these “special” elements and re-
porting it as the truth.

The manner in which the traitors choose a bin based on
is complicated by two factors. First, they must choose a sub-
codebook index to use for each traitor in before
transmitting any information. Second, the exact rate at which
each traitor transmits depends on the number of small mes-
sages that it takes for the decoder to construct a source es-
timate, which the traitors will not always know a priori. Let

be the vector representing the number of
transactions (small messages) that take place with each traitor in

. There are different possible
values of . For a given , each set of messages sent with this
number of transactions is represented by a bin. Let be the set
of these bins. Note that we include all choices of subcodebook
indices in this set; there are many different binnings for a given ,
any of which the traitors may select. Now the traitors’ behavior
is completely described by a group of potentially random func-
tions for all . That is, if the traitors receive

, and the numbers of transactions are given by , then their

transmitted bin is . Note that when we refer to a bin, we
mean not the index of the bin but the actual set of sequences in
that bin. Thus is a subset of .

Consider a joint , type . We are interested in the circum-
stances under which has type . Recall that in a given
phase, the value of determines what source sequences can be
decoded without receiving additional messages from the sensor.
In particular, only those sequences in can be decoded. Thus,
in order to decode such that has type , must be
such that in every phase, sequences of the proper type fall into

. Specifically, by (18), we need for every

Hence

Let be the total rate transmitted by all the traitors in
given . The transmitted rate by sensor is , so

Therefore if , then there exists a such that
and is not empty.

Let

and

We will show that , so that

for sufficiently large .
Fix . We show that . There is some with

(29)

and . Any random is a probabilistic com-
bination of a number of deterministic functions, so if this lower
bound on holds for a random , it must also hold for some
deterministic . Therefore we do not lose generality to assume
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from now on that is deterministic. We also drop the sub-
script for convenience.

Define the following sets:

Applying the definitions of and gives

meaning . Fix
. Since

(30)

Note also that

(31)

Let . This value is the
size of the “agreement set” as described above. Applying (30)
and (31) gives

(32)

for sufficiently large . We will show that there is actually a
single such that represents a large por-
tion of the above sum, so itself is almost as good as the entire
bin. Then setting will give us the properties we
need. Note that

(33)

Moreover

so if for all we let be the integer such that

(34)

then for all . Furthermore, if , then
. Let

. Then from (33), for some

giving

(35)

For any bin , let .
Observe that when the bin was created, it was one of
bins into which all sequences in were placed. Thus the prob-
ability that any one sequence was placed in was .
Hence is a binomial random variable with trials
and probability of success . Hence by (29) and (35)

We want to disregard all codebooks for which is much
larger than its expectation. In particular, let be the set of code-
books such that for any group of sensors, subcodebooks, type ,
transactions , sequence , bin and integer , either

if or if
. We will show that the probability of is small,

so we may disregard it. Again using (23), if

and if

both for sufficiently large . Therefore

which vanishes as grows.
We assume from now on that the codebook is not in
, meaning in particular that for

and for
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. Applying these and (34) to (32) and letting
be an integer defined later

Therefore

Setting and ensures that the right hand side is
positive for sufficiently large , so there is at least one

with . Now
we define such that is such a for

and is arbitrary for . If we
let , then

The variables are distributed according to

Let be the marginal distribution of at time
. It factors as

Let and . Then

so by Lemma 2

Therefore for sufficiently large and some such
that as .

G. Eavesdropping Traitors

We consider now the case that the traitors are able to overhear
communication between the honest sensors and the decoder. If
the traitors have perfect information, then hearing the messages
sent by honest sensors will not give them any additional infor-
mation, so the above coding scheme still works identically. If the
traitors have imperfect information, we need to slightly modify
the coding scheme, but the achievable rates are the same.

The important observation is that eavesdropping traitors only
have access to messages sent in the past. Thus, by permuting the
order in which sensors are polled in each round, the effect of the
eavesdropping can be eliminated. In a given round, let be the
set of honest sensors that transmit before any traitor. Since the
additional information gain from eavesdropping will be no more
than the values of , the rate for this round, if no sensors are
eliminated (i.e., ), will be no more than
the rate without eavesdropping when the traitors have access to

. The goal of permuting the transmission
order is to find an ordering in which all the traitors transmit be-
fore any of the honest sensors, since then the achieved rate, if
no sensors are eliminated, will be the same as with no eaves-
dropping. It is possible to determine when such an order occurs
because it will be the order that produces the smallest rate.

More specifically, we will alter the transmission order from
round to round in the following way. We always choose an or-
dering such that for some , the sensors transmit before

. We cycle through all such orderings until for each , there
has been one round with a corresponding ordering in which no
sensors were eliminated. We then choose one that never pro-
duced a rate larger than the smallest rate encountered so far. We
perform rounds in a order corresponding to from then on. If
the rate ever changes and is no longer the minimum rate encoun-
tered so far, we choose a different minimizing . The minimum
rate will always be no greater than the achievable rate without
eavesdropping, so after enough rounds, we achieve the same av-
erage rate.

VI. FIXED-RATE CODING

Consider an -tuple of rates , encoding func-
tions for , and decoding func-
tion

Let be the message transmitted by sensor
. If sensor is honest, . If it is a traitor, it may
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choose arbitrarily, based on . Define the probability of
error where .

We say an -tuple is deterministic-fixed-rate
achievable if for any and sufficiently large , there exist
coding functions and such that, for any choice of actions by
the traitors, . Let be the set of deterministic-
fixed-rate achievable -tuples.

For randomized fixed-rate coding, the encoding functions be-
come

where is the alphabet for the randomness. If sensor is honest,
, where is the randomness produced at

sensor . Define an -tuple to be randomized-fixed-rate achiev-
able in the same way as above, and to be the set of
randomized-fixed-rate achievable rate vectors.

For any , let be the Slepian–Wolf rate re-
gion on the random variables . That is

Let

SW

if

then SW

The following theorem gives the rate regions explicitly.

Theorem 2: The fixed-rate achievable regions are given by

and

VII. PROOF OF THEOREM 2

A. Converse for Randomized Coding

Assume is randomized-fixed-rate achievable.
Fix . Suppose are the traitors and perform a black
hole attack. Thus must be based entirely on ,
and since can be made arbitrarily small, by the
converse of the Slepian–Wolf theorem, which holds even if the
encoders may use randomness, .

B. Converse for Deterministic Coding

Assume is deterministic-fixed-rate achiev-
able. The converse for randomized coding holds equally
well here, so . We prove by con-
tradiction that as well. Suppose

, meaning that for some ,
, there exists such that

but . Consider the case that
and is such that . Thus the traitors always
have access to .

For all , let be the subset of such
that all sequences in are decoded correctly if are the
traitors and no matter what messages they send. Thus the
probability that is large. Let

be the marginal intersection of and . That
is, it is the set of sequences such that there exists

and with and
. Note that with high probability

. Suppose
and , so by the definition of ,

. Since , there is
some mapping to the same codewords
as such that . Because the traitors
have access to , they can construct , and also
find such that . If the traitors
report , then we have a contradiction, since this situation
is identical to that of the traitors being , in which case, by the
definition of , .

C. Achievability for Deterministic Coding

Fix . Our achievability scheme will
be a simple extension of the random binning proof of the
Slepian–Wolf theorem given in [14]. Each encoding function

is constructed by means of a random
binning procedure. Decoding is then performed as follows. For
each , if there is at least one matching
all received codewords from , let be one such sequence
for all . If there is no such sequence, leave null. Note
that we produce a separate estimate of for all .
Let equal one non-null .

We now consider the probability of error. With high proba-
bility, for honest . Thus all we need to show is that
for all other with , is null or also equal to .
Fix . If there is some with ,
then by the definition of , . Thus
with high probability the only sequence
matching all received codewords will be , so
for all .

Now consider the case that for all
. For convenience, let and .

Let and . Since
, for some .

Let be the set of sequences in that map to the same
codewords as , and let be the set of sequences
mapping to the codewords sent by the traitors. Then may be
decoded incorrectly only if there is some and
some such that and .
For some

(36)

where
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On average, the number of typical put into a bin is at most
, so we can use (23) to assume with high prob-

ability than no more than are put into any bin.
Note that

The average sum over typical in a given bin is thus

We can use an argument similar to that in Section V-F, parti-
tioning into different values, to show that with high
probability, since , for all bins ,

Applying this to (36) gives

Letting ensures that the probability of error is always
small no matter what bin the traitors choose.

D. Achievability for Randomized Coding

We perform essentially the same coding procedure as with de-
terministic coding, expect we also apply randomness in a similar
fashion as with variable-rate coding. The only difference from
the deterministic coding scheme is that each sensor has a set
of identically created subcodebooks, from which it randomly
chooses one, then sends the chosen subcodebook index along
with the codeword. Decoding is the same as for deterministic
coding. An argument similar to that in Section V-D can be used
to show small probability of error.

VIII. CONCLUSION

We gave an explicit characterization of the region of achiev-
able rates for a Byzantine attack on distributed source coding
with variable-rate codes, deterministic fixed-rate codes, and
randomized fixed-rate codes. We saw that a different set of rates
were achievable for the three cases, and gave converse proofs

and rate achieving coding schemes for each. Variable-rate
achievability was shown using an algorithm in which sensors
use randomness to make it unlikely that the traitors can fool the
coding process.

Much more work could be done in the area of Byzantine
network source coding. Multiterminal rate distortion [15], [16]
could be studied, or other topologies, such as side information.
However, perhaps the biggest drawback in this paper is that, as
we discussed in the introduction, because the traitors cannot in
general be identified, it is difficult to imagine applications that
do not require some post processing of the source estimates, for
example to estimate some underlying process. Thus it would
make sense to solve the coding and estimation problems simul-
taneously, such as in the CEO problem [17].
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