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Abstract—In this paper a communication system operating
over a Gilbert-Elliot channel is studied. The goal of the trans-
mitter is to maximize the number of successfully transmitted
bits. This is achieved by choosing among three possible actions:
(i) betting aggressively by using a weak code that allows the
transmission of a high number of bits but provides no protection
against a bad channel, ii) betting conservatively by using a strong
code that perfectly protects the transmitted bits against a bad
channel but does not allow a high number of data bits, iii) betting
opportunistically by sensing the channel for a fixed duration and
then deciding which code to use. The problem is formulated and
solved using the theory of Markov decision processes (MDPs).
It is shown that the optimal strategy has a simple threshold
structure. Closed form expressions and simplified procedures for
the computation of the threshold policies in terms of the system
parameters are provided.

I. INTRODUCTION

The quality of the radio channel is often random and
evolves in time, ranging from good to bad depending on
propagation conditions. To cope with this changing behavior
and maintain a good quality of service, link adaptation may
be performed. Link adaptation is a technique that leads to a
better channel utilization by matching the systems parameters
of the transmitted signal (data/coding rate, constellation size
and transmit power...) to the changing channel conditions [1].

Time-varying fading channels can be well modeled by a
finite state Markov chain [2] (and the references therein). A
particularly convenient abstraction is the two-state Markovian
model known as the Gilbert-Elliot channel [3]. This model
assumes that the channel can be in either a good state or a
bad state. For example, the channel is in a bad state whenever
the SNR drops below a certain threshold and in a good state
otherwise.

In this paper we consider a time-slotted communication
system operating over a Gilbert-Elliot channel. The transmitter
has at its disposal a strong error correcting code and a weak
one. The strong code offers perfect protection against the
channel errors even if the channel is in a bad state. It however
provides the extra protection at the expense of a reduced
data rate. The weak code, on the other hand, offers perfect
protection against the channel errors when the channel is in
the good state but fails otherwise. At the beginning of each
time slot, the transmitter can choose among three possible
actions: i) transmitting at a low data rate using the strong error
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correcting code, ii) transmitting at a high data rate using the
weak error correcting code, and iii) sensing the channel for a
fraction of the slot and then use the appropriate code. The extra
knowledge provided by this last action comes at a price, which
is the time spent probing the channel. We take as objective the
maximization of the total expected discounted number of bits
transmitted over an infinite time span. We formulate and solve
the problem using Markov decision processes (MDP).

MDP tools have been previously applied to solve commu-
nication problems over time-varying channels. Most related to
this paper are [4] and [5]. In [4], the authors employed results
from optimal search theory and provided threshold strategies
that minimize the transmission energy and delay associated
with transmitting a file over a Gilbert-Elliot channel. Similarly
in [5], taking as objective the maximization of the throughput
and the minimization of the energy consumption, the authors
established the optimality of the threshold policies. The effect
of the sensing action on the throughput of a communication
system was not considered in these papers.

A closely related area to the problem studied here is the
so-called opportunistic spectrum access (refer to [6] for an
overview) where sensing is an integral part of the access
scheme. A generic setup is as follows: a secondary user tries
to opportunistically access a channel which, depending on the
state of the primary user, can be either busy or idle. The
problem considered here is different in that the transmitter
is allowed to transmit without first probing the channel. In
addition, we model explicitly the cost of sensing. Thus, the
sensing action must be judiciously used in order to maximize
the total number of transmitted bits.

The technique used in this paper has its origin in [7],
where Ross considered the problem of quality control of a
production process modeled by a special two-state Markov
chain. Specialized for wireless transmissions, our model is
different in that the good and bad states of the channel are
independent from the action of the user. However, in Ross’s
paper, the bad state of the production process can only change
back to the good state under the revise action. This fact,
renders the immediate application of Ross’s results nontrivial.
The problem at hand therefore deserves a proper theoretical
treatment.

The rest of the paper is organized as follows, in Section II
we formulate the problem as a Markov decision process. In
Section III, we use methods developed in the context of quality
control and reliability theory [7]-[9] to establish the optimality



of threshold policies. In Section IV, we provide closed form
expressions and simplified procedures for the computation of
the thresholds in terms of the system parameters. In Section V,
we also provide closed form expressions of the optimal total
expected discounted number of bits transmitted. In Section
VI, we provide numerical examples to illustrate the various
theoretical results that will be presented in the paper. Finally,
Section VII concludes the paper.

II. PROBLEM FORMULATION

A. Channel model and assumptions

We consider a communication system operating over a
slotted Gilbert-Elliot channel which is a one dimensional
Markov chain Gn with two states: a good state denoted
by 1 and a bad state denoted by 0. The channel transition
probabilities are given by Pr[Gn = 1|Gn−1 = 1] = λ1 and
Pr[Gn = 1|Gn−1 = 0] = λ0. We assume that λ0 ≤ λ1, the so-
called positive correlation assumption, which can be restrictive
in practice though it simplifies the analysis considerably
(similar assumption have also been used in [4], [5]). From
now on we assume without loss of generality that the slot
duration is a unity, so that we will interchangeably use data
rate and number of bits.

B. Communication protocol

At the beginning of each slot, the transmitter can choose
among three possible actions: betting conservatively, betting
aggressively, and betting opportunistically.

Betting conservatively: For this action (denoted by Tl),
the transmitter decides to “play safe” and transmits a low
number R1 of data bits. This corresponds to the situation when
the transmitter believes that the channel is in a bad state. Hence
the transmitter uses a strong error correcting code with a high
redundancy thereby leading to the transmission of a smaller
number of data bits. If this action is chosen, we assume that
the transmission is successful regardless of the channel quality.
Hence, in this situation, the receiver is not required to reply
back with an ACK, since the transmitter is assured that the
transmission was successful.

Betting aggressively: For this action (denoted by Th), the
transmitter decides to “gamble” and transmits a high number
R2 (> R1) of data bits. This corresponds to the situation
when the transmitter believes that the channel is in a good
state. If this action is taken we assume that the transmission is
successful only if the channel is in the good state. At the end of
the slot, the transmitter will receive an ACK if the channel was
in the good state, and will receive a NAK otherwise. Hence,
if this action is chosen, the transmitter will learn the channel
state during the elapsed slot.

Betting opportunistically: For this action (denoted by S),
the transmitter decides to sense the channel at the beginning
of the slot. We assume that sensing is perfect, i.e., sensing
reveals the true state of the channel. We assume also that
sensing lasts a fraction τ(< 1) of the slot. Sensing can be
carried out by making the transmitter send a control/probing
packet. Then, the receiver responds with a packet indicating

the channel state. Depending on the sensing outcome, the
transmitter will transmit (1−τ)R1 data bits if the channel was
found to be in the bad state or (1−τ)R2 data bits if otherwise.
This extra knowledge comes at a price, which is the time
spent probing the channel. However, the sensing action offers
the advantage of updating the belief (the posterior estimate)
about the channel state. This updated belief can be exploited
in the future slots in order to increase the throughput. This
fact captures a fundamental tradeoff known as the exploration-
exploitation dilemma. Note finally that in this situation the
receiver is not required to reply back with an ACK, since the
transmitter is assured that the transmission was successful.

C. MDP formulation

At the beginning of a time slot, the transmitter is confronted
with a choice among three actions. It must judiciously select
actions so as to maximize a ceratin reward to be defined
shortly. Because the state of the channel is not directly
observable, the problem in hand is a Partially Observable
Markov Decision Process (POMDP). In [10], it is shown that
a sufficient statistic for determining the optimal policy is the
conditional probability that the channel is in the good state
at the beginning of the current slot given the past history
(henceforth called belief) denoted by Xt = Pr[Gt = 1|Ht],
where Ht is all the history of actions and observations at
the current slot t. Hence by using this belief as the decision
variable, the POMDP problem is converted into an MDP with
the uncountable state space [0, 1].

Define a policy π as a rule that dictates the action to choose,
i.e., a map from the belief at a particular time to an action
in the action space. Let V π

β (p) be the expected discounted
reward with initial belief X0 = Pr[G0 = 1|H0] = p,
where the superscript π denotes the policy being followed and
the subscript β (∈ [0, 1)) the discount factor. The expected
discounted cost has the following expression

V π
β (p) = Eπ

[ ∞∑
t=0

βtR(Xt, At)|X0 = p

]
, (1)

where t is the time slot index, At is the action chosen at time
t, At ∈ {Tl, S, Th}. The term R(Xt, At) denotes the reward
acquired when the belief is Xt and the action At is chosen:

R(Xt, At) =





R1 if At = Tl

(1− τ)[(1−Xt)R1 + XtR2] if At = S
XtR2 if At = Th

.

These equations can be explained as follows: when betting
conservatively, R1 bits are transmitted regardless of the chan-
nel conditions and the transmission is always successful. When
betting aggressively, R2 bits are transmitted if the channel
happens to be in the good state whereas 0 bits are transmitted
if the channel was in the bad state. Hence, since the belief
that the channel is in the good state is Xt, the expected return
when the risky action is taken is XtR2. Now, when the sensing
action is taken (1−τ)R1 bits will be transmitted if the sensing
revealed that the channel was in a bad state whereas (1−τ)R2



bits will be transmitted otherwise. Hence the expected return
when the sensing action is taken is (1−τ)[(1−Xt)R1+XtR2].

Define now the value function Vβ(p) as

Vβ(p) = max
π

V π
β (p) for all p ∈ [0, 1]. (2)

A policy is said to be stationary if it is a function mapping the
state space [0, 1] into the action space {Tl, S, Th}. It is well
known [11, Th.6.3] that there exists a stationary policy π∗

such that Vβ(p) = V π∗
β (p). The value function Vβ(p) satisfies

the Bellman equation

Vβ(p) = max
A∈{Tl,S,Th}

{Vβ,A(p)}, (3)

where Vβ,A(p) is the value acquired by taking action A when
the initial belief is p and is given by

Vβ,A(p) = R(p,A) + βEY [Vβ(Y )|X0 = p,A0 = A], (4)

where Y denotes the next belief when the action A is chosen
and the initial belief is p. The term Vβ,A(p) will be explained
next for the three possible actions.

a) Betting conservatively: If this action is taken, R1

bits will be successfully transmitted regardless of the channel
quality. The transmitter will not learn what was the channel
quality. Hence, if the transmitter had a belief p during the
elapsed time slot, its belief at the beginning of the next time
slot is given by

T (p) = λ0(1− p) + λ1p = αp + λ0, (5)

with α = λ1 − λ0. Consequently Vβ,Tl
(p) is given by

Vβ,Tl
(p) = R1 + βVβ(T (p)). (6)

b) Betting opportunistically: If this action is taken and
the current belief is p, the channel quality during the current
slot is then revealed to the transmitter. With probability p
the channel will be in the good state and hence the belief
at the beginning of the next slot will be λ1. Likewise, with
probability 1 − p the channel will turn out to be in the bad
state and hence the updated belief for the next slot is λ0.
Consequently Vβ,S(p) is given by

Vβ,S(p)=(1−τ)[pR2+(1−p)R1]+β[pVβ(λ1)+(1−p)Vβ(λ0)].
(7)

c) Betting aggressively: If this action is taken and the
current belief is p, then with probability p, the transmission
will be successful and the transmitter will receive an ACK
from the receiver. The belief at the beginning of the next slot
will be then λ1. Similarly, with probability 1− p, the channel
will turn out to be in the bad state and the transmission will
result in a failure accompanied by a NAK from the receiver.
Hence the transmitter will update his belief for the next slot
to λ0. Consequently Vβ,Th

(p) is given by

Vβ,Th
(p) = pR2 + β[pVβ(λ1) + (1− p)Vβ(λ0)]. (8)

Finally the Bellman equation for our communication problem
reads as follows

Vβ(p) = max{Vβ,Tl
(p), Vβ,S(p), Vβ,Th

(p)}. (9)

III. STRUCTURE OF THE OPTIMAL POLICY

In the following, we will prove the optimality of the
threshold policies. But before we need to prove some results
about the value function.

Theorem 1. Vβ(p) is convex and nondecreasing.

Proof: See [12].
Using the convexity of Vβ(p), we are now ready to characterize
the structure of the optimal policy.

Theorem 2. Let p ∈ [0, 1], there are numbers 0 ≤ ρ1 ≤ ρ2 ≤
ρ3 ≤ 1 such that

π∗(p) =





Tl if 0 ≤ p < ρ1 or ρ2 < p < ρ3

S if ρ1 ≤ p ≤ ρ2

Th if ρ3 ≤ p ≤ 1
.

Proof: We introduce the following sets

ΦK = {p ∈ [0, 1], Vβ(p) = Vβ,K(p)}, K ∈ {Tl, Th, S}.
(10)

In other words, ΦK is the set of beliefs for which it is optimal
to take the action K. The proof uses the convexity of Vβ(p) in
order to show that ΦTh

and ΦS are convex sets. Since convex
subsets of the real line are intervals and 1 ∈ ΦTh

, then there
exists ρ3 ∈ (0, 1] such that ΦTh

= [ρ3, 1]. Similarly, there
exits ρ1, ρ2 ∈ [0, 1] such that ΦS = [ρ1, ρ2]. Whence we have
that ΦTl

= [0, ρ1) ∪ (ρ2, ρ3). For further details, see [12].
The established structure is appealing since the belief space

is partitioned into at most 4 regions. Intuitively, one would
think that there should exist only three regions, i.e., if the
belief is small, one should paly safe; if the belief is high, one
should gamble, and somewhere in between sensing is optimal.
Therefore it may seem possible that (ρ2, ρ3) = ∅. However,
we show in Section VI that this is not true in general, for some
cases, a three-threshold policy is optimal.

IV. CLOSED FORM CHARACTERIZATION OF THE POLICIES

Theorem 2. proves that there exists three types of threshold
policies; a one-threshold policy (when ρ1 = ρ2 = ρ3), a
two-thresholds policy (when ρ1 < ρ2 = ρ3), and a three-
thresholds policy (when ρ1 < ρ2 < ρ3). Since we do not have
sufficient and necessary conditions to tell which policy will be
optimal, one will need to compute the three possible policies
and select the one that achieves the highest value. Fortunately,
this computation is inexpensive because we will provide closed
form expressions and simplified procedures to compute the
policies. Also, depending on the system parameters, some
policies may be infeasible. For example, in a 2-thresholds
policy, we would find ρ1 > ρ2. In such situations, the task is
even more simplified since we can further restrict our search
for the optimal policy.

In the following we will analyze each policy individually,
but before delving into the computation of the thresholds, we
need to introduce the following operators:

Tn(p) = T (Tn−1(p)) = λF (1− αn) + αnp. (11)



T−n(p) = T−1(T−(n−1)(p)) =
p

αn
− 1− αn

1− α

λ0

αn
. (12)

We will denote also by λF = λ0
1−α the fixed point of T (·),

i.e., T (λF ) = λF c.f. (5).

A. One threshold policy

Assume that the optimal policy has one threshold 0 < ρ <
1. The procedure to calculate ρ starts by computing Vβ(λ0)
and Vβ(λ1) as shown in section A in the Appendix. The
threshold ρ is computed as in the following lemma.
Lemma 1. If the one threshold policy is optimal then the
threshold ρ is calculated as follows:
If1 R1

1−β ≥ Vβ,Th
(λF ), then

ρ =
R1

R2 + βVβ(λ1)− β R1
1−β

. (13)

Otherwise, we have

ρ=
(1− βλ1)R1 + βλ0R2 + β(β − 1)(1− βα)Vβ(λ0)

(1− βα)(R2 + β(β − 1)Vβ(λ0))
.

(14)
Proof: See [12].

B. Two thresholds policy

Assume that the optimal policy has two thresholds 0 <
ρ1 < ρ2 < 1. Note that since ρ2 is the solution of Vβ,S(ρ2) =
Vβ,Th

(ρ2), it is easy to establish that ρ2 = (1−τ)R1
(1−τ)R1+τR2

.
The procedure to compute ρ1 starts by computing Vβ(λ0) and
Vβ(λ1) as in section B in the Appendix. The threshold ρ1 is
computed as in the following lemma.
Lemma 2. If the two-thresholds policy is optimal then ρ1 is
computed as follows
1) If λF > ρ2 then two cases can be distinguished:
If2 Vβ,Tl

(T−1(ρ2)) < Vβ,S(T−1(ρ2)), ρ1 will be equal to (15)
given at the bottom of this page.
Else ρ1 will be equal to (16) given at the bottom of this page.

1Note that Vβ,Th
(λF ) is directly computable since we have calculated

Vβ(λ0) and Vβ(λ1) in the previous step.
2Note that Vβ,Tl

(T−1(ρ2)) = R1 +β([R2 +β(Vβ(λ1)−Vβ(λ0))]ρ2 +
βVβ(λ0)) is readily computable since we have already calculated Vβ(λ0)
and Vβ(λ1). The same remark holds for Vβ,S(T−1(ρ2)).

2) If R1
1−β < Vβ,S(λF ) and λF ≤ ρ2, ρ1 is given by (15).

3) Finally if R1
1−β ≥ Vβ,S(λF ) and λF ≤ ρ2, then

ρ1 =
τ(1− β)R1

(1− τ)(1− β)(R2 −R1) + β((1− β)Vβ(λ1)−R1)
.

(17)
Proof: See [12].

C. Three thresholds policy
Assume that the optimal policy has three thresholds 0 <

ρ1 < ρ2 < ρ3 < 1. Before detailing the structure of the
optimal policy, we introduce the following useful lemma.
Lemma 3. If the three-thresholds policy is optimal, then λF ∈
[ρ3, 1].

Proof: See [12].
We now turn to the computation of ρ1, ρ2 and ρ3. Since

ρ3 ≤ λF and ρ3 is the solution of R1 + βVβ(T (ρ3)) =
Vβ,Th

(ρ3), it follows that ρ3 is given by (14). The two other
thresholds ρ1 and ρ2 are computed as in the following lemma.
Lemma 4. If the three thresholds policy is optimal then let
J+1=min{k ≥ 1 : δ(k) < γ(k)ρ3}, where γ(k) is given by

γ(k) = [(1− τ)(R2 −R1) + β(Vβ(λ1)− Vβ(λ0))]
1
αk

− βk[R2 + β(Vβ(λ1)− Vβ(λ0))], (18)

and

δ(k)= R1
1− βk

1− β
+ β(βk − 1)Vβ(λ0)− (1− τ)R1 (19)

+
λ0(1− αk)
αk(1− α)

[(1− τ)(R2 −R1) + β(Vβ(λ1)−Vβ(λ0))].

We have then that ρ2 is equal to (20) given at the bottom of
this page.
If Vβ,Tl

(T−1(ρ2)) < Vβ,S(T−1(ρ2)) then ρ1 will be given by
(15). Else, let J ′+1=min{k ≥ J + 2 : γ(k)ρ3 < δ(k)}, and
ρ1 will be given by (20) with J replaced by J ′.

Proof: See [12].

V. COMPUTATION OF THE VALUE FUNCTION

Since Vβ,S(p) and Vβ,Th
(p) are linear functions of p,

once Vβ(λ0) and Vβ(λ1) are computed, Vβ(p) is completely
determined when p ∈ ΦS

⋃
ΦTh

. Vβ(p) needs however to be
determined for p ∈ ΦTl

.

ρ1 =
τR1 + β(1− τ)[R1 + λ0(R2 −R1)] + β2[Vβ(λ0) + λ0(Vβ(λ1)− Vβ(λ0))]− βVβ(λ0)

(1− βα)[(1− τ)(R2 −R1) + β(Vβ(λ1)− Vβ(λ0))]
(15)

ρ1 =
βλ0R2 + (1− βλ1)τR1 + β(β − 1)(1− βα)Vβ(λ0)

R2(1− λ1(β(α− τ)− τ)) + β(β − 1)(1− βα)Vβ(λ0)− (1− τ)(1− βλ1)R1
(16)

ρ2 =
R1( 1−βJ+1

1−β − (1− τ)) + βJ+1[PF (1− αJ+1)(R2 + β(Vβ(λ1)− Vβ(λ0))) + βVβ(λ0)]− βVβ(λ0)

(1− τ)(R2 −R1) + β(Vβ(λ1)− Vβ(λ0))− (αβ)J+1(R2 + β(Vβ(λ1)− Vβ(λ0)))
(20)



A. One threshold policy

The goal is to find Vβ(p) for p ≤ ρ. Here we can distinguish
two possibilities
If λF ≤ ρ, then Vβ(p) = R1

1−β for all p ≤ ρ (see lemma 5 in the
appendix). If λF > ρ, then let J+1=min{k∈N :T−k(ρ)<0}.
Let FJ+1 = [0, T−J(ρ)] and Fi = (T−i(ρ), T−(i−1)(ρ)] for
1 ≤ i ≤ J . Then for p ∈ Fi, we have T i(p) > ρ ≥ T (i−1)(p),
i.e.,

Vβ(p) = R1
1− βi

1− β
+ βiVβ,Th

(T i(p)). (21)

The optimal policy for this last case is illustrated in Fig. 1.

Fig. 1. Illustration of the one threshold policy for λF > ρ.

B. Two thresholds policy

The approach here is similar to the previous case, i.e.,
If λF ≤ ρ1, then Vβ(p) = R1

1−β for all p ≤ ρ1. If ρ1 <

λF ≤ ρ2, let J +1=min{k∈N :T−k(ρ1)< 0}. Let FJ+1 =
[0, T−J(ρ1)] and Fi = (T−i(ρ1), T−(i−1)(ρ1)] for 1≤ i≤J .
Then for p ∈ Fi, we have ρ2 > T i(p) > ρ1 ≥ T (i−1)(p), i.e.,

Vβ(p) = R1
1− βi

1− β
+ βiVβ,S(T i(p)). (22)

The optimal policy for this case is illustrated in Fig. 2.

Fig. 2. Illustration of the two thresholds policy for ρ1 < λF ≤ ρ2.

If λF > ρ2, two cases can be distinguished; If T (ρ1) ≤ ρ2

then the computation is similar to the situation where ρ1 <
λF ≤ ρ2 discussed above. If T (ρ1) > ρ2, let FJ+1 =
[0, T−J(ρ1)], for 2 ≤ i ≤ J let Fi = (T−i(ρ1), T−(i−1)(ρ1)]
and F1 = (T−1(ρ1), T−1(ρ2)]. Then for p ∈ Fi, i ≥ 1, Vβ(p)
will be given by (22). For p ∈ F0 = (T−1(ρ2), ρ1] we have

Vβ(p) = R1 + βVβ,Th
(T (p)). (23)

C. Three thresholds policy

The goal is to find Vβ(p) for p ∈ [0, ρ1] ∪ [ρ2, ρ3]. For
p ∈ [ρ2, ρ3], let J +1 = min{k ∈ N : T−k(ρ3) < ρ2}. Let
FJ+1 = [ρ2, T

−J(ρ3)) and Fi = [T−i(ρ3), T−(i−1)(ρ3)) for
1 ≤ i ≤ J . For p ∈ Fi, we have T i(p) ≥ ρ3, i.e., Vβ(p) is
given by (21).
For p ∈ [0, ρ1] we can distinguish two cases;
If T (ρ1) ≤ ρ2, Vβ(p) for p ∈ [0, ρ1] is computed using (22).
If T (ρ1) > ρ2, let H +1 = min{k ∈N : T−k(ρ1) < 0}. Then
we have two subcases: If T−(H+1)(ρ2) ≥ 0, then let ZH+1 =
[0, T−(H+1)(ρ2)), for 1 ≤ i ≤ H let Zi = [T−i(ρ1), T−i(ρ2))
and for 1 ≤ i ≤ H + 1 let Qi = [T−i(ρ2), T−(i−1)(ρ1)).

For p ∈ Zi, T i(p) ∈ [ρ1, ρ2) and hence Vβ(p) is computed
using (22). For p ∈ Qi, T i(p) ∈ [ρ2, ρ3), hence there exits
1 ≤ j ≤ J + 1 such that T i(p) ∈ Fj , i.e.,

Vβ(p) = R1
1− βi+j

1− β
+ βi+jVβ,Th

(T i+j(p)). (24)

The optimal policy for this case is illustrated in Fig. 3.

Fig. 3. Illustration of the three thresholds policy for T (ρ1) > ρ2 and
T−(H+1)(ρ2) ≥ 0.

If T−(H+1)(ρ2) < 0, then let ZH+1 = [0, T−H(ρ1)), for
1 ≤ i ≤ H let Zi = [T−i(ρ2), T−(i−1)(ρ1)) and Qi =
[T−i(ρ1), T−i(ρ2)). For p ∈ Zi, T i(p) ∈ [ρ2, ρ3) and hence
Vβ(p) is given by (24). For p ∈ Qi, T i(p) ∈ [ρ1, ρ2) and
consequently Vβ(p) is computed using (22).

VI. NUMERICAL RESULTS

We will first consider three different scenarios each one
of them leading to a different optimal policy. To validate the
closed-form solutions obtained above we will also generate
the optimal value function Vβ(p) using the value iteration
algorithm.
The parameters chosen below are selected in order to illustrate
that in theory, any of the three policies could be optimal. The
first set of parameters considered is λ0 = 0.2, λ1 = 0.9,
τ = 0.4, R1 = 1, R2 = 2 and β = 0.1. Note that from a
practical standpoint τ = 0.4 represents a substantial duration
for sensing.
As shown in Fig. 4, the optimal policy in this case is a
one threshold policy, whereas the two and three thresholds
policies are unfeasible in this case. If we keep all the parameter
values fixed and diminish the sensing time to τ = 0.1, then
from Fig.5, we can see that the optimal policy becomes a
two thresholds policy, whereas the one threshold policy gives
suboptimal values (the three thresholds policy is unfeasible in
this case).
Fig. 6 shows the optimal value function for the following
settings: λ0 = 0.81, λ1 = 0.98, τ = 0.035, R1 = 2.91,
R2 = 3 and β = 0.7. Here, the optimal policy is a three
thresholds policy, and the one and two thresholds policies
provide suboptimal results. These numerical simulations prove
that all scenarios can be possible and that our developed
formulae give always the optimal policy. Finally, it should
be noted that finding a scenario where the optimal policy has
three-thresholds was not obvious. The parameters had to be
repeatedly tuned in order to obtain such a case.
Fig. 7 shows the effect of the sensing time τ on the length of
the sensing region |ΦS | = ρ2 − ρ1. The system parameters in
this plot are as follows: R1 = 1, R2 = 2, β = 0.99, λ0 = 0.1
and λ1 = 0.9. In this example, the two-thresholds policy is
optimal for τ ∈ [0, 0.537], and beyond this critical value,
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the one threshold policy will become optimal. As expected,
the sensing region ΦS expands when the cost of sensing τ
decreases until it covers the whole interval [0, 1] when τ = 0.

VII. CONCLUSION

In this paper, we have studied a communication system
operating over a Gilbert-Elliot channel. In order to maximize
the number of successfully transmitted bits, the transmitter ju-
diciously selects the best action among three possible options:
i) transmit a high number of bits with no protection against a
bad channel, ii) transmit a low number of bits but with perfect
protection, iii) sense the channel for a fixed duration and then
decide between the two previous actions.

We have formulated the aforementioned problem as a
Markov Decision Process, and we have established that the
optimal strategy is a threshold policy. Namely, we have proved
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Fig. 6. Optimality of a three thresholds policy.
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Fig. 7. The effect of the sensing duration τ on ΦS .

that the optimal policy can have either one threshold, two
thresholds, or three thresholds. We have provided closed-form
expressions and simplified procedures for the computation
of these policies as well as the resulting optimal number
of transmitted bits. From a practical standpoint, the results
presented in this paper could be used to optimize the channel
utilization of real systems such as High-Speed Downlink
Packet Access (HSDPA).

APPENDIX: COMPUTATION OF Vβ(λ1) AND Vβ(λ0)
Before giving the expressions of Vβ(λ1) and Vβ(λ0) we

present an alternate expression for Vβ(p). This new expression
will prove to be useful in the subsequent derivations.

Theorem 3. The value function can be written as

Vβ(p)=max
n≥0

{
1− βn

1− β
R1+βn max{Vβ,S(Tn(p)), Vβ,Th

(Tn(p))}
}

.

(25)

Proof: See [12].
Intuitively the previous result can be explained as follows; The
expression 1−βn

1−β R1 + βnVβ,S(Tn(p)) is the expected return
when the transmitter selects n (≥ 0) times the action Tl, then
selects the action S and the procedure continues on there on



optimality. Similarly for the other term but instead of taking
the S action at the (n + 1)th stage, the action Th is selected.
The value function is then just the maximum between these
two expressions over all stages.
Before proceeding with the computation of Vβ(λ1) and Vβ(λ0)
we need the following lemma.
Lemma 5. For the one and two-thresholds policies, let ΦTl

=
[0, ρ). If λF ∈ ΦTl

then Vβ(p) = R1
1−β for all p ∈ ΦTl

.
Proof: For all p ≤ λF , Vβ(p) = R1 + βVβ(T (p)), how-

ever, p ≤ T (p) ≤ λF , hence Vβ(T (p)) = R1 + βVβ(T 2(p)),
i.e., Vβ(p) = R1(1 + β) + β2Vβ(T 2(p)). By induction we
obtain

Vβ(p) = R1
1− βn

1− β
+ βnVβ(Tn(p)) for all n. (26)

We obtain the desired result by letting n → ∞ (since 0 ≤
β < 1). Similarly, for λF ≤ p ≤ ρ, Vβ(p) = R1 +βVβ(T (p)),
however, p ≥ T (p) ≥ λF , hence by induction we arrive at the
same conclusion.

We are now ready to compute Vβ(λ1) and Vβ(λ0) for each
policy individually.

A. One threshold policy

There are two possible scenarios:
If λ1 ≤ ρ then since λF ≤ λ1 ≤ ρ, from lemma 5, we have
Vβ(λ1) = Vβ(λ0) = R1

1−β .
If λ1 > ρ then Vβ(λ1) = Vβ,Th

(λ1), i.e., Vβ(λ1) =
λ1R2+β(1−λ1)Vβ(λ0)

1−βλ1
and using (25), we have that Vβ(λ0) is

a solution to the following equation

Vβ(λ0) = max
n≥0

{
1− βn

1− β
R1 + βnVβ,Th

(Tn(λ0))
}

= max
n≥0

{1− βn

1− β
R1 + βn(κnR2 + β(Vβ(λ0)

+ κn(Vβ(λ1)− Vβ(λ0))))}, (27)

where κn = Tn(λ0) = (1 − αn+1)λF . Hence solving for
Vβ(λ0) we obtain

Vβ(λ0) = max
n≥0

{
1−βn

1−β R1 + βngnR2

1− βn+1[1− (1− β)gn]

}
, (28)

where gn = κn

1−βλ1
. Note that the last maximization is just

a one dimensional search and is computationally inexpensive.
Indeed, since 0 ≤ β < 1, the search for a maximum can
be effectively restricted to values of n ≤ N , where N is a
sufficiently large value such that βN ¿ 1.
Once Vβ(λ0) and Vβ(λ1) have been computed for both cases,
we retain the scenario that achieves the maximal values.
Indeed, from (2), it is seen that the optimal policy is the one
that gives the maximal value for any initial belief p. Hence, in
particular, the threshold ρ should be tuned so as to maximize
Vβ(λ0) and Vβ(λ1).

B. Two thresholds policy

There are three possible scenarios:
If λ1 ≤ ρ1 then Vβ(λ1) = Vβ(λ0) = R1

1−β . If ρ1 ≤
λ1 ≤ ρ2 then Vβ(λ1) = Vβ,S(λ1), i.e., Vβ(λ1) =

(1−τ)[R1+λ1(R2−R1)]+β(1−λ1)Vβ(λ0)
1−βλ1

. Hence, using (25) we

have Vβ(λ0) = maxn≥0

{
1−βn

1−β R1 + βnVβ,S(Tn(λ0))
}

.
Consequently, solving for Vβ(λ0) we obtain

Vβ(λ0)=max
n≥0

{
R1

1−βn

1−β +βn(1−τ)[(1−(1−β)gn)R1+gnR2]

1− βn+1[1− (1− β)gn]

}
.

(29)
If λ1 ≥ ρ2 then Vβ(λ1) = Vβ,Th

(λ1), i.e., Vβ(λ1) =
λ1R2+β(1−λ1)Vβ(λ0)

1−βλ1
. And, using (25), Vβ(λ0) is computed as

follows Vβ(λ0) = max{X1, X2}, where X1 is given by (28)
and X2 is given by

X2=max
n≥0

{
[ 1−βn

1−β +βn(1−τ)(1−κn)]R1+βn[gn − τκn]R2

1− βn+1[1− (1− β)gn]

}
.

(30)
Again, once Vβ(λ0) and Vβ(λ1) have been computed for the
three scenarios, we retain the scenario that gives the maximal
values.

C. Three thresholds policy

Since λ1 ≥ λF ≥ ρ3, we have Vβ(λ1) =
λ1R2+β(1−λ1)Vβ(λ0)

1−βλ1
and Vβ(λ0) is calculated as Vβ(λ0) =

max{X1,X2}, where X1 is given by (28) and X2 is given by
(30).
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