
Nonlinear Network Coding is Necessary to Combat General Byzantine

Attacks

Oliver Kosut, Lang Tong, and David Tse

Abstract— We consider the problem of achieving capacity
through network coding when some of the nodes act covertly
as Byzantine adversaries. For several case-study networks, we
investigate rates of reliable communication through network
coding and upper bounds on capacity. We show that linear
codes are inadequate in general, and a slight augmentation of
the class of linear codes can increase throughput. Furthermore,
we show that even this nonlinear augmentation may not be
enough to achieve capacity. We introduce a new class of codes
known as bounded-linear that make use of distributions defined
over bounded sets of integers subject to linear constraints using

real arithmetic.

I. INTRODUCTION

Network coding allows routers in a network to execute

possibly complex codes in addition to mere forwarding; it

has been shown that allowing them to do so can increase

throughput [1]. However, taking advantage of this use of cod-

ing at internal nodes means that the sources and destinations

must rely on other nodes—nodes they may not have complete

control over—to reliably perform certain functions. If these

internal nodes do not perform the function correctly, or,

worse, maliciously attempt to subvert the goals of the users,

launching a so-called Byzantine attack [2], [3], standard

network coding techniques have no method to maintain

performance.

Suppose an omniscient adversary controls an unknown

portion of the network, and may arbitrarily corrupt the

values sent on certain links. We wish to determine how

the size of the adversarial part of the network influences

the maximum achievable throughput. If the adversary may

control any t unit-capacity edges in the network, then it has

been shown that, for the multicast problem (one source and

many destinations), the capacity reduces by 2t compared to

the non-Byzantine problem [4], [5], [6]. To achieve this rate,

only linear network coding is needed. Furthermore, if there

is just one source and one destination, only routing is needed

at internal nodes.

The above model assumes that any set of t edges may

be adversarial, which may be overly pessimistic depending

on the situation. If the adversary cuts a certain number of

transmission lines in a network, this would be a reasonable

model. If, on the other hand, the adversary seizes a single

router, it will control the values on all links connected to

O. Kosut and L. Tong are with Cornell University, Ithaca, NY
{oek2,lt35}@cornell.edu

D. Tse is with the University of California, Berkeley, CA
dtse@eecs.berkeley.edu

This work is supported in part by the National Science Foundation under
Award CCF-0635070 and the the Army Research Office under Grant ARO-
W911NF-06-1-0346.

S
D

1

2

3

4

5

Fig. 1. The Cockroach Network. All edges have capacity 1. We consider
the case that one internal node is a traitor.

that router, which may vary in number depending on which

router is attacked. For example, consider the network shown

in Figure 1, which we call the Cockroach Network, and

suppose one node (other than the source or destination) is

a traitor; i.e., it is controlled by the adversary. Since any

node has at most 2 output edges, it would be tempting to

use a code that can handle any 2 malicious edges. However,

this assumes that, for instance, the edges (4, D) and (5, D)
may be simultaneously controlled by the adversary, which

is not the case if it can only control one node. In fact,

since the min-cut of this network is 4, the best achievable

rate assuming 2 malicious edges is 0. As we will show in

Section IV, the capacity of this network is in fact 2, so the

aforementioned edge result can be overly pessimistic for this

more specialized problem.

In this paper we focus mainly on the single-source single-

destination problem when one node may be adversarial. We

make two main contributions. First, we show that linear

coding is insufficient to solve this problem. We consider

a class of nonlinear network codes that we denote linear-

plus, in which each edge may carry, in addition to a linear

function of the message, a nonlinear function occupying an

arbitrarily small amount of link capacity. We show that even

this small amount of nonlinearity is enough to increase the

achievable rate for some networks. For example, capacity

can be achieved in the aforementioned Cockroach Network

with a linear-plus code, whereas it cannot with a linear

code. A similar sort of nonlinearity was shown to help [7],

which studied the problem of detecting misbehaving nodes in

wireless networks. Our second contribution is to introduce

Forty-Seventh Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 30 - October 2, 2009

978-1-4244-5871-4/09/$26.00 ©2009 IEEE 593

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:54:28 EST from IEEE Xplore. Restrictions apply.

a very different class of nonlinear codes, called bounded-

linear, which can outperform even linear-plus. Bounded-

linear codes take advantage of special properties of prob-

ability distributions over bounded sets of integers subject to

linear constraints under real arithmetic, as opposed to finite-

field arithmetic.

The paper is organized as follows. Section II formally

defines the problem. Section III gives the cut-set upper

bound, a relatively simple upper bound for the Byzantine

network coding problem with node attacks. The proceeding

four sections consider four case-study networks. Section IV

studies the aforementioned Cockroach network, and shows

that linear codes do not achieve capacity whereas linear-plus

codes do. Section V studies a network we call the Cater-

pillar Network, a network for which even linear-plus codes

are insufficient, but bounded-linear codes achieve capacity.

Section VI studies the Super Cockroach Network, a larger

version of the Cockroach Network which is more difficult to

solve, but its capacity can be achieved using bounded-linear

codes. Section VII studies the Beetle Network, a network

with a zero-capacity edge, the presence of which affects its

capacity. This is a property that, as far as we know, has not

been observed in non-Byzantine network coding. Finally, we

conclude in Section VIII.

II. PROBLEM FORMULATION

Let (V, E) be an directed acyclic graph. For each edge

e ∈ E, there is an edge capacity ce. One node in V is

denoted S, the source, and one is denoted D, the destination.

We wish to determine the maximum achievable throughput

from S to D when any single node in V \ {S, D} is the

traitor; i.e. it is controlled by the adversary. Given a rate R
and a block-length n, the message W is chosen at random

from the set {1, . . . , 2nR}. Each edge e holds a value Xe ∈
{1, . . . , 2nce}. A code is be made up of three components:

1) an encoding function at the source, which produces

values to place on all the output edges given the

message,

2) a coding function at each internal node v ∈ V \{S, D},

which produces values to place on all output edges

from v given the values on all input edges to v,

3) and a decoding function at the destination, which

produces an estimate Ŵ of the message given the

values on all input edges.

Suppose i ∈ V \ {S, D} is the traitor. It may subvert the

coding function at node i by placing arbitrary values on all

the output edges from this nodes. Given i, we may consider

the destination’s estimate Ŵ a deterministic function of the

message W and the values on all edges out of node i. In

particular, we define the function Ŵi so that

Ŵ = Ŵi(W, Xi) (1)

where Xi is the set of all values on edges out of node i.
We say that a rate R is achievable if there exists a code

operating at that rate with some block-length n such that

w = Ŵi(w, xi) (2)

for all messages w, all possible traitors i, and all values xi.

That is, the destination always decodes correctly no matter

what the traitor does. Let the capacity C be the supremum

over all achievable rates.

III. CUT-SET UPPER BOUND

Theorem 1: Consider a cut A ⊆ V with S ∈ A and

D /∈ A. Let EA be the set of edges that cross the cut. For

two nodes i, j ∈ A, let Ei and Ej be the set of edges that

originate at i and j respectively, and cross the cut. Let E′
i and

E′
j be subsets of Ei and Ej respectively containing the edges

e for which there is no path that flows through e followed

by any edge in EA \ Ei \ Ej . The following upper bounds

hold on the capacity of the network:

C ≤
∑

e∈EA\E′
i\E′

j

ce, (3)

C ≤
∑

e∈EA\Ei

ce. (4)

Note that considering (4) over all cuts gives

C ≤ min
i∈V

mincutV \{i}(S; D) (5)

where mincutV \{i} is the min-cut after node i and all edges

connected to it are removed from the network. However, (3)

does not lead to

C ≤ min
i,j∈V

mincutV \{i,j}(S; D). (6)

Section VII provides an example for which (6) does not hold.

Proof: First we prove (3). Suppose it were not true.

Then there would exist a code achieving a rate R such that

R >
∑

e∈EA\E′
i\E′

j

ce. (7)

For some subset of edges F , let XF be the values on those

edges under this code assuming all nodes are honest. We will

consider two possibilities, one when node i is the traitor and

it alters the values on E′
i, and one when node j is the traitor

and it alters the values on E′
j . In either case, XEA\Ei\Ej

is a direct function of the message and independent of the

traitor’s actions, because there is no path through an edge

E′
i or E′

j followed by an edge in EA \ Ei \ Ej . Because of

(7), there are two messages wa and wb for which the values

on XEA\E′
i\E′

j
are the same.

Suppose that there is no path through an edge in E′
i

followed by node j or through an edge in E′
j followed by

node i. Hence, if one of i or j is the traitor and it changes the

values on E′
i or E′

j , the output of the other node is unaffected.

One possibility is that wa is the message, node i is the traitor,

and it sends XE′
i
(wb) along E′

i. Another possibility is that

wb is the message, node j is the traitor, and it sends XE′
j
(wa)

along E′
j . Because XEA\E′

i\E′
j
(wa) = XEA\E′

i\E′
j
(wb), in

both of these possibilities, exactly the same values are on all

edges in EA. Therefore, the decoder must make an error on

either wa or wb.

Now consider the case that either there is a path through

E′
i followed by j or a path through E′

j followed by i. Both

594

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:54:28 EST from IEEE Xplore. Restrictions apply.

these cannot be true simultaneously, because we assume the

graph is acyclic. Assume without loss of generality that it

is the former. It must be that E′
j = Ej , because if there

were a path through an edge in Ej followed by an edge

in EA \ Ei \ Ej , this would mean there would be a path

through E′
i followed by EA \Ei \Ej , which contradicts the

definition of E′
i. Again we consider two possibilities. If wa

is the message and i is the traitor, it may place XE′
i
(wb) on

E′
i. Node j is honest and it may be influenced by this change,

so we denote the value on Ej as XEj
(wa, XE′

i
(wb)). The

second possibility is that wb is the message, node j is the

traitor, and it places XEj
(wa, XE′

i
(wb)) on Ej . Recall that

there is no path from Ej to i, so this has no influence on

any edges coming out of node i. Therefore, in both these

possibilities, the same values are on EA, so there is an error.

This proves (3).

Now we prove (4). Suppose node i is the traitor and it

fixes the value of XEi
. Then XEA\Ei

, even if it depends on

XEi
in general, is a direct function of the message. If (4)

does not hold, then there are two messages which produce

the same value of XEA\Ei
, meaning the same value on all

of EA, which causes an error.

IV. THE COCKROACH NETWORK

Consider again the Cockroach Network of Figure 1. We

wish to determine the capacity of this network when there is

at most one traitor node. It is easy to see by Theorem 1 that

the capacity is no more than 2. In Section IV-A, we show

that the linear capacity is 4/3. In Section IV-B we propose a

linear-plus code that achieves rate 2. Therefore the capacity

is 2, and achieving capacity is impossible with a linear code.

A. Linear Capacity

A rate of 4/3 can be achieved using just routing at internal

nodes. Figure 2 shows a scheme that achieves this. Each link

is used at most three times, and the message is split into four

parts, denoted a, b, c, d. Observe that each of the four parts

is routed through three node-independent paths. Since there

is at most one traitor, at most one of the three copies of each

part received at the destination will be corrupted. Hence, if

the destination takes the majority vote of its three copies of

each part, it is guaranteed to recover the complete message

exactly.

We now show that no rates higher than 4/3 can be

achieved with linear codes. Consider any linear code. For

any link (i, j), let Xi,j be the value placed on this link. For

every node i, let Xi be the set of messages on all links out

of node i, and Yi be the set of messages on all links into

node i. Let GXi→Yj
be the linear transformation from Xi to

Yj , assuming all nodes behave honestly. Observe that

YD = GXS→YD
XS(w) +

∑

i

GXi→YD
ei (8)

where ei represents the difference between what a traitor

places on its outgoing links and what it would have placed

on those links if it were honest. Only one node is a traitor,

so at most one of the ei is nonzero. Note also that the output

S
D

1

2

3

4

5

a, b, c

d

a, b

c,d

a

a, b, d

a, c, d

b, c
, d

Fig. 2. A code achieving rate 4/3 for the Cockroach Network using just
routing.

values of the source XS is a function of the message w. We

claim that for any achievable rate R,

R ≤
1

n

[

rank(GXS→YD
) − max

i,j
rank(GXiXj→YD

)

]

(9)

where n is the block length used by this code. To show this,

first note that for any pair of nodes i, j there exist K, H1, H2

such that

GXS→YD
= K + GXi→YD

H1 + GXj→YD
H2 (10)

and where

rank(K) = rank(GXS→YD
) − rank(GXiXj→YD

). (11)

That is, the first term on the right hand side of (10) represents

the part of the transformation from XS to YD that cannot be

influenced by Xi or Xj . Consider the case that rank(K) <
R. Then there must be two messages w1, w2 such that

KXS(w1) = KXS(w2). If the message is w1, node i may

be the traitor and set

ei = H1(XS(w2) − XS(w1)). (12)

Alternatively, if the message is w2, node j may be the traitor

and set

ej = H2(XS(w1) − XS(w2)). (13)

In either case, the value received at the destination is

YD = KXS(w1) + GXi→YD
H1XS(w2)

+ GXj→YD
H2XS(w1).

Therefore, these two cases are indistinguishable to the des-

tination, so it must make an error for at least one of them.

This proves (9).

Now we return to the specific case of the Cockroach

Network. Observe that the X4,D is a linear combination of

X1,4 and X2,4. Let k1 be the number of dimensions of X4,D

that depend only on X1,4 and are independent of X2,4. Let

k2 be the number of dimensions of X4,D that depend only on

X2,4, and let k3 be the number of dimensions that depend on

both X1,4 and X2,4. Certainly k1+k2+k3 ≤ n. Similarly, let

595

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:54:28 EST from IEEE Xplore. Restrictions apply.

S
D

1

2

3

4

5

x

y

y

x + y

x +
y

x + 2y

y

x +
y

(=, 6=)

(=
, 6=

)

Fig. 3. A nonlinear code for the Cockroach Network achieving the capacity
of 2.

l1, l2, l3 be the number of dimensions of X5,D that depend

only on X2,5, that depend only on X3,5, and that depend on

both respectively. Finally, let m1 and m2 be the number of

dimensions of X1,D and X3,D respectively.

We may write the following:

rank(GXS→Y4) − rank(GX2,X3→Y4) ≤ m1 + k1,

rank(GXS→Y4) − rank(GX1,X3→Y4) ≤ k3 + l1,

rank(GXS→Y4) − rank(GX1,X2→Y4) ≤ l3 + m2.

Therefore, using (9), any achievable rate R is bounded by

R ≤
1

n
min{m1 + k1, k3 + l1, l3 + m2} (14)

subject to

k1 + k2 + k3 ≤ n, (15)

l1 + l2 + l3 ≤ n, (16)

m1 ≤ n, (17)

m2 ≤ n. (18)

It is not hard to show that this implies R ≤ 4/3.

B. Capacity-Achieving Linear-Plus Code

We now introduce a linear-plus code to achieve the ca-

pacity of 2. We work in the finite field of p elements. Let

the message w be a 2k-length vector split into two k-length

vectors x and y. We will use a block length large enough to

place one of 2pk values on each link. In particular, enough

to place on a link some linear combination of x and y plus

one additional bit. For large enough k, this extra bit becomes

insignificant, so we still achieve a rate of 2.

The scheme is shown in Figure 3. Node 4 receives the

vector y from both 1 and 2. It forwards one of these copies

to D (it does not matter which). In addition, it forwards one

additional bit comprised of one of the special symbols =
or 6=. If the two received values of y agree, it forwards =,

otherwise it sends 6=. The link (4, D) can accommodate this,

since it may have up to 2pk messages placed on it. Node 5
does the same with its two copies of the vector x + y.

The destination’s decoding strategy depends on which of

the two messages sent from nodes 4 and 5 are = or 6=, as

follows:

• If the message from node 4 is 6= but the message

from 5 is =, then the traitor must be either node 1,

2, or 4. In any case, the vector x + 2y received from

node 3 is certainly trustworthy. However, x + y is

trustworthy as well, because even if node 2 is the traitor,

its transmission must have matched whatever was sent

by node 3, because if not node 5 would have transmitted

6=. Since it did not, we can trust both x+y and x+2y,

from which the destination can decode the message

w = (x, y).
• If the message from 5 is 6= but the message from 4 is =,

then we are in the symmetric situation and can reliably

decode w from x and y.

• If both the messages from 4 and 5 are 6=, then we know

the traitor is node 2, in which case we can trust x and

x + 2y, and hence decode w.

• If both messages are =, then the destination cannot

eliminate any node as a possible traitor. However, at

most one of x, y, x+ y, x+2y can have been corrupted

by the traitor, because no node controls more than one

of the vectors received at the destination. For instance,

if node 1 is the traitor, it may choose whatever it wants

for x, and the destination would never know. However,

node 1 cannot impact the value of y without inducing

a 6=, because its transmission to node 4 is verified

against that from node 2. Similarly, node 3 controls

x + 2y but not x + y. Nodes 4 and 5 control only

y and x + y respectively. Node 2 controls nothing,

because both y and x + y are checked against other

transmissions. Therefore, if the destination can find

three of x, y, x+y, x+2y that all agree on the message

w, then this message must be the truth because only one

of them could be corrupted, and w can be decoded from

the other two. Conversely, there must be a group of three

of x, y, x + y, x + 2y that agree, because at most one

has been corrupted. Hence, the destination can always

decode w.

V. THE CATERPILLAR NETWORK

The Caterpillar Network is shown in Figure 4. We consider

a slightly different version of the node-based Byzantine

attack on this network: at most one node may be a traitor,

but only nodes 1–4. Theorem 1 gives an upper bound of 2

for this network. We omit the proof, but it can be shown

that no linear-plus code can achieve a higher rate than 1 5
6

for this network. In Section V-A, we illustrate the class of

bounded-linear codes with a code that achieves the capacity

of 2. In Section V-B, we prove Lemma 1, which is stated in

Section V-A and provides a key property of the distributions

we use in bounded-linear codes.

A. The Bounded-Linear Code

Fix an integer k and let the random variables X, Y, Z, W ∈
{−k, . . . , k} have the joint distribution p(xyzw) uniform

596

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:54:28 EST from IEEE Xplore. Restrictions apply.

4

6

1

2

3

8

7

5

9

10

S D

Fig. 4. The Caterpillar Network. All edges have unit capacity. One node
may be a traitor, but only nodes 1–4.

over all X, Y, Z, W satisfying the two linear constraints

X + Y + Z = 0, (19)

X + 2Y + 3W = 0. (20)

The following lemma gives a key property of distributions

of this type.

Lemma 1: Let X1, . . . , Xm ∈ {−k, . . . , k} have distribu-

tion p(x1 . . . xm) such that

m
∑

i=1

ciXi = 0

with probability 1 for integers ci. For some other distribution

q(x1 · · ·xm), if

q(x1xi) = p(x1xi) for i = 2, . . . , m, (21)

q(x2 · · ·xm) = p(x2 · · ·xm) (22)

then

q(x1 · · ·xm) = p(x1 · · ·xm).
For p(xyzw), the relevant property from Lemma 1 that we

will use to prove correctness of our code for the Caterpillar

Network will be that for some q(xyz),

if q(xy) = p(xy), q(xz) = p(xz), q(yz) = p(yz),

thenq(xyz) = p(xyz). (23)

Observe that given any two of X, Y, Z, W , the other two

are fixed. The values of the pair (x, y) for which p(x, y) >
0 are constrained by the fact that Y and Z must be in

{−k, . . . , k}. In particular, the set of (x, y) with positive

probability is given by

{(x, y) : |x + 2y| ≤ k}. (24)

The size of this set is O(k2). Therefore, since p is uniform

over all allowable values,

H(XY ZW) = H(XY) = log(O(k2)). (25)

Let n be a multiple of the denominator used in p. Let

T n(XY ZW) ∈ {−k, . . . , k}4 be the set of sequences

4

6

1

2

3

8

7

5

9

10

S D

Xn

Y n

Zn

W n

Fig. 5. A bounded-linear code for the Caterpillar Network achieve the
capacity of 2.

(xn, yn, zn, wn) with joint type exactly equal to p. Because

of our choice of n, this set is nonempty, and

|T n(XY ZW)| ≥
1

(n + 1)(2k+1)4
2nH(XY ZW). (26)

We will design a code in which the number of messages

is |T n(XY ZW)|, and each edge in the network carries

one n-length sequence of one of the variables X, Y, Z, W .

Therefore the achieved rate will be given by

R(k,n) =
log |T n(XY ZW)|

log(2k + 1)n
(27)

≥
nH(XY ZW) − (2k + 1)4 log(n + 1)

n log(2k + 1)
(28)

=
log(O(k2)) − (2k + 1)4 log(n+1)

n

log(2k + 1)
. (29)

Observe that

lim
k→∞

lim
n→∞

R(k,n) = 2. (30)

Therefore, our code will achieve rate 2.

The code we propose for the Caterpillar Network is shown

in Figure 5. Each message is associated with an element

of T n(XY ZW). Given the message, the source transmits

the corresponding sequences to nodes 1–4, which, if honest,

forward those sequences to nodes 5–8. Nodes 5–8 forward

their received sequences to nodes 9 and 10. Let q(xyz) be

the observed joint type of (Xn, Y n, Zn) at nodes 9 and 10.

Observe that q may not equal p, because one of nodes 1–

3 may be the traitor. Furthermore, since nodes 5–8 cannot

be traitors, nodes 9 and 10 observe the same value of q. If

q(xyz) = p(xyz), then node 9 forwards Xn to D, and node

10 forwards Y n to D. If q(xyz) 6= p(xyz), then by (23),

one of p(xy) 6= q(xy), p(xz) 6= q(xz), or p(yz) 6= q(yz)
must hold. Node 9 forwards to D whichever of Xn, Y n, Zn

was not involved in the mismatched joint type, and node 10

forwards Wn to D. In either case, the destination receives

two of Xn, Y n, Zn, Wn, from which it can reconstruct the

identity of the message.

We now show that nodes 9 and 10 never forward an

incorrect sequence to D. Only one of Xn, Y n, Zn can be

597

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:54:28 EST from IEEE Xplore. Restrictions apply.

corrupted by the traitor, and each of X, Y, Z is a determin-

istic function of the other two, so if q(xyz) = p(xyz), then

the values of Xn and Y n observed by nodes 9 and 10 must

be the true ones. On the other hand, if one of the three

pairwise marginal types of q(xyz) do not match, then the

traitor must be one of the two nodes corresponding to the

pair of variables. Therefore the non-disagreeing variable is

trustworthy, as is Wn.

B. Proof of Lemma 1

We will use the notation xj
i to denote the vector

[xi, xi+1, . . . , xj]
T , and xm to denote xm

1 . Also we refer

to the vector [c1 . . . , cm] by c.

Observe that if cxm 6= 0, then

q(xm) ≤ q(xm
2) (31)

= p(xm
2) (32)

=
∑

x′
1

p(x′
1x

m
2) (33)

= p(xm) (34)

where (32) holds by (22) and (34) holds because for all x′
1 6=

x1, the equality condition does not hold, so p(x′
1x

m
2) = 0.

Therefore, if we let

v(xm) =

{

q(xm) if cxm 6= 0

p(xm) − q(xm) if cxm = 0

then v(xm) ≥ 0, and it will be enough to show that

v(xm) = 0 (35)

for all xm.

Fix x1, xi for some i ∈ {2, . . . , m}. We may write

q(x1xi) =
∑

x
i−1
2 xm

i+1

q(xm) (36)

=
∑

x
i−1
2 xm

i+1:cxm 6=0

q(xm) +
∑

x
i−1
2 xm

i+1:cxm=0

q(xm).

(37)

Furthermore,

p(x1xi) =
∑

x
i−1
2 xm

i+1:cxm=0

p(xm). (38)

Therefore by (21)
∑

x
i−1
2 xm

i+1:cxm 6=0

v(xm) =
∑

x
i−1
2 xm

i+1:cxm=0

v(xm). (39)

By a similar argument using (22), if cxm = 0, then

v(xm) =
∑

x′
1 6=x1

v(x′
1x

m
2). (40)

We proceed to prove (35) by induction on x1. Suppose

that v(x′
1x

m
2) = 0 for all x′

1 > x1 and all xm
2 . If we

adopt the convention that v(x′
1x

m
2) = 0 if x′

1 > k, then this

certainly holds for x1 = k, so it will be enough to show that

v(x1x
m
2) = 0 for all xm

2 . Assume without loss of generality

1

2

3

4

5

6

7

8

9

S D

Fig. 6. The Super Cockroach Network. All edges have capacity 1.

that c1 > 0. If xm
2 is such that c[x1, x

m
2] < 0, then the value

of x′
1 for which c[x′

1, x
m
2] = 0 satisfies x′

1 > x1. Hence

0 = v(x′
1x

m
2) =

∑

x′′
1 6=x1

v(x′′
1xm

2) (41)

where we have used (40). Therefore, v(x1x
m
2) = 0 if

c[x1 xm
2] < 0, so (39) becomes

∑

x
i−1
2 xm

i+1:cxm>0

v(xm) =
∑

x
i−1
2 xm

i+1:cxm=0

v(xm). (42)

Since this holds for all xi, we may write

∑

xm
2 :cxm>0

(cixi + c1

m−1x1)v(xm)

=
∑

x
i−1
2 xm

i+1:cxm=0

(cixi + c1

m−1x1)v(xm). (43)

Summing (43) over 2 ≤ i ≤ m gives

∑

xm:cxm>0

cxmv(xm) =
∑

xm:cxm=0

cxmv(xm) = 0. (44)

Since v(xm) ≥ 0 and cxm > 0 for all terms on the left

hand side of (44), v(x1x
m
2) = 0 if c[x1, x

m
2] < 0. Therefore

the left hand side of (39) for any i is 0, so v(x1x
m
2) = 0 if

c[x1, x
m
2] = 0. This completes the argument that v(x1x

m
2) =

0 for all xm
2 .

VI. THE SUPER COCKROACH NETWORK

Figure 6 shows the Super Cockroach Network. It has the

same basic structure as the Cockroach Network, but with one

additional stage. It is easy to see that the cut-set bound is

4. We omit the proof, but a bounded-linear code exists that

achieves rate 4. It makes use of many of the same ideas as in

Section V, allowing internal nodes to meaningfully compare

pairs of variables even when they are nearly statistically

independent.

598

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:54:28 EST from IEEE Xplore. Restrictions apply.

1

2

3

4

S D

Fig. 7. The Beetle Network. All edges have capacity 1 except the dashed
edge, which has zero capacity.

VII. THE BEETLE NETWORK

The Beetle Network, shown in Figure 7, under the pres-

ence of a single traitor node, has two interesting properties.

First, the value of the cut-set bound given in (4), which is 1,

does not match the value of the expression in (6), which is

0. Second, it has a zero capacity edge, the presence of which

has a positive effect on the capacity. That is, the capacity of

this network, as we will demonstrate, is 1, but if the zero-

capacity edge (4, D) were removed, the capacity would be

0, as can easily be verified by Theorem 1. As we will show,

the explanation for this is similar to the reason linear-plus

codes can outperform linear codes: that a small addition to a

code, even if it takes up an arbitrarily small amount of link

capacity, can strictly increase the achieved rate.

We now present a simple linear-plus code for the Beetle

Network which achieves rate 1. Each unit-capacity edge

carries a copy of the message w. That is, the source sends

w along all three of its output links, and nodes 1, 2, and 3

each receive one copy of w and forward it along all of their

output links. Node 4 receives a copy of w from the source

and and one from node 3. It compares them and sends to the

destination one of the symbols = or 6= depending on whether

the two copies agreed or not. Because w may be a vector

of arbitrary length, sending this single bit along edge (4, D)
takes zero rate, so we do not exceed the edge capacity.

We now give the decoding procedure. Let w1, w2, and w3

be the values of w received at the destination from nodes 1,

2, and 3 respectively. If either w2 6= w3 or the destination

receives 6= from node 4, then certainly the traitor must by one

of nodes 2, 3, or 4, so w1 is trustworthy and the destination

decodes from it. Now consider the case that w2 = w3 and the

destination receives = from node 4. The destination decodes

from w2 or w3. Certainly if the traitor is either node 1 or 4,

then w2 = w3 = w. If the traitor is node 3, then w2 = w, so

we still decode correctly. If the traitor is node 2, then it must

send the same value of w to both the destination and node 3,

because node 3 simply forwards its copy to the destination,

and we know w2 = w3. Furthermore, this value of w must be

the true one, because otherwise node 4 would observe that

the copy sent along edge (3, 4) is different from that sent

from the source, so it would transmit 6= to the destination.

Since it did not, node 2 cannot have altered any of its output

values. Therefore the destination always decodes correctly.

VIII. CONCLUSION

With the four examples we studied, we saw that general-

izing the types of Byzantine attacks on network coding can

substantially change the nature of the problem. As opposed

to edge-based Byzantine attacks, node-based attacks require

the use of nonlinear codes, and sometimes even nonlinear

codes that hardly resemble standard linear codes, such as

bounded-linear codes.

We looked primarily at the case that one node in the

network is a traitor, but this can be generalized further.

Certainly one could study the problem with t node traitors,

or with t node traitors taken from only a subset of nodes

in the network, such as in the Caterpillar Network example.

Most generally, one could specify a list of sets of edges,

from which any single set may be selected by the adversary

to control. Whether this very general problem is still harder

than the node-based problem is unknown.

In addition, in this paper we considered only one very

specific adversary model, that being the omniscient, or worst

case, adversary. In [6], two weaker traitor models were

considered for the edge problem, both resulting in higher

achievable rates. It would be interesting to see whether a

similar nonlinearity is required with those traitor models for

general Byzantine attacks as well.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inform. Theory, vol. 46, pp. 1204–1216, 2000.

[2] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, pp. 382–401, 1982.

[3] D. Dolev, “The Byzantine generals strike again,” Journal of Algo-

rithms, vol. 3, no. 1, pp. 14–30, 1982.
[4] N. Cai and R. W. Yeung, “Network error correction, part I: Basic

concepts and upper bounds,” Comm. in Inf. and Syst., vol. 6, no. 1,
pp 19–36, 2006.

[5] N. Cai and R. W. Yeung, “Network error correction, part II: Lower
bounds,” Comm. in Inf. and Syst., vol. 6, no. 1, pp 37–54, 2006.

[6] S. Jaggi, et al, “Resilient Network Coding in the Presence of Byzantine
Adversaries,” in Proc. INFOCOM, pp. 616–624, 2007.

[7] G. Liang and N. H. Vaidya, “When WatchDog Meets Coding,”
Technical Report, May 2009.

599

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:54:28 EST from IEEE Xplore. Restrictions apply.

