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Betting on Gilbert-Elliot Channels
Amine Laourine, Student Member, IEEE, and Lang Tong, Fellow, IEEE

Abstract—In this paper a communication system operating
over a Gilbert-Elliot channel is studied. The goal of the trans-
mitter is to maximize the number of successfully transmitted
bits. This is achieved by choosing among three possible actions:
(i) betting aggressively by using a weak code that allows trans-
mission with a high data rate but provides no protection against
a bad channel, ii) betting conservatively by using a strong code
that perfectly protects the communication against a bad channel
but does not allow a high data rate, iii) betting opportunistically
by sensing the channel for a fixed duration and then deciding
which code to use. The problem is formulated and solved using
the theory of Markov decision processes (MDPs). It is shown that
the optimal strategy has a simple threshold structure. Closed
form expressions and simplified procedures for the computation
of the threshold policies in terms of the system parameters are
provided.

Index Terms—Gilbert-Elliot channel, Opportunistic channel
access, Markov decision processes.

I. INTRODUCTION

COMMUNICATION over the wireless medium is subject
to multiple impairments such as fading, path loss, and

interference. These effects degrade the quality of service and
lead to transmission failures. The quality of the radio channel
is often random and evolves in time, ranging from good to
bad depending on the propagation conditions. To cope with
this changing behavior and maintain a good quality of service,
multi-rate modulations or link adaptation may be performed.
Link adaptation, also known as adaptive modulation and
coding, is a technique that leads to a better channel utilization
by matching the systems parameters of the transmitted signal
(e.g., data/coding rate, constellation size and transmit power)
to the changing channel conditions [1].

It is well established that time-varying fading channels can
be well modeled by a finite state Markov chain [2] (and the
references therein). A particularly convenient abstraction is the
two-state Markov model known as the Gilbert-Elliot channel
[3]. This model assumes that the channel can be in either a
good state or a bad state. For example, the channel is in a bad
state whenever the SNR drops below a certain threshold and
in a good state otherwise.

In this paper we consider a communication system operating
over a Gilbert-Elliot channel in a time-slotted fashion. The
transmitter has at its disposal a strong error correcting code
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and a weak one. The strong code offers perfect protection
against the channel errors even if the channel is in a bad state.
It however provides the extra protection at the expense of a
reduced data rate. The weak code, on the other hand, offers
perfect protection against the channel errors when the channel
is in the good state but fails otherwise. At the beginning of
each time slot, the transmitter can choose among three possible
actions: i) transmitting at a low data rate using the strong error
correcting code, ii) transmitting at a high data rate using the
weak error correcting code, and iii) sensing the channel for
a fraction of the slot and then using the appropriate code.
The extra knowledge provided by this last action comes at a
price, which is the time spent probing the channel. We take
as objective the maximization of the total expected discounted
number of bits transmitted over an infinite time span.

A. Related Work

MDP tools have been applied to solve communication
problems over time-varying channels, see, e.g., [4]-[7]. In
[4], the authors considered rate and power control strategies
for transmitting a fixed number of bits over fading channels
subject to both energy and delay constraints. In [5], the authors
obtained the optimal rate control policy in wireless networks
with Rayleigh fading channels. Most related to this paper
are [6] and [7]. In [6], the authors employed results from
optimal search theory and provided threshold strategies that
minimize the transmission energy and delay associated with
transmitting a file over a Gilbert-Elliot channel. Similarly in
[7], taking as objective the maximization of the throughput
and the minimization of the energy consumption, the authors
established the optimality of the threshold policies. The effect
of the sensing action on the throughput of a communication
system was not considered in these papers.

A closely related area to the problem studied here is the
so-called opportunistic (or cognitive) spectrum access (refer
to [9] for an overview) where sensing is an integral part of
the access scheme. A generic setup is as follows: a cognitive
(or secondary) user tries to opportunistically access a channel
which, depending on the state of the primary user, can be ei-
ther busy or idle. Relying on the theory of Partially Observable
Markov Decision Processes (POMDP), several transmission
and scheduling policies have been developed over the past
years [8]-[14]. For instance, in [11], the authors derive opti-
mal joint probing and transmission policies in multichannel
wireless systems. In that work, however, the channel state is
assumed to be independent from slot to slot. In [8], [10],
[12]-[14], the authors target the problem of optimal access
to multiple Gilbert-Elliot channels. In their setup, a sensing
action is always carried out by the secondary user before
attempting any transmission. The problem considered here is
different in that the transmitter is allowed to transmit without
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first probing the channel. In addition, we model explicitly the
cost of sensing. Thus, the sensing action must be judiciously
used in order to maximize the total number of transmitted bits.

The technique used in this paper has its origin in [15],
where Ross considered the problem of quality control of a
production process modeled by a special two-state Markov
chain. Specialized for wireless transmissions, our model is
different in that the good and bad states of the channel are
independent from the action of the user. However, in Ross’s
paper, the bad state of the production process can only change
back to the good state under the revise action. This fact
renders the immediate application of Ross’s results nontrivial.
The problem at hand therefore deserves a proper theoretical
treatment.

B. Main results and organization

In Section II we formulate the problem as a Markov
decision process. In Section III, we use methods developed in
the context of quality control and reliability theory [15]-[17]
to establish the optimality of threshold policies. In Section
IV, we provide closed form expressions and simplified proce-
dures for the computation of the thresholds in terms of the
system parameters. In Section V, we also provide closed form
expressions of the optimal total expected discounted number
of bits transmitted. In Section VI, we study the scenario
in which the transmitter receives always the channel quality
at the end of the slot, which corresponds to the situation
when the receiver feeds back1 the channel state information
after each transmission. In Section VII, we provide numerical
examples to illustrate the various theoretical results that will
be presented in the paper. Finally, Section VIII concludes the
paper.

II. PROBLEM FORMULATION

A. Channel model and assumptions

We consider a communication system operating over a
slotted Gilbert-Elliot channel which is a one dimensional
Markov chain 𝐺𝑛 with two states: a good state denoted
by 1 and a bad state denoted by 0. The channel transition
probabilities are given by Pr[𝐺𝑛 = 1∣𝐺𝑛−1 = 1] = 𝜆1
and Pr[𝐺𝑛 = 1∣𝐺𝑛−1 = 0] = 𝜆0. We assume that the
channel transitions occur at the beginning of the time frame.
We assume also that 𝜆0 ≤ 𝜆1, the so-called positive correlation
assumption, which can be restrictive in practice though it
simplifies the analysis considerably (similar assumption have
also been used in [6], [7]). From now on we assume without
loss of generality that the slot duration is a unity, so that we
will interchangeably use data rate and number of bits.

B. Communication protocol

At the beginning of each slot, the transmitter can choose
among three possible actions: betting conservatively, betting
aggressively, and betting opportunistically.

1Note that this feedback channel provides extra information only in the case
where the transmitter decides to use the strong code, since in the two other
cases (sensing or using a weak code) the transmitter will know the channel
conditions either from the sensing outcome or from the ACK/NAK received
from the sink at the end of the slot. Refer to Section II.B for further details.

Betting conservatively: For this action (denoted by 𝑇𝑙),
the transmitter decides to “play safe” and transmits a low
number 𝑅1 of data bits. This corresponds to the situation
when the transmitter believes that the channel is in a bad
state. Hence the transmitter uses a strong error correcting code
with a high redundancy thereby leading to the transmission
of a smaller number of data bits. If this action is chosen,
we assume that the transmission is successful regardless of
the channel quality. It is of course natural to assume that the
transmission is successful if the channel is in the good state.
Note that in this situation the receiver is not required to reply
back with an ACK, since the transmitter is assured that the
transmission was successful. When there is no channel state
information feedback from the receiver, this assumption means
also that the transmitter will not acquire any knowledge about
the channel state during the elapsed slot. The situation where
the transmitter is informed of the channel state after selecting
the action 𝑇𝑙 will be treated separately in Section VI.

Betting aggressively: For this action (denoted by 𝑇ℎ), the
transmitter decides to “gamble” and transmits a high number
𝑅2 (> 𝑅1) of data bits. This corresponds to the situation
when the transmitter believes that the channel is in a good
state. If this action is taken we assume that the transmission
is successful only if the channel is in the good state. At the end
of the slot, the transmitter will receive an ACK if the channel
was in the good state, and will receive a NAK otherwise.
Hence, if this action is chosen, the transmitter will learn the
channel state during the elapsed slot.

Betting opportunistically: For this action (denoted by 𝑆),
the transmitter decides to sense the channel at the beginning
of the slot. We assume that sensing lasts a fraction 𝜏(< 1) of
the slot. We assume also that sensing is perfect, i.e., sensing
reveals the true state of the channel. Sensing can be carried out
by making the transmitter send a control/probing packet. Then,
the receiver responds with a packet indicating the channel
state. Finally, note that 𝜏 may have to be selected large enough
so that the perfect sensing assumption holds.

Depending on the sensing outcome, the transmitter will send
(1− 𝜏)𝑅1 data bits if the channel was found to be in the bad
state or (1−𝜏)𝑅2 data bits if otherwise. This extra knowledge
comes at a price, which is the time spent probing the channel.
However, the sensing action offers the advantage of updating
the belief (the posterior estimate) about the channel state. This
updated belief can be exploited in the future slots in order
to increase the throughput. This fact captures a fundamental
tradeoff known as the exploration-exploitation dilemma. Note
finally that in this situation the receiver is not required to reply
back with an ACK, since the transmitter is assured that the
transmission was successful.

C. MDP formulation

At the beginning of a time slot, the transmitter is confronted
with a choice among three actions. It must judiciously select
actions so as to maximize a certain reward to be defined
shortly. Because the state of the channel is not directly
observable, the problem in hand is a Partially Observable
Markov Decision Process (POMDP). In [18], it is shown that
a sufficient statistic for determining the optimal policy is the

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:12:39 EST from IEEE Xplore.  Restrictions apply. 



LAOURINE and TONG: BETTING ON GILBERT-ELLIOT CHANNELS 725

conditional probability that the channel is in the good state
at the beginning of the current slot given the past history
(henceforth called belief) denoted by 𝑋𝑡 = Pr[𝐺𝑡 = 1∣ℋ𝑡],
where ℋ𝑡 is all the history of actions and observations at
the current slot 𝑡. Hence by using this belief as the decision
variable, the POMDP problem is converted into an MDP with
the uncountable state space [0, 1].

Define a policy 𝜋 as a rule that dictates the action to choose,
i.e., a map from the belief at a particular time to an action
in the action space. Let 𝑉 𝜋

𝛽 (𝑝) be the expected discounted
reward with initial belief 𝑋0 = Pr[𝐺0 = 1∣ℋ0] = 𝑝,
where the superscript 𝜋 denotes the policy being followed and
the subscript 𝛽 (∈ [0, 1)) the discount factor. The expected
discounted cost has the following expression

𝑉 𝜋
𝛽 (𝑝) = 𝔼𝜋

[ ∞∑
𝑡=0

𝛽𝑡𝑅(𝑋𝑡, 𝐴𝑡)∣𝑋0 = 𝑝

]
, (1)

where 𝔼𝜋 represents the expectation given that the policy 𝜋
is employed, 𝑡 is the time slot index, 𝐴𝑡 is the action chosen
at time 𝑡, 𝐴𝑡 ∈ {𝑇𝑙, 𝑆, 𝑇ℎ}. The term 𝑅(𝑋𝑡, 𝐴𝑡) denotes the
expected reward acquired when the belief is 𝑋𝑡 and the action
𝐴𝑡 is chosen:

𝑅(𝑋𝑡, 𝐴𝑡) =

⎧⎨
⎩

𝑅1 if 𝐴𝑡 = 𝑇𝑙
(1− 𝜏)[(1 −𝑋𝑡)𝑅1 +𝑋𝑡𝑅2] if 𝐴𝑡 = 𝑆
𝑋𝑡𝑅2 if 𝐴𝑡 = 𝑇ℎ

.

These equations can be explained as follows: when betting
conservatively, 𝑅1 bits are transmitted regardless of the chan-
nel conditions and the transmission is always successful. When
betting aggressively, 𝑅2 bits are transmitted if the channel
happens to be in the good state whereas 0 bits are transmitted
if the channel was in the bad state. Hence, since the belief
that the channel is in the good state is 𝑋𝑡, the expected return
when the risky action is taken is𝑋𝑡𝑅2. Now, when the sensing
action is taken (1−𝜏)𝑅1 bits will be transmitted if the sensing
revealed that the channel was in a bad state whereas (1−𝜏)𝑅2

bits will be transmitted otherwise. Hence the expected return
when the sensing action is taken is (1−𝜏)[(1−𝑋𝑡)𝑅1+𝑋𝑡𝑅2].

At first sight, it may seem that the expected discounted
reward is inappropriate for our problem, since why would
the transmitter have a preference for bits transmitted now
over bits transmitted in the future. This formulation provides
however a tractable solution, and one can gain insights into
the optimal policy when 𝛽 is close to 1. One can also view
𝛽 as the probability that a particular user is allowed to use
the channel (see [5] for further details). Finally, from Th.6.17
and Th.6.18 in [19], it can be seen also that the discounted
reward criterion is of primary importance when it comes to
the derivation for the optimal policy of the average reward
criterion (throughput).

Define now the value function 𝑉𝛽(𝑝) as

𝑉𝛽(𝑝) = max
𝜋
𝑉 𝜋
𝛽 (𝑝) for all 𝑝 ∈ [0, 1]. (2)

A policy is said to be stationary if it is a function mapping the
state space [0, 1] into the action space {𝑇𝑙, 𝑆, 𝑇ℎ}. It is well
known [19, Th.6.3] that there exists a stationary policy 𝜋∗

such that 𝑉𝛽(𝑝) = 𝑉 𝜋∗
𝛽 (𝑝). The value function 𝑉𝛽(𝑝) satisfies

the Bellman equation

𝑉𝛽(𝑝) = max
𝐴∈{𝑇𝑙,𝑆,𝑇ℎ}

{𝑉𝛽,𝐴(𝑝)}, (3)

where 𝑉𝛽,𝐴(𝑝) is the value acquired by taking action 𝐴 when
the initial belief is 𝑝 and is given by

𝑉𝛽,𝐴(𝑝) = 𝑅(𝑝,𝐴) + 𝛽𝔼𝑌 [𝑉𝛽(𝑌 )∣𝑋0 = 𝑝,𝐴0 = 𝐴], (4)

where 𝑌 denotes the next belief when the action 𝐴 is chosen
and the initial belief is 𝑝. The term 𝑉𝛽,𝐴(𝑝) will be explained
next for the three possible actions.

a) Betting conservatively: If this action is taken, 𝑅1

bits will be successfully transmitted regardless of the channel
quality. The transmitter will not learn what was the channel
quality (the case with CSI feedback is treated in Section VI).
Hence, if the transmitter had a belief 𝑝 during the elapsed time
slot, its belief at the beginning of the next time slot is given
by

𝑇 (𝑝) = 𝜆0(1 − 𝑝) + 𝜆1𝑝 = 𝛼𝑝+ 𝜆0, (5)

with 𝛼 = 𝜆1 − 𝜆0. Consequently if the safe action is taken,
the value function evolves as

𝑉𝛽,𝑇𝑙
(𝑝) = 𝑅1 + 𝛽𝑉𝛽(𝑇 (𝑝)). (6)

b) Betting opportunistically: If this action is taken and
the current belief is 𝑝, the channel quality during the current
slot is then revealed to the transmitter. With probability 𝑝
the channel will be in the good state and hence the belief
at the beginning of the next slot will be 𝜆1. Likewise, with
probability 1 − 𝑝 the channel will turn out to be in the bad
state and hence the updated belief for the next slot is 𝜆0.
Consequently if the sensing action is taken, the value function
evolves as

𝑉𝛽,𝑆(𝑝)=(1−𝜏)[𝑝𝑅2+(1−𝑝)𝑅1]+𝛽[𝑝𝑉𝛽(𝜆1)+(1−𝑝)𝑉𝛽(𝜆0)].
(7)

c) Betting aggressively: If this action is taken and the
current belief is 𝑝, then with probability 𝑝, the transmission
will be successful and the transmitter will receive an ACK
from the receiver. The belief at the beginning of the next slot
will be then 𝜆1. Similarly, with probability 1− 𝑝, the channel
will turn out to be in the bad state and the transmission will
result in a failure accompanied by a NAK from the receiver.
Hence the transmitter will update his belief for the next slot
to 𝜆0. Consequently if the risky action is taken, the value
function evolves as

𝑉𝛽,𝑇ℎ
(𝑝) = 𝑝𝑅2 + 𝛽[𝑝𝑉𝛽(𝜆1) + (1− 𝑝)𝑉𝛽(𝜆0)]. (8)

Finally the Bellman equation for our communication problem
reads as follows

𝑉𝛽(𝑝) = max{𝑉𝛽,𝑇𝑙
(𝑝), 𝑉𝛽,𝑆(𝑝), 𝑉𝛽,𝑇ℎ

(𝑝)}. (9)

As a final remark, we refer the interested reader to [20]
where we consider the impact of channel sensing errors. In
Section VI, we will treat the case where the transmitter knows
the channel state information (CSI) at the end of each slot
through a feedback channel. Note that in the present section,
the transmitter acquires this delayed CSI only if the 𝑆 or
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𝑇ℎ actions are taken2. But, if the action 𝑇𝑙 is taken instead,
the CSI is not known since in all cases the transmission is
successful.

III. STRUCTURE OF THE OPTIMAL POLICY

In the following, we will prove the optimality of the
threshold policies. First we need to prove some results about
the value function.

Theorem 1. 𝑉𝛽(𝑝) is convex and nondecreasing.

Proof: We first start by proving the convexity of the
value function. Define 𝑉𝛽(𝑝, 𝑛) as the optimal value when
the decision horizon spans only 𝑛 stages. Then we have the
following recursion

𝑉𝛽(𝑝, 𝑛) = max{𝑉𝛽,𝑇𝑙
(𝑝, 𝑛), 𝑉𝛽,𝑆(𝑝, 𝑛), 𝑉𝛽,𝑇ℎ

(𝑝, 𝑛)}, (10)

with 𝑉𝛽,𝑇𝑙
(𝑝, 𝑛) = 𝑅1+𝛽𝑉𝛽(𝑇 (𝑝), 𝑛−1), 𝑉𝛽,𝑆(𝑝, 𝑛) = (1−

𝜏)[𝑅1+𝑝(𝑅2−𝑅1)]+𝛽[(1−𝑝)𝑉𝛽(𝜆0, 𝑛−1)+𝑝𝑉𝛽(𝜆1, 𝑛−1)]
and 𝑉𝛽,𝑇ℎ

(𝑝, 𝑛) = 𝑝𝑅2+𝛽[(1−𝑝)𝑉𝛽(𝜆0, 𝑛−1)+𝑝𝑉𝛽(𝜆1, 𝑛−
1)].

Note that 𝑉𝛽(𝑝, 1) = max{𝑅1, (1 − 𝜏)[𝑅1 + 𝑝(𝑅2 −
𝑅1)], 𝑝𝑅2} is a convex function since it is the maximum of
three convex functions. Assume that 𝑉𝛽(𝑝, 𝑛 − 1) is convex,
then for 𝑎 ∈ [0, 1] we have

𝑅1 + 𝛽𝑉𝛽(𝑇 (𝑎𝑝1 + (1− 𝑎)𝑝2), 𝑛− 1)

= 𝑅1 + 𝛽𝑉𝛽(𝑎𝑇 (𝑝1) + (1− 𝑎)𝑇 (𝑝2), 𝑛− 1)

≤ 𝑅1 + 𝑎𝛽𝑉𝛽(𝑇 (𝑝1), 𝑛− 1) + (1− 𝑎)𝛽𝑉𝛽(𝑇 (𝑝2), 𝑛− 1)

= 𝑎𝑉𝛽,𝑇𝑙
(𝑝1, 𝑛) + (1− 𝑎)𝑉𝛽,𝑇𝑙

(𝑝2, 𝑛)

≤ 𝑎𝑉𝛽(𝑝1, 𝑛) + (1 − 𝑎)𝑉𝛽(𝑝2, 𝑛). (11)

Also since the second and third terms in (10) are linear, we
can easily see that

𝑉𝛽(𝑎𝑝1+(1−𝑎)𝑝2, 𝑛) ≤ 𝑎𝑉𝛽(𝑝1, 𝑛)+(1−𝑎)𝑉𝛽(𝑝2, 𝑛). (12)

Hence 𝑉𝛽(𝑝, 𝑛) is convex. And by induction we have convex-
ity for all 𝑛. However, from the theory of MDPs, we know
that 𝑉𝛽(𝑝, 𝑛) → 𝑉𝛽(𝑝) as 𝑛→ ∞. Hence 𝑉𝛽(𝑝) is convex.
The proof that 𝑉𝛽(𝑝) is nondecreasing is also done by in-
duction. Indeed since 𝑅2 > 𝑅1, we have that 𝑉𝛽(𝑝, 1) is
the maximum of three nondecreasing functions and is hence
nondecreasing. Assume that 𝑉𝛽(𝑝, 𝑛 − 1) is nondecreasing,
since 𝜆1 ≥ 𝜆0, we have 𝑉𝛽(𝜆0, 𝑛 − 1) ≤ 𝑉𝛽(𝜆1, 𝑛 − 1).
Hence the second and the third terms in (10) are nonde-
creasing functions. Also since 𝑇 (𝑝) is nondecreasing, we
have 𝑉𝛽(𝑇 (𝑝), 𝑛 − 1) is nondecreasing. Thus 𝑉𝛽(𝑝, 𝑛) is
the maximum of three nondecreasing functions and is hence
nondecreasing. Consequently, by letting 𝑛 → ∞ we obtain
the desired result.
Using the convexity of 𝑉𝛽(𝑝), we are now ready to character-
ize the structure of the optimal policy.

Theorem 2. Let 𝑝 ∈ [0, 1], there are numbers 0 ≤ 𝜌1 ≤ 𝜌2 ≤
𝜌3 ≤ 1 such that

𝜋∗(𝑝) =

⎧⎨
⎩

𝑇𝑙 if 0 ≤ 𝑝 < 𝜌1 or 𝜌2 < 𝑝 < 𝜌3
𝑆 if 𝜌1 ≤ 𝑝 ≤ 𝜌2
𝑇ℎ if 𝜌3 ≤ 𝑝 ≤ 1

.

2The CSI is acquired through the ACK/NAK received from the transmitter
if the 𝑇ℎ action is chosen or through sensing if the 𝑆 action is taken.

Proof: We introduce the following sets

Φ𝒦 = {𝑝 ∈ [0, 1], 𝑉𝛽(𝑝) = 𝑉𝛽,𝒦(𝑝)}, 𝒦 ∈ {𝑇𝑙, 𝑇ℎ, 𝑆}.
(13)

In other words, Φ𝒦 is the set of beliefs for which it is optimal
to take the action 𝒦. We will prove that Φ𝑇ℎ

and Φ𝑆 are
convex, which implies the structure of the optimal policy. This
proof parallels to that of Ross [15].

Let 𝑝1, 𝑝2 ∈ Φ𝑇ℎ
and let 𝑎 ∈ [0, 1] then we have

𝑉𝛽(𝑎𝑝1 + (1− 𝑎)𝑝2) ≤ 𝑎𝑉𝛽(𝑝1) + (1 − 𝑎)𝑉𝛽(𝑝2)

= 𝑎𝑉𝛽,𝑇ℎ
(𝑝1) + (1− 𝑎)𝑉𝛽,𝑇ℎ

(𝑝2)

= 𝑉𝛽,𝑇ℎ
(𝑎𝑝1 + (1 − 𝑎)𝑝2)

≤ 𝑉𝛽(𝑎𝑝1 + (1− 𝑎)𝑝2), (14)

where the first inequality comes from the convexity of 𝑉𝛽(𝑝);
the first equality follows from the fact that 𝑝1, 𝑝2 ∈ Φ𝑇ℎ

, and
the last inequality from the definition of 𝑉𝛽(⋅). Consequently
𝑉𝛽(𝑎𝑝1+(1−𝑎)𝑝2) = 𝑉𝛽,𝑇ℎ

(𝑎𝑝1+(1−𝑎)𝑝2), and hence 𝑎𝑝1+
(1 − 𝑎)𝑝2 ∈ Φ𝑇ℎ

, which proves the convexity of Φ𝑇ℎ
. Since

convex subsets of the real line are intervals and 1 ∈ Φ𝑇ℎ
, there

exists 𝜌3 ∈ (0, 1] such that Φ𝑇ℎ
= [𝜌3, 1]. Using the same

technique we can prove that Φ𝑆 is convex and hence there
exits 𝜌1, 𝜌2 ∈ [0, 1] such that Φ𝑆 = [𝜌1, 𝜌2]. Consequently we
have also that Φ𝑇𝑙

= [0, 𝜌1) ∪ (𝜌2, 𝜌3).
The established structure is appealing since the belief space

is partitioned into at most 4 regions. Intuitively, one would
think that there should exist only three regions, i.e., if the
belief is small, one should paly safe; if the belief is high, one
should gamble, and somewhere in between sensing is optimal.
Therefore it may seem possible that (𝜌2, 𝜌3) = ∅. However,
we show in Section VII that this is not true in general; for
some cases, a three-threshold policy is optimal.

IV. CLOSED FORM CHARACTERIZATION OF THE POLICIES

Theorem 2 proves that there exist three types of threshold
policies; a one-threshold policy (when 𝜌1 = 𝜌2 = 𝜌3), a two-
thresholds policy (when 𝜌1 < 𝜌2 = 𝜌3), and a three-thresholds
policy (when 𝜌1 < 𝜌2 < 𝜌3). Since we do not have sufficient
and necessary conditions to tell which policy will be optimal,
one will need to compute the three possible policies and
select the one that achieves the highest value. Fortunately, this
computation is inexpensive because we will provide closed
form expressions and simplified procedures to compute the
policies. Also, depending on the system parameters, some
policies may be infeasible. For example, in a 2-thresholds
policy, we would find 𝜌1 > 𝜌2. In such situations, the task is
even more simplified since we can further restrict our search
for the optimal policy.

In the following we will analyze each policy individually.
In the upcoming section we will make use of the following
operators:

𝑇 𝑛(𝑝) = 𝑇 (𝑇 𝑛−1(𝑝)) = 𝜆𝐹 (1− 𝛼𝑛) + 𝛼𝑛𝑝. (15)

𝑇−𝑛(𝑝) = 𝑇−1(𝑇−(𝑛−1)(𝑝)) =
𝑝

𝛼𝑛
− 1− 𝛼𝑛

1− 𝛼

𝜆0
𝛼𝑛
. (16)

We will denote also by 𝜆𝐹 = 𝜆0

1−𝛼 the fixed point of 𝑇 (⋅),
i.e., 𝑇 (𝜆𝐹 ) = 𝜆𝐹 c.f. (5).
Before delving into the computation of the thresholds, we need
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to introduce the following technical lemma.
Lemma 1. For the one and two-thresholds policies, let Φ𝑇𝑙

=
[0, 𝜌). If 𝜆𝐹 ∈ Φ𝑇𝑙

then 𝑉𝛽(𝑝) = 𝑅1

1−𝛽 for all 𝑝 ∈ Φ𝑇𝑙
.

Proof: For all 𝑝 ≤ 𝜆𝐹 , 𝑉𝛽(𝑝) = 𝑅1 + 𝛽𝑉𝛽(𝑇 (𝑝)). How-
ever, 𝑝 ≤ 𝑇 (𝑝) ≤ 𝜆𝐹 , hence 𝑉𝛽(𝑇 (𝑝)) = 𝑅1 + 𝛽𝑉𝛽(𝑇

2(𝑝)),
i.e., 𝑉𝛽(𝑝) = 𝑅1(1 + 𝛽) + 𝛽2𝑉𝛽(𝑇

2(𝑝)). By induction we
obtain

𝑉𝛽(𝑝) = 𝑅1
1− 𝛽𝑛

1− 𝛽
+ 𝛽𝑛𝑉𝛽(𝑇

𝑛(𝑝)) for all 𝑛.

We obtain the desired result by letting 𝑛 → ∞ (since 0 ≤
𝛽 < 1). Similarly, for 𝜆𝐹 ≤ 𝑝 ≤ 𝜌, 𝑉𝛽(𝑝) = 𝑅1+𝛽𝑉𝛽(𝑇 (𝑝)),
however, 𝑝 ≥ 𝑇 (𝑝) ≥ 𝜆𝐹 , hence by induction we arrive at the
same conclusion.

We are now ready to give a complete characterization of
the thresholds for each policy.

A. One-threshold policy

Assume that the optimal policy has one threshold 0 < 𝜌 <
1. The procedure to calculate 𝜌 starts by computing 𝑉𝛽(𝜆0)
and 𝑉𝛽(𝜆1) as shown in section A in the Appendix. The
threshold 𝜌 is computed as in the following lemma.
Lemma 2. If the one threshold policy is optimal then the
threshold 𝜌 is calculated as follows:
If 𝑅1

1−𝛽 ≥ 𝑉𝛽,𝑇ℎ
(𝜆𝐹 ), then

𝜌 =
𝑅1

𝑅2 + 𝛽𝑉𝛽(𝜆1)− 𝛽 𝑅1

1−𝛽

. (17)

Otherwise, we have

𝜌 =
(1− 𝛽𝜆1)𝑅1 + 𝛽𝜆0𝑅2 + 𝛽(𝛽 − 1)(1− 𝛽𝛼)𝑉𝛽(𝜆0)

(1− 𝛽𝛼)(𝑅2 + 𝛽(𝛽 − 1)𝑉𝛽(𝜆0))
.

(18)
Proof: The threshold 𝜌 is the solution of the equation

𝑅1+𝛽𝑉𝛽(𝑇 (𝜌)) = 𝑉𝛽,𝑇ℎ
(𝜌). We can distinguish two possible

scenarios:
If3 𝑅1

1−𝛽 ≥ 𝑉𝛽,𝑇ℎ
(𝜆𝐹 ), then we have 𝜆𝐹 ≤ 𝜌 and 𝑇 (𝜌) ≤ 𝜌.

Consequently, from lemma 1 we deduce that 𝑉𝛽(𝑇 (𝜌)) =
𝑅1

1−𝛽 , hence solving for 𝜌 we obtain (17). Otherwise, we
have 𝜆𝐹 > 𝜌, consequently 𝑇 (𝜌) > 𝜌 and 𝑉𝛽(𝑇 (𝜌)) =
𝑉𝛽,𝑇ℎ

(𝑇 (𝜌)), hence solving for 𝜌 we obtain (18).

B. Two-thresholds policy

Assume that the optimal policy has two thresholds 0 <
𝜌1 < 𝜌2 < 1. Note that since 𝜌2 is the solution of 𝑉𝛽,𝑆(𝜌2) =
𝑉𝛽,𝑇ℎ

(𝜌2), it is easy to establish that 𝜌2 = (1−𝜏)𝑅1

(1−𝜏)𝑅1+𝜏𝑅2
.

3Note that 𝑉𝛽,𝑇ℎ
(𝜆𝐹 ) is directly computable since we have calculated

𝑉𝛽(𝜆0) and 𝑉𝛽(𝜆1) in the previous step.

The procedure to compute 𝜌1 starts by computing 𝑉𝛽(𝜆0) and
𝑉𝛽(𝜆1) as in section B in the Appendix. The threshold 𝜌1 is
computed as in the following lemma.
Lemma 3. If the two-thresholds policy is optimal then 𝜌1 is
computed as follows
1) If 𝜆𝐹 > 𝜌2 then two cases can be distinguished:
If4 𝑉𝛽,𝑇𝑙

(𝑇−1(𝜌2)) < 𝑉𝛽,𝑆(𝑇
−1(𝜌2)), 𝜌1 will be equal to (19)

given at the bottom of this page.
Else 𝜌1 will be equal to (20) given at the bottom of this page.
2) If 𝑅1

1−𝛽 < 𝑉𝛽,𝑆(𝜆𝐹 ) and 𝜆𝐹 ≤ 𝜌2, 𝜌1 is given by (19).
3) Finally if 𝑅1

1−𝛽 ≥ 𝑉𝛽,𝑆(𝜆𝐹 ) and 𝜆𝐹 ≤ 𝜌2, then

𝜌1 =
𝜏(1 − 𝛽)𝑅1

(1− 𝜏)(1 − 𝛽)(𝑅2 −𝑅1) + 𝛽((1 − 𝛽)𝑉𝛽(𝜆1)−𝑅1)
.

(21)
Proof: The threshold 𝜌1 is the solution to the equation

𝑅1 + 𝛽𝑉𝛽(𝑇 (𝜌1)) = 𝑉𝛽,𝑆(𝜌1). We can distinguish three
possible scenarios:
1) If 𝜆𝐹 > 𝜌2 then two cases can be distinguished: If
𝑉𝛽,𝑇𝑙

(𝑇−1(𝜌2)) < 𝑉𝛽,𝑆(𝑇
−1(𝜌2)) we will have 𝜌1 <

𝑇 (𝜌1) ≤ 𝜌2 and hence 𝑉𝛽(𝑇 (𝜌1)) = 𝑉𝛽,𝑆(𝑇 (𝜌1)), conse-
quently solving for 𝜌1 we obtain (19). Else, 𝑇 (𝜌1) > 𝜌2 and
consequently 𝑉𝛽(𝑇 (𝜌1)) = 𝑉𝛽,𝑇ℎ

(𝑇 (𝜌1)) and hence solving
for 𝜌1 we obtain (20).
2) If 𝑅1

1−𝛽 < 𝑉𝛽,𝑆(𝜆𝐹 ) and 𝜆𝐹 ≤ 𝜌2, then it follows that
𝜌1 < 𝜆𝐹 ≤ 𝜌2. Consequently, 𝜌1 < 𝑇 (𝜌1) < 𝜆𝐹 , i.e.,
𝑉𝛽(𝑇 (𝜌1)) = 𝑉𝛽,𝑆(𝑇 (𝜌1)), and 𝜌1 will be given by (19).
3) Finally if 𝑅1

1−𝛽 ≥ 𝑉𝛽,𝑆(𝜆𝐹 ) and 𝜆𝐹 ≤ 𝜌2, then we must
have 𝜆𝐹 ≤ 𝜌1, i.e., 𝑇 (𝜌1) < 𝜌1 and 𝑉𝛽(𝑇 (𝜌1)) = 𝑅1

1−𝛽 (c.f.
lemma 1). Hence solving for 𝜌1, we obtain (21).

C. Three-thresholds policy

Assume that the optimal policy has three thresholds 0 <
𝜌1 < 𝜌2 < 𝜌3 < 1. Before detailing the structure of the
optimal policy, we introduce the following useful lemma.
Lemma 4. If a three-thresholds policy is optimal, then 𝜆𝐹 ∈
[𝜌3, 1].

Proof: We first prove that 𝜆𝐹 ∕∈ [𝜌1, 𝜌2]. Note that both
𝜌1 and 𝜌2 satisfy the following equation

𝑅1 + 𝛽𝑉𝛽(𝑇 (𝜌)) = 𝑉𝛽,𝑆(𝜌). (22)

So if 𝜆𝐹 ∈ [𝜌1, 𝜌2], then 𝑇 (𝜌1), 𝑇 (𝜌2) ∈ [𝜌1, 𝜌2], i.e.,
𝑉𝛽(𝑇 (𝜌1)) = 𝑉𝛽,𝑆(𝑇 (𝜌1)), and the same for 𝑉𝛽(𝑇 (𝜌2)).
Consequently, (22) would have a single solution given by (19),
and we would have 𝜌1 = 𝜌2, this contradicts the assumption

4Note that 𝑉𝛽,𝑇𝑙
(𝑇−1(𝜌2)) = 𝑅1+𝛽([𝑅2+𝛽(𝑉𝛽(𝜆1)−𝑉𝛽(𝜆0))]𝜌2+

𝛽𝑉𝛽(𝜆0)) is readily computable since we have already calculated 𝑉𝛽(𝜆0)
and 𝑉𝛽(𝜆1). The same remark holds for 𝑉𝛽,𝑆(𝑇

−1(𝜌2)).

𝜌1 =
𝜏𝑅1 + 𝛽(1 − 𝜏)[𝑅1 + 𝜆0(𝑅2 −𝑅1)] + 𝛽2[𝑉𝛽(𝜆0) + 𝜆0(𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0))]− 𝛽𝑉𝛽(𝜆0)

(1− 𝛽𝛼)[(1 − 𝜏)(𝑅2 −𝑅1) + 𝛽(𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0))]
(19)

𝜌1 =
𝛽𝜆0𝑅2 + (1 − 𝛽𝜆1)𝜏𝑅1 + 𝛽(𝛽 − 1)(1− 𝛽𝛼)𝑉𝛽(𝜆0)

𝑅2(1− 𝜆1(𝛽(𝛼 − 𝜏)− 𝜏)) + 𝛽(𝛽 − 1)(1− 𝛽𝛼)𝑉𝛽(𝜆0)− (1− 𝜏)(1 − 𝛽𝜆1)𝑅1
(20)
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that 𝜌1 < 𝜌2.
Assume that 𝜆𝐹 ∈ [0, 𝜌1], then from lemma 1 we have that
𝑉𝛽(𝑝) =

𝑅1

1−𝛽 for 𝑝 ∈ [0, 𝜌1]. Now for 𝑝 ∈ [𝜌2, 𝜌3], we have
𝑉𝛽(𝑝) = 𝑅1+𝛽𝑉𝛽(𝑇 (𝑝)). However 𝑇 (𝑝) ≤ 𝑝 for 𝑝 ≥ 𝜆𝐹 and
𝑉𝛽(⋅) is increasing, hence 𝑉𝛽(𝑝) ≤ 𝑅1 + 𝛽𝑉𝛽(𝑝) or equiva-
lently, 𝑉𝛽(𝑝) ≤ 𝑅1

1−𝛽 . Remember that 𝑉𝛽(𝑝) ≥ 𝑉𝛽(𝜆𝐹 ) =
𝑅1

1−𝛽

(because 𝑉𝛽(⋅) is ↗). Consequently, 𝑉𝛽(𝑝) = 𝑅1

1−𝛽 for
𝑝 ∈ [𝜌2, 𝜌3], and for the same reasons for 𝑝 ∈ [𝜌1, 𝜌2], i.e.,
𝑉𝛽(𝑝) = 𝑅1

1−𝛽 for 𝑝 ∈ [0, 𝜌3]. This is a contradiction with
the assumption that we have a three threshold policy. Finally,
using the same reasoning we prove that 𝜆𝐹 ∕∈ [𝜌2, 𝜌3].

We now turn to the computation of 𝜌1, 𝜌2 and 𝜌3. Since
𝜌3 ≤ 𝜆𝐹 and 𝜌3 is the solution of 𝑅1 + 𝛽𝑉𝛽(𝑇 (𝜌3)) =
𝑉𝛽,𝑇ℎ

(𝜌3), it follows that 𝜌3 is given by (18). The two other
thresholds 𝜌1 and 𝜌2 are computed as in the following lemma.
Lemma 5. If a three-thresholds policy is optimal, then let
𝐽+1=min{𝑘 ≥ 1 : 𝛿(𝑘) < 𝛾(𝑘)𝜌3}, where 𝛾(𝑘) is given by

𝛾(𝑘) = [(1− 𝜏)(𝑅2 −𝑅1) + 𝛽(𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0))]
1

𝛼𝑘

− 𝛽𝑘[𝑅2 + 𝛽(𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0))], (23)

and

𝛿(𝑘) =𝑅1
1− 𝛽𝑘

1− 𝛽
+ 𝛽(𝛽𝑘 − 1)𝑉𝛽(𝜆0)− (1 − 𝜏)𝑅1

+
𝜆0(1− 𝛼𝑘)

𝛼𝑘(1− 𝛼)
[(1− 𝜏)(𝑅2 −𝑅1)+𝛽(𝑉𝛽(𝜆1)−𝑉𝛽(𝜆0))].

(24)

We have then that 𝜌2 is equal to (25) given at the bottom of
this page.

If 𝑉𝛽,𝑇𝑙
(𝑇−1(𝜌2)) < 𝑉𝛽,𝑆(𝑇

−1(𝜌2)), then 𝜌1 will be given
by (19). Else, let 𝐽 ′+1=min{𝑘 ≥ 𝐽 + 2 : 𝛾(𝑘)𝜌3 < 𝛿(𝑘)},
and 𝜌1 will be given by (25) with 𝐽 replaced by 𝐽 ′.

Proof: Note first that there exists no 𝑘 ∈ ℕ such that
𝑇−(𝑘+1)(𝜌3) < 𝜌1 < 𝜌2 < 𝑇−𝑘(𝜌3), for otherwise, we
would have 𝑉𝛽,𝑇𝑙

(𝜌1) = 𝑉𝛽,𝑇𝑙
(𝜌2) and (22) would have

only one solution, thereby contradicting the three-thresholds
assumption. Let 𝐽+1=min{𝑘∈ℕ :𝑇−𝑘(𝜌3)<𝜌2}, it follows
then that 𝑇−(𝐽+1)(𝜌3) < 𝜌2 ≤ 𝑇−𝐽(𝜌3), or equivalently

𝑉𝛽(𝜌2) = 𝑅1 + 𝛽𝑉𝛽(𝑇 (𝜌2)) = 𝑅1 + 𝛽𝑅1 + 𝛽2𝑉𝛽(𝑇
2(𝜌2))

= . . . = 𝑅1
1−𝛽𝐽+1

1−𝛽 +𝛽𝐽+1𝑉𝛽,𝑇ℎ
(𝑇 𝐽+1(𝜌2)). (26)

Hence 𝑉𝛽(𝜌2) will be given by

𝑉𝛽(𝜌2)=𝑅1
1−𝛽𝐽+1

1−𝛽 + (𝛼𝛽)𝐽+1(𝑅2+𝛽(𝑉𝛽(𝜆1)−𝑉𝛽(𝜆0)))𝜌2
+𝛽𝐽+1[𝑃𝐹 (1−𝛼𝐽+1)(𝑅2+𝛽(𝑉𝛽(𝜆1)−𝑉𝛽(𝜆0)))+𝛽𝑉𝛽(𝜆0)].(27)

Fig. 1. Illustration of the one threshold policy for 𝜆𝐹 > 𝜌.

Since 𝜌2 is a solution to (22), we solve for 𝜌2 to obtain (25).
It is easily seen that 𝐽+1=min{𝑘 ∈ℕ : 𝑉𝛽,𝑇𝑙

(𝑇−𝑘(𝜌3)) <
𝑉𝛽,𝑆(𝑇

−𝑘(𝜌3))}. The term 𝑉𝛽,𝑇𝑙
(𝑇−𝑘(𝜌3)) can be calculated

as follows

𝑉𝛽,𝑇𝑙
(𝑇−𝑘(𝜌3))=𝑅1

1−𝛽𝑘

1−𝛽
+𝛽𝑘[𝑅2𝜌3+𝛽[𝜌3𝑉𝛽(𝜆1)+(1−𝜌3)𝑉𝛽(𝜆0)]].

(28)
Similarly 𝑉𝛽,𝑆(𝑇−𝑘(𝜌3)) can be computed using (29) given
below. Hence after some manipulations we obtain the expres-
sions of 𝛾(𝑘) and 𝛿(𝑘) as shown in the lemma.
Finally, if 𝑉𝛽,𝑇𝑙

(𝑇−1(𝜌2)) < 𝑉𝛽,𝑆(𝑇
−1(𝜌2)) we will have

𝜌1 < 𝑇 (𝜌1) < 𝜌2, hence 𝜌1 will be given by (19). Else
we are in the situation where 𝑇 (𝜌1) > 𝜌2, hence by letting
𝐽 ′+1 = min{𝑘 ≥ 𝐽 + 2 : 𝑇−𝑘(𝜌3) < 𝜌1} = min{𝑘 ≥
𝐽 + 2 : 𝑉𝛽,𝑇𝑙

(𝑇−𝑘(𝜌3)) > 𝑉𝛽,𝑆(𝑇
−𝑘(𝜌3))} and using the

same approach used above we obtain the result presented in
the lemma.

V. COMPUTATION OF THE VALUE FUNCTION

Since 𝑉𝛽,𝑆(𝑝) and 𝑉𝛽,𝑇ℎ
(𝑝) are linear functions of 𝑝,

once 𝑉𝛽(𝜆0) and 𝑉𝛽(𝜆1) are computed, 𝑉𝛽(𝑝) is completely
determined when 𝑝 ∈ Φ𝑆

∪
Φ𝑇ℎ

. 𝑉𝛽(𝑝) needs however to be
determined for 𝑝 ∈ Φ𝑇𝑙

.

A. One-threshold policy

The goal is to find 𝑉𝛽(𝑝) for 𝑝 ≤ 𝜌. Here we can distinguish
two possibilities: If 𝜆𝐹 ≤ 𝜌, then from lemma 1 we conclude
that 𝑉𝛽(𝑝) = 𝑅1

1−𝛽 for all 𝑝 ≤ 𝜌. If 𝜆𝐹 > 𝜌, then let 𝐽+
1 =min{𝑘 ∈ ℕ : 𝑇−𝑘(𝜌)< 0}. Let 𝐹𝐽+1 = [0, 𝑇−𝐽(𝜌)] and
𝐹𝑖 = (𝑇−𝑖(𝜌), 𝑇−(𝑖−1)(𝜌)] for 1 ≤ 𝑖 ≤ 𝐽 . Then for 𝑝 ∈ 𝐹𝑖,
we have 𝑇 𝑖(𝑝) > 𝜌 ≥ 𝑇 (𝑖−1)(𝑝), i.e.,

𝑉𝛽(𝑝) = 𝑅1 + 𝛽𝑉𝛽(𝑇 (𝑝)) = 𝑅1 + 𝛽𝑅1 + 𝛽2𝑉𝛽(𝑇
2(𝑝))

= . . . = 𝑅1
1− 𝛽𝑖

1− 𝛽
+ 𝛽𝑖𝑉𝛽,𝑇ℎ

(𝑇 𝑖(𝑝)). (30)

The optimal policy for this last case is illustrated in Fig. 1. As
it can be seen the set of belief [0, 1] is divided in two regions
specified by the threshold 𝜌.

𝜌2 =
𝑅1(

1−𝛽𝐽+1

1−𝛽 − (1 − 𝜏)) + 𝛽𝐽+1[𝑃𝐹 (1− 𝛼𝐽+1)(𝑅2 + 𝛽(𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0))) + 𝛽𝑉𝛽(𝜆0)]− 𝛽𝑉𝛽(𝜆0)

(1− 𝜏)(𝑅2 −𝑅1) + 𝛽(𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0))− (𝛼𝛽)𝐽+1(𝑅2 + 𝛽(𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0)))
(25)

𝑉𝛽,𝑆(𝑇
−𝑘(𝜌3)) = [(1−𝜏 )(𝑅2−𝑅1)+𝛽(𝑉𝛽(𝜆1)−𝑉𝛽(𝜆0))]

𝜌3
𝛼𝑘

+(1−𝜏 )𝑅1+𝛽𝑉𝛽(𝜆0)−𝜆0(1− 𝛼𝑘)

𝛼𝑘(1− 𝛼)
[(1−𝜏 )(𝑅2−𝑅1)+𝛽(𝑉𝛽(𝜆1)−𝑉𝛽(𝜆0))]

(29)
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Fig. 2. Illustration of the two thresholds policy for 𝜌1 < 𝜆𝐹 ≤ 𝜌2.

B. Two-thresholds policy

The approach here is similar to the previous case, i.e., if
𝜆𝐹 ≤ 𝜌1, then 𝑉𝛽(𝑝) = 𝑅1

1−𝛽 for all 𝑝 ≤ 𝜌1. If 𝜌1 < 𝜆𝐹 ≤ 𝜌2,
let 𝐽+1=min{𝑘∈ℕ :𝑇−𝑘(𝜌1)<0}. Let 𝐹𝐽+1 = [0, 𝑇−𝐽(𝜌1)]
and 𝐹𝑖 = (𝑇−𝑖(𝜌1), 𝑇

−(𝑖−1)(𝜌1)] for 1 ≤ 𝑖 ≤ 𝐽 . Then for
𝑝 ∈ 𝐹𝑖, we have 𝜌2 > 𝑇 𝑖(𝑝) > 𝜌1 ≥ 𝑇 (𝑖−1)(𝑝), i.e.,

𝑉𝛽(𝑝) = 𝑅1
1− 𝛽𝑖

1− 𝛽
+ 𝛽𝑖𝑉𝛽,𝑆(𝑇

𝑖(𝑝)). (31)

The optimal policy for this case is illustrated in Fig. 2, the
interval [0, 1] is separated in three regions by the thresholds
𝜌1 and 𝜌2.
If 𝜆𝐹 > 𝜌2, two case can be distinguished: If 𝑇 (𝜌1) ≤ 𝜌2 then
the computation is similar to the situation where 𝜌1 < 𝜆𝐹 ≤
𝜌2 discussed above. If 𝑇 (𝜌1) > 𝜌2, let 𝐹𝐽+1 = [0, 𝑇−𝐽(𝜌1)],
for 2 ≤ 𝑖 ≤ 𝐽 let 𝐹𝑖 = (𝑇−𝑖(𝜌1), 𝑇

−(𝑖−1)(𝜌1)] and 𝐹1 =
(𝑇−1(𝜌1), 𝑇

−1(𝜌2)]. Then for 𝑝 ∈ 𝐹𝑖, 𝑖 ≥ 1, 𝑉𝛽(𝑝) will be
given by (31). For 𝑝 ∈ 𝐹0 = (𝑇−1(𝜌2), 𝜌1] we have

𝑉𝛽(𝑝) = 𝑅1 + 𝛽𝑉𝛽,𝑇ℎ
(𝑇 (𝑝)). (32)

C. Three-thresholds policy

The goal is to find 𝑉𝛽(𝑝) for 𝑝 ∈ [0, 𝜌1] ∪ [𝜌2, 𝜌3]. For
𝑝 ∈ [𝜌2, 𝜌3], let 𝐽 +1 = min{𝑘 ∈ ℕ : 𝑇−𝑘(𝜌3) < 𝜌2}. Let
𝐹𝐽+1 = [𝜌2, 𝑇

−𝐽(𝜌3)) and 𝐹𝑖 = [𝑇−𝑖(𝜌3), 𝑇
−(𝑖−1)(𝜌3)) for

1 ≤ 𝑖 ≤ 𝐽 . For 𝑝 ∈ 𝐹𝑖, we have 𝑇 𝑖(𝑝) ≥ 𝜌3, i.e., 𝑉𝛽(𝑝) is
given by (30).
For 𝑝 ∈ [0, 𝜌1] we can distinguish two cases: If 𝑇 (𝜌1) ≤
𝜌2, 𝑉𝛽(𝑝) for 𝑝 ∈ [0, 𝜌1] is computed using (31). If
𝑇 (𝜌1) > 𝜌2, let 𝐻 + 1 = min{𝑘 ∈ ℕ : 𝑇−𝑘(𝜌1) < 0}.
Then we have two subcases: First, if 𝑇−(𝐻+1)(𝜌2) ≥ 0,
then let 𝑍𝐻+1 = [0, 𝑇−(𝐻+1)(𝜌2)), for 1 ≤ 𝑖 ≤ 𝐻 let
𝑍𝑖 = [𝑇−𝑖(𝜌1), 𝑇

−𝑖(𝜌2)) and for 1 ≤ 𝑖 ≤ 𝐻 + 1 let
𝑄𝑖 = [𝑇−𝑖(𝜌2), 𝑇

−(𝑖−1)(𝜌1)). For 𝑝 ∈ 𝑍𝑖, 𝑇 𝑖(𝑝) ∈ [𝜌1, 𝜌2)
and hence 𝑉𝛽(𝑝) is computed using (31). For 𝑝 ∈ 𝑄𝑖,
𝑇 𝑖(𝑝) ∈ [𝜌2, 𝜌3), hence there exits 1 ≤ 𝑗 ≤ 𝐽 + 1 such
that 𝑇 𝑖(𝑝) ∈ 𝐹𝑗 , i.e.,

𝑉𝛽(𝑝) = 𝑅1
1− 𝛽𝑖+𝑗

1− 𝛽
+ 𝛽𝑖+𝑗𝑉𝛽,𝑇ℎ

(𝑇 𝑖+𝑗(𝑝)). (33)

The optimal policy for this case is illustrated in Fig. 3. Note
that when 𝜌1 = 𝜌2, the policy degenerates to the one threshold
policy. Whereas if 𝜌2 = 𝜌3, the policy reduces to the two
thresholds policy discussed above. Second, if 𝑇−(𝐻+1)(𝜌2) <
0, then let 𝑍𝐻+1 = [0, 𝑇−𝐻(𝜌1)), for 1 ≤ 𝑖 ≤ 𝐻 let 𝑍𝑖 =
[𝑇−𝑖(𝜌2), 𝑇

−(𝑖−1)(𝜌1)) and 𝑄𝑖 = [𝑇−𝑖(𝜌1), 𝑇
−𝑖(𝜌2)). For

𝑝 ∈ 𝑍𝑖, 𝑇 𝑖(𝑝) ∈ [𝜌2, 𝜌3) and hence 𝑉𝛽(𝑝) is given by (33). For
𝑝 ∈ 𝑄𝑖, 𝑇 𝑖(𝑝) ∈ [𝜌1, 𝜌2) and consequently 𝑉𝛽(𝑝) is computed
using (31).

Fig. 3. Illustration of the three thresholds policy for 𝑇 (𝜌1) > 𝜌2 and
𝑇−(𝐻+1)(𝜌2) ≥ 0.

VI. OPTIMAL POLICY WITH CHANNEL STATE

INFORMATION FEEDBACK

A. Structure of the value function and of the optimal policy

In this section we consider the situation where the trans-
mitter knows the channel state information (CSI) at the end
of each slot. Note that in the previous model, the transmitter
acquires this delayed CSI only if the 𝑆 or 𝑇ℎ actions are
taken. But, if the action 𝑇𝑙 is taken instead, the CSI is not
known since in all cases the transmission is successful. Now,
in this new model, we assume that if the action 𝑇𝑙 is taken,
the receiver replies back with the CSI. This CSI feedback can
take the form of one bit; 0 indicating a bad channel and 1 for
a good channel. If the transmitter receives a 0, then the correct
action (i.e., 𝑇𝑙) has been selected. Whereas if a 1 is received,
the transmitter is informed that an opportunity of sending more
data has been missed (if the action 𝑇ℎ was selected instead of
𝑇𝑙).
In this new model, 𝑉𝛽,𝑇𝑙

(𝑝) changes to

𝑉𝛽,𝑇𝑙
(𝑝) = 𝑅1 + 𝛽((1 − 𝑝)𝑉𝛽(𝜆0) + 𝑝𝑉𝛽(𝜆1)), (34)

whereas 𝑉𝛽,𝑆(𝑝) and 𝑉𝛽,𝑇ℎ
(𝑝) rest unchanged and as usual

𝑉𝛽(𝑝) = max{𝑉𝛽,𝑇𝑙
(𝑝), 𝑉𝛽,𝑆(𝑝), 𝑉𝛽,𝑇ℎ

(𝑝)}. Recall in the
previous model that 𝑉𝛽(⋅) is convex. Hence 𝑉𝛽(𝑇 (𝑝)) ≤
(1 − 𝑝)𝑉𝛽(𝜆0) + 𝑝𝑉𝛽(𝜆1), which proves that 𝑉𝛽(⋅) with CSI
feedback is bigger than 𝑉𝛽(⋅) with no CSI feedback.
The optimal policy is easily obtained and is given in the
following theorem (the proof is omitted).

Theorem 3. If 𝜏𝑅1

(1−𝜏)(𝑅2−𝑅1)
> (1−𝜏)𝑅1

(1−𝜏)𝑅1+𝜏𝑅2
then the opti-

mal policy is a one threshold policy, i.e.,

𝜋∗(𝑝) =

{
𝑇𝑙 if 0 ≤ 𝑝 ≤ 𝑅1

𝑅2

𝑇ℎ if 𝑅1

𝑅2
≤ 𝑝 ≤ 1

.

If 𝜏𝑅1

(1−𝜏)(𝑅2−𝑅1)
≤ (1−𝜏)𝑅1

(1−𝜏)𝑅1+𝜏𝑅2
then the optimal policy is a

two thresholds policy, i.e.,

𝜋∗(𝑝) =

⎧⎨
⎩

𝑇𝑙 if 0 ≤ 𝑝 ≤ 𝜏𝑅1

(1−𝜏)(𝑅2−𝑅1)

𝑆 if 𝜏𝑅1

(1−𝜏)(𝑅2−𝑅1)
≤ 𝑝 ≤ (1−𝜏)𝑅1

(1−𝜏)𝑅1+𝜏𝑅2

𝑇ℎ if (1−𝜏)𝑅1

(1−𝜏)𝑅1+𝜏𝑅2
≤ 𝑝 ≤ 1

.

As one should expect, the optimal strategy here is a myopic
policy, i.e., a policy that maximizes the immediate reward.
Indeed, the optimal policy for this problem is identical to the
optimal policy corresponding to the following MDP:𝑊𝛽(𝑝) =
max{𝑅1, (1− 𝜏)[(1 − 𝑝)𝑅1 + 𝑝𝑅2], 𝑝𝑅2}.

B. Value function

Note that the value function is totally determined by finding
𝑉𝛽(𝜆0) and 𝑉𝛽(𝜆1). In order to determine the optimal action
when the belief is 𝜆1 or 𝜆0, we compare these values to
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the thresholds established above. Then all that remains is
solving a system of two linear equations with two unknowns
(i.e., 𝑉𝛽(𝜆0) and 𝑉𝛽(𝜆1)). To illustrate the procedure of
determining 𝑉𝛽(𝜆0) and 𝑉𝛽(𝜆1), we consider here the example
where the optimal policy is a one threshold policy and
𝜆0 ≤ 𝑅1

𝑅2
≤ 𝜆1. We have then

𝑉𝛽(𝜆0) = 𝑅1 + 𝛽(𝑉𝛽(𝜆0) + (𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0))𝜆0), (35)

𝑉𝛽(𝜆1) = 𝜆1𝑅2 + 𝛽(𝑉𝛽(𝜆0) + (𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0))𝜆1). (36)

Solving for 𝑉𝛽(𝜆0) and 𝑉𝛽(𝜆1) leads to

𝑉𝛽(𝜆0) =
(1− 𝛽𝜆1)𝑅1 + 𝛽𝜆0𝜆1𝑅2

(1− 𝛽)(1 − 𝛽𝛼)
, (37)

𝑉𝛽(𝜆1) =
𝛽(1 − 𝜆1)𝑅1 + (1− 𝛽 + 𝛽𝜆0)𝜆1𝑅2

(1− 𝛽)(1 − 𝛽𝛼)
. (38)

All other cases are treated similarly, and the details are omitted
due to space limitations.

VII. NUMERICAL RESULTS

We start by analyzing the scenario with no CSI feedback.
We will consider three different setups, each leading to a
different optimal policy. To validate the closed-form solutions
obtained above, we will also generate the optimal value
function 𝑉𝛽(𝑝) using the value iteration algorithm.

The parameters chosen below are selected in order to
illustrate that, in theory, any of the three policies could be
optimal. The first set of parameters considered is 𝜆0 = 0.2,
𝜆1 = 0.9, 𝜏 = 0.4, 𝑅1 = 1, 𝑅2 = 2 and 𝛽 = 0.1. Note that
from a practical standpoint 𝜏 = 0.4 represents a substantial
duration for sensing.
As shown in Fig. 4, the optimal policy in this case is a
one threshold policy, whereas the two and three thresholds
policies are unfeasible in this case. If we keep all the parameter
values fixed and diminish the sensing time to 𝜏 = 0.1, then
from Fig.5, we can see that the optimal policy becomes a
two thresholds policy, whereas the one threshold policy gives
suboptimal values (the three-thresholds policy is unfeasible
in this case). Fig. 6 shows the optimal value function for
the following settings: 𝜆0 = 0.81, 𝜆1 = 0.98, 𝜏 = 0.035,
𝑅1 = 2.91, 𝑅2 = 3 and 𝛽 = 0.7. Here, the optimal policy is a
three thresholds policy, and the one and two thresholds policies
provide suboptimal results. These numerical simulations prove
that all scenarios can be possible and that our developed
formulae give always the optimal policy. Finally, it should
be noted that finding a scenario where the optimal policy has
three-thresholds was not obvious. The parameters had to be
repeatedly tuned in order to obtain such a case.

Fig. 7 shows the effect of the sensing time 𝜏 on the length
of the sensing region ∣Φ𝑆 ∣ = 𝜌2 − 𝜌1. The system parameters
in this plot are as follows: 𝑅1 = 1, 𝑅2 = 2, 𝛽 = 0.99, 𝜆0 =
0.1 and 𝜆1 = 0.9. In this example, the two-thresholds policy
is optimal for 𝜏 ∈ [0, 0.537], and beyond this critical value,
the one-threshold policy will become optimal. As expected,
the sensing region Φ𝑆 expands when the cost of sensing 𝜏
decreases until it covers the whole interval [0, 1] when 𝜏 = 0.

Fig. 8 shows the impact of the sensing action on the
overall performance. The system parameters in this plot are
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Fig. 4. Optimality of a one threshold policy.
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Fig. 5. Optimality of a two thresholds policy.

as follows: 𝑅1 = 3, 𝑅2 = 4, 𝜏 = 0.1, 𝛽 = 0.9, 𝜆0 = 0.6
and 𝜆1 = 0.9. We consider here three different scenarios:
(i) the transmitter does not know the CSI at the end of each
slot;5, (ii) the transmitter has access to the CSI at the end
of each slot (see Section VI), and (iii) the transmitter has
access to the delayed CSI but can only use the actions 𝑇𝑙
and 𝑇ℎ. As it can be seen in this example, the total number
of transmitted bits is reduced in the third scenario. However,
when the transmitter can access the sensing action, the total
number of transmitted bits is substantially augmented and the
optimal policy performs closely to the case with full CSI
feedback.

5Recall that in this paper, the transmitter always acquires this delayed CSI
if the 𝑆 or 𝑇ℎ actions are taken. But, if the action 𝑇𝑙 is taken instead, the
CSI is known only if there is a feedback channel from the receiver to the
transmitter (see Section VI).
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Fig. 6. Optimality of a three thresholds policy.
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Fig. 7. The effect of the sensing duration 𝜏 on Φ𝑆 .

VIII. CONCLUSION

In this paper, we have studied a communication system
operating over a Gilbert-Elliot channel. In order to maximize
the number of successfully transmitted bits, the transmitter ju-
diciously selects the best action among three possible options:
i) transmit with a high data rate with no protection against a
bad channel, ii) transmit with a low data rate but with perfect
protection, iii) sense the channel for a fixed duration and then
decide between the two previous actions.

We have formulated the aforementioned problem as a
Markov Decision Process, and we have established that the
optimal strategy is a threshold policy. Namely, we have proved
that the optimal policy can have either one threshold, two
thresholds, or three thresholds. We have provided closed-form
expressions and simplified procedures for the computation
of these policies as well as the resulting optimal number
of transmitted bits. From a practical standpoint, the results
presented in this paper could be used to optimize the channel
utilization of real systems such as High-Speed Downlink
Packet Access (HSDPA) [21].

We have left some interesting problems open. We have
not considered the design of the optimal policy when the
communication system can communicate with more than two
different rates. Another possibility is the extension of the
problem to a multiple channel setup.
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Fig. 8. Value function with and without CSI feedback.

APPENDIX: COMPUTATION OF 𝑉𝛽(𝜆1) AND 𝑉𝛽(𝜆0)

Before giving the expressions of 𝑉𝛽(𝜆1) and 𝑉𝛽(𝜆0), we
present an alternate expression for 𝑉𝛽(𝑝). This new expression
will prove to be useful in the subsequent derivations.

Theorem 4. The value function can be written as

𝑉𝛽(𝑝)=max
𝑛≥0

{
1−𝛽𝑛

1−𝛽
𝑅1+𝛽

𝑛 max{𝑉𝛽,𝑆(𝑇
𝑛(𝑝)), 𝑉𝛽,𝑇ℎ

(𝑇𝑛(𝑝))}
}
.

(39)

Proof: Recall that we have

𝑉𝛽(𝑝) = max{𝑅1 + 𝛽𝑉𝛽(𝑇 (𝑝)), 𝑉𝛽,𝑆(𝑝), 𝑉𝛽,𝑇ℎ
(𝑝)}. (40)

By replacing 𝑉𝛽(𝑇 (𝑝)) by its expression we obtain

𝑉𝛽(𝑝)=max{𝑅1(1 + 𝛽) + 𝛽2𝑉𝛽(𝑇
2(𝑝)), 𝑅1 + 𝛽𝑉𝛽,𝑆(𝑇 (𝑝)),

𝑅1 + 𝛽𝑉𝛽,𝑇ℎ
(𝑇 (𝑝)), 𝑉𝛽,𝑆(𝑝), 𝑉𝛽,𝑇ℎ

(𝑝)}. (41)

Iterating over the same steps, we have for all 𝑁 ≥ 0 that

𝑉𝛽(𝑝) = max{𝑅1
1−𝛽𝑁

1−𝛽 +𝛽𝑁𝑉𝛽(𝑇
𝑁(𝑝)), max

0≤𝑛≤𝑁−1
{1−𝛽

𝑛

1−𝛽 𝑅1

+ 𝛽𝑛 max{𝑉𝛽,𝑆(𝑇 𝑛(𝑝)), 𝑉𝛽,𝑇ℎ
(𝑇 𝑛(𝑝))}}}. (42)

Since 𝑁 is arbitrary and 0 ≤ 𝛽 < 1, letting 𝑁 → ∞ we
obtain the desired result.
Intuitively the previous result can be explained as follows; The
expression 1−𝛽𝑛

1−𝛽 𝑅1 + 𝛽𝑛𝑉𝛽,𝑆(𝑇
𝑛(𝑝)) is the expected return

when the transmitter selects 𝑛 (≥ 0) times the action 𝑇𝑙, then
selects the action 𝑆 and the procedure continues on there on
optimality. Similarly for the other term but instead of taking
the 𝑆 action at the (𝑛+ 1)th stage, the action 𝑇ℎ is selected.
The value function is then just the maximum between these
two expressions over all stages.

We now proceed with the computation of 𝑉𝛽(𝜆1) and
𝑉𝛽(𝜆0) by considering each policy separately.
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A. One threshold policy

There are two possible scenarios: If 𝜆1 ≤ 𝜌 then since
𝜆𝐹 ≤ 𝜆1 ≤ 𝜌, from lemma 1, we have 𝑉𝛽(𝜆1) = 𝑉𝛽(𝜆0) =
𝑅1

1−𝛽 . If 𝜆1 > 𝜌 then 𝑉𝛽(𝜆1) = 𝑉𝛽,𝑇ℎ
(𝜆1), i.e., 𝑉𝛽(𝜆1) =

𝜆1𝑅2+𝛽(1−𝜆1)𝑉𝛽(𝜆0)
1−𝛽𝜆1

and using (39), we have that 𝑉𝛽(𝜆0) is a
solution to the following equation

𝑉𝛽(𝜆0) = max
𝑛≥0

{
1− 𝛽𝑛

1− 𝛽
𝑅1 + 𝛽𝑛𝑉𝛽,𝑇ℎ

(𝑇 𝑛(𝜆0))

}

= max
𝑛≥0

{1− 𝛽𝑛

1− 𝛽
𝑅1 + 𝛽𝑛(𝜅𝑛𝑅2 + 𝛽(𝑉𝛽(𝜆0)

+ 𝜅𝑛(𝑉𝛽(𝜆1)− 𝑉𝛽(𝜆0))))}, (43)

where 𝜅𝑛 = 𝑇 𝑛(𝜆0) = (1 − 𝛼𝑛+1)𝜆𝐹 . Hence solving for
𝑉𝛽(𝜆0) we obtain

𝑉𝛽(𝜆0) = max
𝑛≥0

{
1−𝛽𝑛

1−𝛽 𝑅1 + 𝛽𝑛𝑔𝑛𝑅2

1− 𝛽𝑛+1[1− (1− 𝛽)𝑔𝑛]

}
, (44)

where 𝑔𝑛 = 𝜅𝑛

1−𝛽𝜆1
. Note that the last maximization is just

a one dimensional search and is computationally inexpensive.
Indeed, since 0 ≤ 𝛽 < 1, the search for a maximum can
be effectively restricted to values of 𝑛 ≤ 𝑁 , where 𝑁 is a
sufficiently large value such that 𝛽𝑁 ≪ 1.

Once 𝑉𝛽(𝜆0) and 𝑉𝛽(𝜆1) have been computed for both
cases, we retain the scenario that achieves the maximal values.
Indeed, from (2), it is seen that the optimal policy is the one
that gives the maximal value for any initial belief 𝑝. Hence, in
particular, the threshold 𝜌 should be tuned so as to maximize
𝑉𝛽(𝜆0) and 𝑉𝛽(𝜆1).

B. Two thresholds policy

There are three possible scenarios: First, if 𝜆1 ≤ 𝜌1, then
from lemma 1 we deduce that 𝑉𝛽(𝜆1) = 𝑉𝛽(𝜆0) =

𝑅1

1−𝛽 . Sec-
ond, if 𝜌1 ≤ 𝜆1 ≤ 𝜌2 then 𝑉𝛽(𝜆1) = 𝑉𝛽,𝑆(𝜆1), i.e., 𝑉𝛽(𝜆1) =
(1−𝜏)[𝑅1+𝜆1(𝑅2−𝑅1)]+𝛽(1−𝜆1)𝑉𝛽(𝜆0)

1−𝛽𝜆1
. Hence, using (39) we

have 𝑉𝛽(𝜆0) = max𝑛≥0

{
1−𝛽𝑛

1−𝛽 𝑅1 + 𝛽𝑛𝑉𝛽,𝑆(𝑇
𝑛(𝜆0))

}
.

Consequently, solving for 𝑉𝛽(𝜆0) we obtain

𝑉𝛽(𝜆0)=max
𝑛≥0

{
𝑅1

1−𝛽𝑛

1−𝛽
+𝛽𝑛(1−𝜏 )[(1−(1−𝛽)𝑔𝑛)𝑅1+𝑔𝑛𝑅2]

1− 𝛽𝑛+1[1− (1− 𝛽)𝑔𝑛]

}
.

(45)
Finally, if 𝜆1 ≥ 𝜌2 then 𝑉𝛽(𝜆1) = 𝑉𝛽,𝑇ℎ

(𝜆1), i.e., 𝑉𝛽(𝜆1) =
𝜆1𝑅2+𝛽(1−𝜆1)𝑉𝛽(𝜆0)

1−𝛽𝜆1
. And, using (39), 𝑉𝛽(𝜆0) is computed as

follows 𝑉𝛽(𝜆0) = max{𝑋1, 𝑋2}, where 𝑋1 is given by (44)
and 𝑋2 is given by

𝑋2=max
𝑛≥0

{
[ 1−𝛽𝑛

1−𝛽
+ 𝛽𝑛(1− 𝜏 )(1− 𝜅𝑛)]𝑅1 + 𝛽𝑛[𝑔𝑛 − 𝜏𝜅𝑛]𝑅2

1− 𝛽𝑛+1[1− (1− 𝛽)𝑔𝑛]

}
.

(46)
Again, once 𝑉𝛽(𝜆0) and 𝑉𝛽(𝜆1) have been computed for the
three scenarios, we retain the scenario that gives the maximal
values.

C. Three thresholds policy

If the three thresholds policy is optimal, then from lemma
4, we know that 𝜆𝐹 ≥ 𝜌3. Hence, since 𝜆1 ≥ 𝜆𝐹 ,
we conclude that 𝑉𝛽(𝜆1) = 𝑉𝛽,𝑇ℎ

(𝜆1) which implies that
𝑉𝛽(𝜆1) =

𝜆1𝑅2+𝛽(1−𝜆1)𝑉𝛽(𝜆0)
1−𝛽𝜆1

. Finally, 𝑉𝛽(𝜆0) is calculated
as 𝑉𝛽(𝜆0) = max{𝑋1, 𝑋2}, where 𝑋1 is given by (44) and
𝑋2 is given by (46).
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