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Abstract

The constant modulus (CM) cost function is analyzed for array signal processing. The analysis includes arbitrary
source types. It is shown that CM receivers have the signal space property except in two special cases. Local minima of
CM cost function are completely characterized for the noiseless case. In the presence of measurement noise, the existence
of CM local minima in the neighborhood of Wiener receivers is established, and their mean squared error (MSE)
performance, output power, estimation bias and residual interference are evaluated. Numerical examples are presented to
demonstrate the effects of signal statistics on the locations of CM local minima. ( 1999 Published by Elsevier Science
B.V. All rights reserved.

Zusammenfassung

Für die Arraysignalverarbeitung wird die Kostenfunktion des konstanten Betrages (CM) untersucht. Die Analyse
schlie{t beliebige Quellentypen ein. Es wird gezeigt, da{ CM-Empfänger mit Ausnahme von zwei Spezialfällen die
Signalraumeigenschaft besitzen. Lokale Minima der CM-Kostenfunktion werden im rauschfreien Fall vollständig
charakterisiert. Liegt Me{rauschen vor, dann wird die Existenz der lokalen Minima in der Nähe von Wiener-Empfän-
gern gezeigt, und ihr mittlerer quadratischer Fehler (MSE), die Ausgangsleistung, der Schätzoffset und die Reststörung
werden berechnet. Numerische Beispiele werden präsentiert, um die Effekte der Signalstatistik auf die Lage der lokalen
Minima bei CM zu zeigen. ( 1999 Published by Elsevier Science B.V. All rights reserved.

Résumé

On analyse la fonction coût Module Constant (CM) pour le traitement d’antenne. L’analyse prend en compte des
sources de type arbitraire. On montre que les récepteurs CM jouissent de la propriété dite de l’espace signal sauf dans
deux cas particuliers. Les minima locaux de cette fonction coût CM sont complètement caractérisés en l’absence de bruit.
En présence de bruit de mesure, l’existence de minima locaux au voisinage des récepteurs de Wiener est établie, et leurs
performances en termes d’Erreur Quadratique Moyenne (MSE), de puissance de sortie, de biais, et d’interférence
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résiduelle sont évaluées. Des exemples numériques sont présentés pour illustrer les effets des statistiques des signaux sur
les positions des minima locaux CM. ( 1999 Published by Elsevier Science B.V. All rights reserved.
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Notations

( ) )T transpose
( ) )H Hermitian
( ) )s Moore—Penrose inverse [8, p. 434]
EM ) N expectation operator
ExE

p p-norm defined by pJ+Dx
i
Dp.

ExEA 2-norm defined by JxHAx
I
n

n]n identity matrix
el a unit column vector with 1 at the lth entry

and zero elsewhere
Cn n-dimensional complex vector space
CnCm the set of all n]m complex matrices
CA range of AAs [8, p. 430]
CAM range of I!AAs

1. Introduction

Since the inception of the constant modulus al-
gorithm (CMA) in 1980, proposed first by Godard
[3] and later independently by Treichler and Agee
[11], CMA has been successfully implemented in
various applications including equalization for
microwave radio links and blind beamforming in
array signal processing. Although originally in-
vented for the equalization of a single-user inter-
symbol interference (ISI) channel, it has been
recognized, first by Gooch and Lundell [4], that
CMA applies also to the multiuser beamforming
problem where the objective is to estimate one or
all the source signals from an array of receivers. The
so-called constant modulus array [4,5,8] is perhaps
the first application of CMA in array processing.

Despite the similarity between the equalization
and beam-forming problems, there are several key
differences. In beam forming, different users may
have different signal constellations whereas in
(single user) equalization, all symbols are identi-
cally distributed. It is also possible that some inter-
ference may come from impulsive noise sources

that have super-Gaussian2 statistics. Effects of sig-
nal or interference statistics on the performance of
CM receivers have so far not been characterized.
The second important difference is that the channel
response matrix for the beam-forming problem
does not have the (block) Toeplitz structure. Initia-
lization techniques effective in the equalization
problem [10] cannot be applied, which makes the
initialization of CMA in beam-forming applica-
tions much more critical.

There are two classes of approaches when CMA
is applied to beam-forming problems. The multi-
stage CM array [6,8,9] estimates source signals
sequentially. At the first stage, CMA is used to
estimate one of the source signals. Which source is
extracted first depends on the initialization of
CMA, and it is usually unknown. The contribution
of the estimated source is then subtracted from the
received signal according to the mean squared er-
ror (MSE) criterion. This process continues until all
sources are extracted. If the estimate at every stage
is close to the minimum mean squared error
(MMSE) estimate, this process approximates the
MMSE estimate of all source signals obtained by
the Wiener receiver; see [8,9] for the analysis. When
CMA at the first stage fails to converge or its
estimate has a large MSE, its error accumulates
through different stages, and the multistage
CMA approach may not perform well. The second
class of approaches obtain the signal estimate
in a single step. One example is the algebraic
CMA (ACMA) proposed by Van der Veen [12].
Unlike multistage CMA, these approaches are not
subject to estimation error propagation. Unfortu-
nately, there is a lack of analysis for these algo-
rithms about how well they behave in the presence
of noise.

2A source is super- (sub-) Gaussian when E(DsD4)/(E(DsD2))2'
(()E(Ds

G
D4)/(E(Ds

G
D2))2 where s

G
has the Gaussian distribution.
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1.1. Main results and related work

In this paper, we perform an analysis of CMA at
the first stage for the multistage CMA array ap-
proach. Such an analysis is especially important
since all subsequent stages depend on the applica-
tion of CMA at the first stage. Furthermore, the
same analysis can also be applied to other stages
when, as we shall show in this paper, the CM
receiver at the first stage closely approximate the
Wiener receiver. We summarize next the main re-
sults of this paper with comments of related work.

¹he signal space property: Section 3 gives the
CM cost function in the general form followed by
the proof of the signal space property of CM re-
ceivers. A receiver is said to have the signal space
property if its coefficient vector is in the column
space of the array response matrix, which is indeed
the case for Wiener receivers. Such a property is
significant when there are more sensors than sour-
ces. We show in Section 3 that CM receivers do
have the signal space property except for in two
special cases (i) there is no noise; and (ii) there are
no sub-Gaussian sources. When there is no noise,
there are infinitely many local minima, each can be
generated from a minimum in the signal subspace.
Specifically, CM local minima are made of cosets of
the noise subspace generated from local minima in
the signal space. Hence, it is sufficient to analyze
CM local minima in the signal subspace. When there
are no sub-Gaussian sources, we show that CM
receivers are in the orthogonal complement of the
signal subspace spanned by the columns of the array
response matrix associated with the super-Gaussian
sources. In other words, a CM receiver filters out all
super-Gaussian sources. The signal space property
of CMA is first obtained for equalization problem
in [13—15]. The results presented in Section 3 are
more general and its proof is more direct.

CM local minima: the noiseless case: The results
presented in Section 4 address the following ques-
tion: where are CM local minima when there is no
noise? Foschini [2] was the first to show that all
CM local minima inverse the channel matrix for the
equalization problem. We consider here the general
source condition including signals with arbitrary
(sub-Gaussian, Gaussian and super-Gaussian)
sources. We show that when there exist sub-Gaus-

sian sources, a receiver is a local minimum of the
CM cost function if and only if it perfectly extracts
a sub-Gaussian source. When sources are super-
Gaussian or Gaussian, two special cases are ad-
dressed separately assuming the number of sources
equals to the number of sensors. (i) If all sources are
super-Gaussian, the minimum of CM cost function
is unique up to a phase rotation. The output of the
CM receiver in this case includes signals from all
sources. (ii) If the sources are Gaussian and super
Gaussian, all receivers with a fixed output power
and orthogonal to the columns of the array re-
sponse matrix corresponding to the super-Gaus-
sian sources are CM local minima. The
characterization of CM local minima for the noise-
less case is therefore complete.

CM local minima: the noisy case: In Section 5, we
analyze CM local minima assuming the presence of
noise in the same spirit of Zeng et al. [14]. Focusing
on the case of sub-Gaussian sources, our results
generalize that in [14] to include signals with differ-
ent distributions. We derive tests for the existence
of CM local minima in the neighborhood of Wiener
receivers. These local minima are referred to as the
Wiener type CM local minima. Also presented are
MSE bounds, output power conditions, and prop-
erties of receiver bias and residue interference.

Numerical examples: The goal of Section 6 is
twofold. First, we evaluate, through the use of an
example, the quality of the MSE bounds derived in
Section 5. Second, we study the effects of the statis-
tics of interfering signals. We demonstrate that
a super-Gaussian interference may remove a CM
receiver of a sub-Gaussian source from the neigh-
borhood of its Wiener receiver, a case that has not
been reported elsewhere. Since such an example
does not exist when there is no noise as shown in
Section 4, it highlights the significant difference be-
tween the noiseless and noisy cases. We also dem-
onstrate the behavior of CM receiver when sources
are closely located.

2. The problem

Consider a multiple-input multiple-output model
shown in Fig. 1:

x"Hs#w, (1)
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Fig. 1. The model.

where s¢(s
1
,s
2
,2,s

M
)T3CM is the vector of source

signals, H3CNCM is the (unknown) array response
matrix, w¢(w

1
,w

2
,2,w

N
)T3CN is the additive

noise, x¢(x
1
,x

2
,2,x

N
)T3CN is the received signal

vector.
A linear estimate y of one element of s, say s

1
, is

obtained by

y"f Hx"qHs#f Hw, (2)

where f3CN is the estimator response vector, and
q¢HHf3CM is the (conjugate) total system re-
sponse. This model is illustrated in Fig. 1. A con-
stant modulus (CM) estimator is defined by a local
minimum of the CM cost

JM ( f )¢EM(DyD2!r)2N"EM(D f HxD2!r)2N, (3)

where r is referred to as the dispersion constant. In
general, r can be choosen arbitrarily, resulting
merely a scaling factor in the local minima of the
above optimization. Conventionally, if s

i
is to be

estimated, we set r"EDs
i
D4/EDs

i
D2 so that when there

is no noise and under the general condition speci-
fied in Theorem 2, s

1
can be estimated perfectly by

a global minimum of Eq. (3).
In analyzing local minima of the CM cost func-

tion, we shall make the following assumptions:
A1: H3CNCM has full column rank.
A2: Source vector s is non-Gaussian with indepen-

dent components, zero-mean with E(ssH)"I,
and symmetrical.

A3: w is Gaussian with zero mean and covariance
p2I, and it is independent of s.

Assumption A1 implies that the number of sensors
is no less than the number of sources, and no two
sources have exactly the same propagation path.
The extension to non-full column rank cases can be
obtained by following [15]. A2 includes the possi-

bility of sources having different statistics except
the case when all sources are Gaussian. When s
is Gaussian, it is shown in Section 3 that, all re-
ceivers having output power equal to r/2 are global
minima.

3. The CM cost function and the signal space
property

Under A2 and A3, the CM cost function in
Eq. (3) has the following form:

JM ( f )"2E f E4R!2rE f E2R#
M
+

m/1

n
m
DeH
m

HHf D4#r2,

(4)

where

R¢E(xxH)"HHH#p2I
N
, (5)

n
m
¢cum(s

m
,sH
m
,s
m
,sH
m
)"EDs

m
D4!2"r

m
!2. (6)

Some insights can be gained by examining terms in
Eq. (4). Note that E f E2R is the output power of the
receiver. Hence, the CM cost is affected primarily
by the output power of the receiver and the fourth-
order terms of the system response eH

m
HHf weighted

by the signal cumulant n
m
. It is evident that for

a super-Gaussian source s
m
, n

m
'0, A CM receiver

tends to minimize the corresponding term eH
m
HHf.

On the other hand, for a sub-Gaussian source,
A CM receiver tends to enhance the corresponding
term in the system response. These, of course, must
be accomplished with considerations of the output
power term. Note here that if all sources are Gaus-
sian, n

m
"0 for all m. The minimization of the CM

cost leads to receivers whose output power is r/2. In
general, CM estimators for this case are not useful,
which is the reason we have assumed that the
source vector s is a non-Gaussian.

Analyzing the cost function in Eq. (4) directly is
cumbersome. Most existing analyses transform
the optimization of receiver coefficients to the
optimization of the system response q¢HHf.
Unfortunately, the optimization of f3CN is in
general not equivalent to the optimization of
q3Q¢Mq¢HHf D f3CNN except for the case when
H is square and full rank. For example, when there
are more sensors then sources, the analysis of CM
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cost function is complicated by the existence of the
null (noise) space of H. The following theorem es-
tablishing the signal space property of CM re-
ceivers makes the analysis of CM receivers in
Q possible.

Theorem 1. Assume that CHM is not empty, i.e.,
N'M, and p2'0.

1. If one of the sources is sub-Gaussian, then all local
minima of JM ( f ) (4) are in the signal subspace CH,
each with power satisfying

E f E2R'
r

2
. (7)

2. If one of the sources is sub-Gaussian, then all local
minima of the optimization constrained by CH

min
f|CH

JM ( f ) (8)

whose output power are greater than r/2 are local
minima of the unconstrained minimization of JM ( f ).

3. If there is no sub-Gaussian sources, then

G f D E f E2R"
r

2
, f3CHMXCH

'H (9)

is the set of global minima of JM ( f ), where CH
'
is

the space spanned by the columns of H corre-
sponding to the Gaussian sources.

Proof. See Appendix A.

Remark. CM receivers have a clear preference to
signals with smaller cumulants. When there are
sub-Gaussian sources, CM receivers retrieve only
the sub-Gaussian sources. When there are only
Gaussian and super-Gaussian sources, CM re-
ceivers filter out all super-Gaussian sources. CM
receivers admit super-Gaussian signals only when
all sources are super-Gaussian and M"N or
p2"0, as shown in Theorem 2.

With Theorem 1, when there is at least one sub-
Gaussian source, the optimization of JM ( f) is equiva-
lent to the constrained optimization in Eq. (8),
which is equivalent to the optimization of
q¢HHf3CM,

J(q)"2EqE4U!2rEqE2U#
M
+

m/1

n
m
Dq

m
D4#r2, (10)

where

U¢EM(s#Hsw)(s#Hsw)HN

"I
M
#p2(HHH)~1"HsR(HH)s. (11)

Eq. (10) is obtained by substituting f"(HH)sq
into Eq. (4). If q

#
is a minimum of J(q) defined in

Eq. (10), then the corresponding CM minimum can
be obtained by

f
#
"(HH)sq

#
(12)

whose output power is greater than r/2. Note that
in the noiseless case, the set of CM local minima is
the coset of CHM generated from the optimization of
J(q). Consequently, we shall from now on focus on
the minimization of J(q) in CM.

4. Minima of CM cost function: the noiseless case

The goal of this section is to establish the relation
between the set of local minima of J(q) and the set
of desirable system responses that completely elim-
inate the interference from other users. Without
loss of generality, we assume that the first M

~
users

are sub-Gaussian followed by M
0

Gaussian sour-
ces, and the last M

`
signals are super-Gaussian.

The complete characterization of CM local minima
is given by the following theorem which generalizes
that of Foschini [2].

Theorem 2. Consider the CM cost function J(q) in
Eq. (10). ¸et K be the set of local minima of J(q).

1. If there are sub-Gaussian sources (M
~
'0),

then K is the set of perfect receivers for the sub-
Gaussian sources,

K"Gqme
m K DqmD2"

r

r
m

, 1)m)M
~H. (13)

2. If all sources are super-Gaussian (M
~
"M

0
"0),

then

K"Gq K DqmD2"
r

n
m
(2g

M
#1)

, m"1,2,2,MH,
(14)
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where

g
M
¢

M
+

m/1

1

n
m

, (15)

3. If sources are a mix of Gaussian and super-Gaus-
sian signals (M

~
"0,M

0
'0), then

K"Gq D EqE2"
r

2
, q

m
"0, ∀m'M

0H. (16)

Proof. See Appendix B.

Remarks. (1) Case 1 implies that any initialization
of CM receiver leads to a perfect estimate of one of
the sub-Gaussian sources. Furthermore, there
exists a good initialization for every sub-Gaussian
source. Sub-Gaussian signals can be estimated
without being affected by the presence of Gaussian
and super-Gaussian signals. Gaussian and super-
Gaussian signals cannot be estimated by CMA
when there exist sub-Gaussian sources. Fig. 2 illus-
trates those properties for the three-source cases
when one, two or three of the sources are sub-
Gaussian. Let

q1"A
q
1
0

0 B, q2"A
0

q
2
0 B, q3"A

0

0

q
3
B,

where Dq
m
D2"r/r

m
,m"1,2,3.

First, as shown in Fig. 2(a), if only s
1

is sub-
Gaussian, the CM cost function has a local min-
imum q1. If there are two sub-Gaussian sources s

1
,s
2
,

CM receivers are q1 and q2, shown in Fig. 2(b).
Finally, the CM receivers are q1, q2 and q3, when
all the three sources are sub-Gaussian (Fig. 2(c)).

(2) When N"M and all sources are super-Gaus-
sian (Case 2), local minima are located at a vertices
of a box as illustrated in Fig. 3(a).

(3) For Case 3, in which there is no sub-Gaussian
sources, CM receivers are on a quadratic surface in
the subspace spanned by the columns of H asso-
ciated with Gaussian sources. For example, if the
first two sources are Gaussian and the third is
super-Gaussian, any

q"A
q
1

q
2
0 B

Fig. 2. CM receivers for case 1 (M"3).

Fig. 3. CM Receivers for cases 2 and 3 (M"3).

with q2
1
#q2

2
"r/2 are the local minima of CM cost

function (51), which is illustrated in Fig. 3(b).

5. Minima of CM cost function: the noisy case

The presence of noise complicates the analysis
considerably. In such a case, the characterization of
all local minima of CM cost in ways similar to
Theorem 2 appears to be difficult. Our goals in this
section are (i) to locate those local minima near the
Wiener receivers; and (ii) to investigate the proper-
ties of these local minima including their output
power, bias and MSE. Following [13,14] where it
was shown that, when the MMSE is not too large,
there exists a CM local minimum in the small
neighborhood of the Wiener receiver, we obtain
similar results for complex signals with possiblely
different distributions. To simplify the analysis, we
shall further restrict ourselves to the cases when all
sources are sub-Gaussian, i.e.

A4: E(Ds
m
D4)(2, m"1,2,2,M.

5.1. Location of CM receivers

To locate CM local minima in the neighborhood
of Wiener receivers, we adopt the two-step
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approach by Zeng and Tong in [13]. First, a com-
pact neighborhood of the Wiener receiver is defined
using parameters relevant to the receiver MSE per-
formance. Second, parameters are chosen such that
the CM cost function on the boundary of the neigh-
borhood is strictly greater than a reference inside
the neighborhood. By the Weierstrass theorem, this
neighborhood must contain at least one local min-
imum. Before we proceed in defining the neighbor-
hood that captures a CM receiver, let us recall the
Wiener receiver defined as one that minimizes the
mean square error

J
8
(q)¢E(Dy!s

1
D2)"EqE2U!qHe

1
!eH

1
q#1. (17)

The Wiener receiver for signal s
1

is the minimum of
the above optimization

q
8
"arg minJ

8
(q)"U~1e

1
. (18)

Again, without loss of generality, we shall restrict
our discussion of estimating s

1
throughout this

section.

5.1.1. The neighborhood
The neighborhood is defined through a special

parameterization of the system response q. Given
an estimator of s

1
, denote its system response by

q¢hA
1

q
I
B, (19)

where h is the receiver gain of s
1

and q
I
is the vector

of coefficients corresponding to the (relative) resi-
due interference from other users. Suppose the
Wiener receiver

q
8
"h

8A
1

q
8I
B. (20)

The neighborhood B(q
8
,d

U
,h

L
,h

U
), illustrated in

Fig. 4, is a slice of a cone centered around the
Wiener receiver q

8
with receiver gain h3[h

L
,h

U
],

B(q
8
,d

U
,h

L
,h

U
)¢Gq¢hA

1

q
I
B: h

L
)h)h

U
,

Eq
I
!q

8I
EC¢d)d

UH, (21)

Fig. 4. The region B.

where C is the submatrix of U by removing the first
column and row. The ‘width’ of the cone is specified
by d

U
which is, as shown in [14], the maximum

extra unbiased MSE3 among all receivers in the
neighborhood, i.e,

d2
U
" max

q|B(q8,dU,hL,hU) GKMSEA
1

h
8

q
8B!MSEA

1

h
qBKH.

(22)

Here MSE(q) stands for the mean square error of
an estimator with system response q.

5.1.2. The location of CM local minima

Select the reference q
3
"h

3AA
1

q
8I
BB where h

3
is

such that JAh3A
1

q
8I
BB is minimized, i.e.,

h
3
"argmin

h
JAhA

1

q
8I
BB, (23)

q
3
"h

3AA
1

q
8I
BB. (24)

We aim to choose h
L
, h

U
and d

U
so that (i) q

3
is

inside the neighborhood; and (ii) the CM cost on
the boundary of B(q

8
,d

U
,h

L
,h

U
) is strictly greater

3Given an estimator of s
1
, let the system response be

q"hA
1

q
I
B. The estimate y of s

1
has the form y"qTs#noise

term"hs
1
#other terms orthogonal to s

1
. Because E(yDs

1
)"

hs
1
, y is a conditionally biased estimate of s

1
. Scaling the esti-

mate y by 1/h, we have a (conditionally) unbiased estimate
u¢(1/h)y of s

1
, i.e. E(u!s

1
Ds
1
)"0. See also [1].
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than J(q
3
). Consequently, a CM receiver is located

in B(q
8
,d

U
,h

L
,h

U
). The following theorem describes

such a procedure.

Theorem 3. Given the ¼iener receiver q
8
"

h
8A

1

q
8I
B, let q

3
be defined by Eq. (24). ¼ith cumu-

lants n
i
of the sources, define

n
.*/

¢ min
1xmxM

Mn
m
N, r

.*/
¢n

.*/
#2, (25)

P
I
¢diagGA

n
2

n
.*/
B

1@4
,2,A

n
M

n
.*/
B

1@4

H. (26)

¸et h
L

and h
U

be determined by

h
L
¢ min

0xdxdUS
!c

1
(d)!c

1
(d)2!4c

2
(d)c

0
2c

2
(d)

,

(27)

h
U
¢ max

0xdxdU
S

!c
1
(d)#c

1
(d)2!4c

2
(d)c

0
2c

2
(d)

,

(28)

where

c
0
¢

r2

2#n
1
h2
8
#n

.*/
h2
8
EP

I
q
8I

E4
4

, (29)

c
1
(d)¢!2rAd2#

1

h
8
B, (30)

c
2
(d)¢2Ad2#

1

h
8
B

2
#n

1
#n

.*/
(d#EP

I
q
8I

E
4
)4).

(31)

¸et d
U

be the smallest positive root of D(d)¢
c
1
(d)2!4c

2
(d)c

0
.

(a) ¼ith dispersion constant r"EDs
1
D4/EDs

1
D2"

EDs
1
D4, if

h
8
'maxG1!

2

3(2!r
.*/

)
,

1!
J4#16r!9rr

.*/
!r#2

20!9r
.*/

!r H (32)

and

d
U
(Eq

8I
E
2
, (33)

then there exists a local minimum of J(q) in B(q
8
,d

U
,

h
L
,h

U
).

(b) ¸et q
#
is the local minimum of J(q) in B(q

8
,d

U
,

h
L
,h

U
), then

lim
p?0

B(q
8
,d

U
,h

L
,h

U
)"lim

p?0

Mq
#
N"lim

p?0

Mq
8
N. (34)

Proof. See Appendix C.

Theorem 3 gives sufficient conditions of the exist-
ence of a CM receiver in the neighborhood of the
Wiener receiver. Given the Wiener receiver and the
distribution of source signals, one can check
the two conditions given in Eqs. (32) and (33), both
depend on the distributions of source signals.
If they are satisfied, then there exists a CM re-
ceiver in the neighborhood of the Wiener receiver.
Table 1 gives the maximum value of MSE of the
Wiener receiver for QAM sources to satisfy Eq. (32)
assuming that r"r

.*/
. As to Eq. (33), polynomial

D(d) needs to be calculated first, then its smallest
positive root d

U
. When the noise is small enough,

for any sources, a root of D(d) can always be found
less than Eq

8I
E
2

and Eq. (32) can be satisfied with
h
8

close to 1, which means that there must be
a local minimum of J(q) in the neighborhood of
the Wiener receiver. Part (b) of Theorem 3 gives the
result consistent with the noiseless case. As
measurement noise becomes zero, the neighbor-
hood defined by B(q

8
,d

U
,h

L
,h

U
) shrinks to one, the

Wiener receiver. We note that the above theorem
does not cover those local minima not in the vicin-
ity of Wiener receivers.

5.2. Output power, bias and MSE of CM receiver

In Section 3, it is shown that the output power of
any CM receiver is greater than r/2 when there is at
least one sub-Gaussian source. In this section, the
upper bound of the output power of the local min-
ima of J(q) is obtained for the case that all the
sources are sub-Gaussian. Further, we compare the
output power, bias, residue interference of CM re-
ceiver in the region B(q

8
,d

U
,h

L
,h

U
) with that of the

Wiener receiver, and give the MSE bounds of the
CM receiver.

88 D. Liu, L. Tong / Signal Processing 73 (1999) 81–104



Table 1
Required MMSE for the test of existence of CM receivers in the
neighborhood of Wiener receivers

r"EMDsD4N Required MMSE

4QAM 1.000 0.5683
16QAM 1.320 0.4482
32QAM 1.310 0.4529
64QAM 1.384 0.4156
128QAM 1.348 0.4344

Theorem 4. (1) ¹he output power of any CM receiver
f
#

satisfies

r

2
(E f

#
E2R(

r

r
.*/

. (35)

(2) Suppose that q
#
"h

#
[1,q5

#I
]53B(q

8
,d

U
,h

L
,h

U
) is

a CM receiver,
(a) If

h
8
'maxG

2

3
,

2r

2#r
.*/
H, (36)

and

h3
8
!h2

8
!

r
.*/

4!2r
.*/

h
8
#

r

4!2r
.*/

(0, (37)

then the output power of CMA receiver is less than
that of the ¼iener receiver, i.e.

Eq
#
E2U(Eq

8
E2U(1, (38)

and the bias of the CMA receiver is greater than that
of the ¼iener receiver, i.e.

Dh
#
D)h

8
. (39)

(b) Eq
#I
E
4
*Eq

8I
E
4
.

Proof. See Appendix D.

With r
.*/

"r, Eq. (37) is equivalent to

h
8
'Jr/4!2r. (40)

For some signals, Eq. (40) can never be true. For

example, 64QAM and 128QAM, Jr/(4!2r)"

1.0599 and Jr/(4!2r)"1.0167, respectively. Our

simulation shows that the output power of CMA
receiver is greater than that of the Wiener receiver
for 64QAM and 128QAM sources, respectively. If
Eq. (37) is true, we also can know that Dh

3
D(h

8
, i.e.,

the bias of the reference q
3

is larger than that of
Wiener receiver.

A useful performance measure of a receiver is its
mean squared error (MSE). In the following the-
orem, the MSE bounds are given for the local
minimum located in B(q

8
,d

U
,h

L
,h

U
).

Theorem 5. Suppose q
8
"h

8A
1

q
8I
B is the ¼iener

receiver, q
#
is a local minimum in B(q

8
,d

U
,h

L
,h

U
)

without phase rotation, and q
3
"h

3A
1

q
8I
B is the refer-

ence defined in Eqs. (23) and (24). ¸et *E¢
J
8
(q

#
)!J

8
(q

8
), and *EY ¢J

8
(q

3
)!J

8
(q

8
); then

(41)

*EY "(Jr/(2#n
1
h2
8
#n

.*/
h2
8
EP

I
q
8I

E4
4
)!Jh

8
)2

"A
3r!4

2r B
2
J2
8
(q

8
)#O(J2

8
(q

8
)), (42)

where J
8
(q) is the MSE of a receiver q.

Proof. See Appendix E.

Similar to the conditions (32) and (33) in The-
orem 3, *E

U
, *E

L
and *K E can be computed

from the Wiener receiver and the distributions of
sources. If J

8
(q

8
), the MSE of Wiener receiver, is

small, the extra MSE of CM receiver over that of
the Wiener receiver can be approximated by
Eq. (42).
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6. Numerical results

We present in this section several numerical
studies of CM cost function when it is applied to
estimating a narrow-band source using a linearly
spaced antenna array. We have focused our study
on the case with channel noise since the CM local
minima are completely characterized in Theorem
2 for the noiseless case. The objective of this section
is twofold. First, we evaluate the quality of the
MSE bounds derived in Section 5. Second, we in-
vestigate the effect of the presence of super-Gaus-
sian interference. In contrast to the noiseless case,
the presence of super-Gaussian interference may
remove the CM local minimum from the neighbor-
hood of Wiener receiver.

We tested the case with four uniformly quarter-
wavelength spaced antenna elements and three
sources, i.e., N"4, M"3. All users had the same
power. We considered the performance of CM re-
ceiver for (i) well separated sources; (ii) closely
spaced interference with different source distribu-
tions; and (iii) clustered sources.

6.1. Properties of CM local minima

We considered first the case of three well-separ-
ated sources: a QPSK source at !10°, a 16-QAM
source at 15°, and a 64-QAM at 35°. To estimate
QPSK source s

1
at !10°, we chose r"r

1
"1.

Fig. 5 shows the lower and upper MSE bounds
given in Eq. (41), the MSE of the Wiener receiver,
and the MSE of the CM receiver.4 We also marked
the reference point q

3
, defined in Eqs. (23) and (24),

as an approximation of the CM receiver. From
Fig. 5, we observe that both the lower and the
upper bounds were tight. The MSEs of CM receiver
q
#

(-), its approximation q
3

(*), and the Wiener
receiver q

8
(—) were indeed very close to each other.

This was further demonstrated in Table 2 for
SNR"10 dB. For this case, we see that the output
power of CMA is less than that of the Wiener
receiver, and the interference level is greater than

4The CM receiver is obtained from the gradient search of the
true CM cost function.

Fig. 5. The bounds of MSE.

that of the Wiener receiver, both predicted by The-
orem 4. Note that because the output power is
greater than 0.5, the local minimum obtained by
searching q is indeed the local minimum obtained
by searching f as shown in Theorem 1. When the
condition (40) of Theorem 4 is not satisfied, the
output power of the CM receiver may be greater
than that of the Wiener receiver, which is in con-
trast to the equalization problem for BPSK signals
[14]. Table 3 documents one such case when all
three signals were 64-QAM sources. Note also that
the CMA, its approximation, and the Wiener re-
ceiver remained close in this case.

6.2. Effects of co-channel interference

We considered the same three source case but
with varied interference statistics, QPSK, 16QAM,
64QAM, Gaussian sources and super-Gaussian
sources with r"EDsD4"3. It is evident from
Fig. 6 that, for the case of well-separated sources,
the signal statistics of the interference affects little
the location of CM local minimum and its approxi-
mations.

6.2.1. Can super-Gaussian interference remove a
CM local minimum?

We considered next the case when the source
locations were closer. Specifically, the angles of
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Table 2
CMA and MMSE at SNR"10dB ([!10°,15°,35°], [QPSK,16QAM,64QAM])

System response coefficients Output power Eq
I
E4
4

CMA q
#

[0.757,0.122#0.198i,0.021!0.108i] 0.7269 0.0094
MMSE q

.
[0.788,0.123#0.200i,0.022!0.118i] 0.7878 0.0083

Reference q
3

[0.757,0.118#0.192i,0.022!0.113i] 0.7268 0.0083

Table 3
CMA and MMSE at SNR"10dB ([!10°,15°,35°], [64QAM,64QAM,64QAM])

System response coefficients Output power Eq
I
E4
4

CMA q
#

[0.822,0.135#0.219i,0.022!0.114i] 0.8574 0.0101
MMSE q

.
[0.788,0.123#0.200i,0.022!0.118i] 0.7878 0.0083

Reference q
3

[0.822,0.128#0.208i,0.024!0.123i] 0.8572 0.0083

Fig. 6. The effect of interference signal constellation.

arrival were !10°, 0° and 35°, which means that
interference from the second user was closer to the
desired signal. Fig. 7 shows the MSE of CM re-
ceiver for the QPSK source s

1
with the interference

s
2
varied from 64-QAM to a super-Gaussian source

r
2
"6. In this case, we observed that the effects of

interference constellation is not significant when
they were sub-Gaussian. However, when the inter-
ference s

2
was changed to super-Gaussian with

r
2
"6, the MSE behavior of CM receiver at lower

Fig. 7. The effect of interference signal constellation.

SNR region showed significant difference from the
case when s

2
was 64-QAM. For the noiseless case,

we have already shown in Theorem 2 that the
presence of super-Gaussian interference has no ef-
fect on the location of the CM receiver for a sub-
Gaussian source, which was indeed verified at high
SNR region. At low SNR, this example appeared to
show the contrary. Table 4 gives the CM coeffi-
cients for the three users at SNR"10dB. It ap-
peared that, initialized at their Wiener receivers, all

D. Liu, L. Tong / Signal Processing 73 (1999) 81—104 91



Table 4
CMA and MMSE (angles: [!10°,0°,35°], SNR"10 dB)

SNR"10 dB

user 1 CMA [0.016#0.082i,0.031!0.140i,0.861]
r"1 MMSE [0.583,0.370#0.161i,0.016!0.082i]
user 2 CMA [0.016#0.085i,0.028!0.127i,0.826]
r
2
"6 MMSE [0.370!0.161i,0.486,0.031#0.140i]

user 3 CMA [0.016#0.085i,0.028!0.127i,0.826]
r
3
"1 MMSE [0.017#0.082i,0.031!0.139i,0.861]

CM receivers converged to the one close to the
Wiener receiver for user s

3
. Further test5 showed

that it seemed to be the case that the super-Gaus-
sian interference did remove the local minimum
from the neighborhood of the Wiener receiver for
user 1.

6.3. Closely spaced sources

Finally, we considered the case when the three
sources were clustered with angles of arrival at 10,
15 and 20°. All source signals were QPSK. Figs. 8
and 9 show the MSE of CM receivers for user 1 and
user 2, respectively. The presence of noise affects
these two users quite differently. At low SNR, there
was no CM local minimum in the neighborhood of
Wiener receiver for user 1 due to the power con-
straint given in Theorem 1. Table 5 shows that,
when initialized at the Wiener receiver, the gradient
search leads to one close to the Wiener receiver for
user 2. As SNR increases, the CM local minimum
re-emerges in the neighborhood of Wiener receiver
of user 1. This phenomenon does not occur for user
2 for SNR from 8 to 10 dB, and it occurs for SNR in
the range of 11—43dB. Shown in Table 6 is the case
for SNR"14 dB. Initialized at the Wiener receiver
for user 2, the CM gradient search leads to the local
minimum in the neighborhood of Wiener receiver
for user 3.

5We checked the gradient of CM cost function in the neigh-
borhood of the Wiener receiver. Among receivers having less
than 50% extra MSE, i.e. (MSE(q)!MSE(q

.
))/MSE(q

.
)(

50%, 106 receivers were tested for their gradient and found them
lower bounded by 0.0005.

Fig. 8. The MSE of closely spaced sources (user 1).

Fig. 9. The MSE of closely spaced sources (user 2).

Table 5
CMA and MMSE (angles: [10°,15°,20°], SNR"8 dB)

SNR"8 dB

user 1 CMA [0.421!0.086i,0.435,0.422#0.084i]
r
1
"1 MMSE [0.422,0.310#0.063i,0.191#0.080i]

user 2 CMA [0.421!0.086i,0.435,0.422#0.084i]
r
2
"1 MMSE [0.310#0.063i,0.321,0.312#0.620i]

user 3 CMA [0.420!0.085,0.435,0.423#0.084i]
r
3
"1 MMSE [0.191!0.080i,0.312!0.062i,0.420]
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Table 6
CMA and MMSE (angles: [10°,15°,20°], SNR"14 dB)

SNR"14 dB

user 1 CMA [0.600,0.361#0.073i,0.125#0.052i]
r
1
"1 MMSE [0.589,0.321#0.065i,0.061#0.026i]

user 2 CMA [0.129!0.054i,0.368!0.073i,0.597]
r
2
"1 MMSE [0.321!0.067i,0.335,0.325#0.065i]

user 3 CMA [0.127!0.053i,0.367!0.073i,0.598]
r
3
"1 MMSE [0.061!0.026i,0.325!0.065i,0.585]

7. Conclusion

Blind beam forming based on the constant
modulus cost function has several distinct advant-
ages, especially when all sources are sub-Gaussian.
The most important is, perhaps, the connection
between the Wiener and CM receivers. When there
is no noise and all sources are sub-Gaussian, all
local minima of CM cost function are global and
they perfectly estimate all the sources. When there
is noise, we have shown in this paper that those
sources whose MMSE is not too large can also be
estimated by CM receiver with similar MSE. In
fact, CM receivers for these sources are approxim-
ately scaled Wiener receivers. This means that the
CM array approach is close to the MMSE estimate
of all the sources provided that, at each stage, the
MMSE of some source is not too large and appro-
priate initialization is used. There are cases, how-
ever, that there is no CM receiver in the
neighborhood of the Wiener receiver. In this case,
the CM array cannot extract this source accurately,
and significant error propagation may occur.

When there are mixed sources, it should be cau-
tioned that the presence of super-Gaussian sources
may remove CM local minima from the neighbor-
hood of Wiener receivers at low SNR. When there
is no noise and at least one sub-Gaussian source, we
show that CM receivers filter out all Gaussian and
super-Gaussian sources. When all sources are either
Gaussian or super-Gaussian, CM receivers filter out
all super-Gaussian sources. It is perhaps not surpris-
ing that CM cost function tends to favor sub-Gaus-
sian over Gaussian and super-Gaussian sources,
and Gaussian sources over super-Gaussian sources.

For further reading, see [3].
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Appendix A. Proof of Theorem 1

To prove case 1, assume, without the loss of
generality, that n

1
(0. Let f 0 be a local minima,

and * f"* fH#* fHM, then

JM ( f 0)!JM ( f 0#* f)"M2(E f E4R!E f#*f E4R)

!2r(E f 0E2R!E f 0#*f E2R)N (A.1)

#G
M
+

m/1

n
m
(DeH

m
HHf 0D4!DeH

m
HH( f 0#*fH)D4)H (A.2)

"D
1
#D

2
. (A.3)

To show that all CM local minima are in the
signal subspace, we consider the following two
scenarios: (a) f 0"f 0HM3CHM; (b) f 0"f 0H#f 0HM,f 0H3CH,
f 0HM3CHM, f 0HMO0.

For (a), because n
1
(0, and (A1), there exists

*fH3CH and an arbitrarily small e such that

D
2
"

M
+

m/1

n
m
(DeH

m
HHf 0HMD4

!DeH
m

HH( f 0HM#*fH#*fHM)D4)

"!

M
+

m/1

n
m
DeHHH*fHD4"!en

1
'0. (A.4)

Since f 0HMO0, and p2'0, there exists a *fHM3CHM

such that

Ef 0E2R!Ef 0#*fE2R

"Ef 0HME2R!Ef 0HM#*fHME2R!E*fHE2R"0,

i.e.,

D
1
"0. (A.5)
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From Eqs. (A.5) and (A.6), we have JM ( f 0)'
JM ( f 0#*f ). Therefore, f 0 can not be a local min-
imum. The same technique can also be used to
show that f0HM"0 for case (b).

We show next that all CM local minima in this
case must have output power greater than r/2. Let
f 0H be a CM local minimum and E f 0HE2R(r/2. Let
f"*fHM#f 0H , where *fHM3CHM. It can be verified that

JM ( f )"JM ( f 0H )#2E*fHME4R#2E*fHME2R(2E f 0H E2R!r).

(A.6)

Because the last term of the above equation is
negative, there exists *fHM small enough that
JM ( f )(JM ( f 0H ). Hence Ef 0HE2R*r/2. To exclude the
equality, one can always find a f 0H#*fH such that
(2E f 0H#*fHE2R!r)(0.

To show case 2, we show that any local minimum
in CH with output power greater than r/2 is also
a local minimum with no constraint. Consider
a small perturbation *f"*fH#*fHM of such a lo-
cal minima f 0H . From Eq. (A.6),

JM ( f 0H#*f )"JM ( f 0#*fH)#2E*fHME4R
#2E*fHME2R(2E f 0H#*fHE2R!r) (A.7)

'JM ( f 0)#2E*fHME4R#2E*fHME2R(2E f 0H

#*fHDD2R!r). (A.8)

Because E f 0HE2R'r/2, there exists a small neigh-
borhood around 0 such that the last term in the
above inequality is positive. Therefore, JM ( f 0H#*f )'
JM ( f 0H ).

To prove case 3, we consider the case when the
first M

`
sources are super-Gaussian, i.e., n

i
'0 for

i"1,2,M
`

and zero otherwise. Let f 0NCHMXCH
'

be a local minimum. Because of (A1), there exists an
arbitrary small e'0 and *fH such that

( f 0#*fH)HH"(1!e ) f 0HH.

Since p2'0, choosing *fHM such that E*fHME2"
(1!(1!e)2)E f 0#*fHE2R, we have

E f 0E2R"D f 0#*f E2R,

M`

+
i/1

n
i
DeH
i
HH( f 0#*f )D4(

M`

+
i/1

n
i
DeH
i
HHf 0D4.

This contradicts that f 0 is a local minimum. Now
consider any local minimum f 0, then

JM ( f 0)"2E f 0E4R!2rE f 0E2R#
M`

+
m/1

n
m
(DeH

m
HHf 0D4#r2

"2E f 0E4R!2rE f 0E2R.

It is easy to see that E f 0E2R"r/2.

Appendix B. Proof of Theorem 2

For the noiseless case, U"I
M

. The CM cost function is given by

J(q)"2EqE4
2
!2rEqE2

2
#

M
+

m/1

n
m
Dq

m
D4#r2. (B.1)

The gradient of J(q) is

£qHJ(q)"4EqE2q!2rq#2Qq"2(2EqE2I
M
!rI

M
#Q)q, (B.2)

where,

Q"diagMn
1
Dq

1
D2,2,n

M
Dq

M
D2N.

The stationary points are given by

2EqE2!r#n
m
Dq

m
D2"0 or q

m
"0, m"1,2,2,M. (B.3)
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This implies that when there are K non-zero entries q
mj
, j"1,2,2,K, in a stationary point q, we have three

possibilities:
S0: q"0.
S1: n

mi
n
mj
'0, ∀i, j"1,2,2,K,

Dq
mj

D2"
r

n
mj

(2g
K
#1)

, g
K
¢

K
+
j/1

1

n
mj

, (B.4)

EqE2"
g
K

2g
K
#1

r. (B.5)

S2: n
mj
"0, j"1,2,2,K,

EqE2"
r

2
. (B.6)

Next we will check the stationary points and obtain the local minima of J(q).
The Hessian matrix of Eq. (B.1) is

£q£qHJ(q)"4EqE2I#4qqH!2rI#4Q, (B.7)

which, according to K, has the following three forms at the stationary points defined in S1:
(i) when K"M,

£q£qHJ(q)"4qqH#
2r

2g
M
#1

I, (B.8)

(ii) when 1(K(M,

£q£qHJ(q)"

!2r

2g
K
#1

}
2rr

m1

n
m1

(2g
K
#1)

4q
m1

qH
m2 *

}

4qH
m1

q
m2

2rr
m2

n
m2

(2g
K
#1)

* }
!2r

2g
K
#1

; (B.9)

(iii) when K"1,

£q£qHJ(q)"

2r(2!r
m1

)

r
m1 }

2r(2!r
m1

)

r
m1 2r

2r(2!r
m1

)

r
m1 }

2r(2!r
m1

)

r
m1

. (B.10)
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Since £q£qHJ(q)Dq/0"!2rI(0, q"0 is a local maximum.

1. First, we show case 1 (M
~
'0): If all sources corresponding to non-zero entries of q are super-Gaussian,

i.e., r
mj
'2,

!2r

2g
K
#1

"

2r(2!r
mj

)

n
mj
(2g

K
#1)

(0, (B.11)

K
2rr

m1

n
m1

(2g
K
#1)

4q
m1

qH
m2

4qH
m1

q
m2

2rr
m2

n
m2

(2g
K
#1) K"

4r2(r
m1

r
m2
!4)

n
m1

n
m2

(2g
K
#1)2

'0. (B.12)

Hence £q£qHJ(q) is indefinite and the stationary point is not stable. If all sources corresponding to
non-zero entries of q are sub-Gaussian, i.e., r

mi
(2, then

!2r

2g
K
#1

'0 (B.13)

and

K
2rr

m1

n
m1

(2g
K
#1)

4q
m1

qH
m2

4qH
m1

q
m2

2rr
m2

n
m2

(2g
K
#1) K(0. (B.14)

Eqs. (B.13) and (B.14) again imply that £q£qHJ(q) of Eq. (B.9) is indefinite; therefore, there is no local
minimum when 2)K)M and n

mj
O0.

When r
mj
"2, j"1,2,2,K, consider a stationary point q in S2,

q"
q
~

q
0

q
`

"

0

q
0
0

, EqE2"Eq
0
E2"

r

2
. (B.15)

If M
~
'0, there exists a small enough

*q"
*q

~
*q

0
0

such that

Eq#*qE2"
r

2
.

Thus J(q#*q)!J(q)"+M~

m/1
n
m
D*q

m
D4(0, which means q given in S2 are not local minima.

When K"1, we have

2r(2!r
m1

)

r
m1

'0 iff r
m1
(2.

Therefore, q"q
m
e
m

is a local minimum iff r
m
(2. This proves

K"Gqme
m K DqmD2"

r

r
m

, 1)m)M
~H. (B.16)
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2. Now let us consider case 2 (M
`
"M): From r

m
'2, m"1,2,2,M, it is easy to see that Eqs. (B.10) and

(B.9) are indefinite and Eq. (B.8) is positive definite, i.e.,

K"Gq"(q
1
,q

2
,2,q

M
)T,Dq

m
D2"

r

n
m
(2g

M
#1)H.

3. Finally, assume M
~
"0,M

0
'0: Considering

q"

q
~

q
0

q
`

in Eq. (B.15), if M
~
"0, for any *qO0, J(q#*q)!J(q)'0, which implies that q is a local minimum.

Appendix C. Proof of Theorem 3

The proof has four steps: (i) express the CM cost function using the extra MSE d defined in Eq. (21) and the
receiver gain h and h

8
; (ii) give the reference q

3
; (iii) prove there is a local minimum in B(q

8
,d

U
,h

L
,h

U
); and (iv)

verify that when noise variance goes to 0, CM receiver goes to the Wiener receiver.

1. Suppose that q
8
"h

8AA
1

q
8I
BB is the Wiener receiver for s

1
. For any receiver

q"hAA
1

q
I
BB,

it can be shown [13,14] that

EMy2N"EqE2U"DhD2A
1

h
8

#d2B. (C.1)

According to Eq. (C.1), the CM cost function J(q) is then given by

J(q)"2Ad2#
1

h
8
B

2
DhD4!2rAd2#

1

h
8
BDhD2#(n

1
#n

.*/
EP

I
q
I
E4
4
)DhD4#r2, (C.2)

where P
I
and n

.*/
are defined as in Eqs. (26) and (25), respectively.

In the following, Eq. (C.2) will be used to locate the local minima of J(q).

2. Choose reference q
3
¢h

3A
1

q
8I
B with the minimum CM cost:

JAhA
1

q
8I
BB"

2

h2
8

DhD4!
2r

h
8

DhD2#(n
1
#n

.*/
EP

I
q
8I

E4
4
)DhD4#r2. (C.3)

From

LJ

LDhD2
"2C

2

h2
8

#(n
1
#n

.*/
EP

I
q
8I

E4
4
)DDhD2!

2r

h
8

"0, (C.4)
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we get

Dh
3
D2"

rh
8

2#h2
8
(n

1
#n

.*/
EP

I
q
8I

E4
4
)
. (C.5)

Thus,

J(q
3
)"

2
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8
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8
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1
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.*/
EP

I
q
8I
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4
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8
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.*/
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I
q
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4
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I
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I
q
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1
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I
q
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4
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8
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1
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.*/
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I
q
8I

E4
4
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!
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8
(n

1
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I
q
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4
)
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8
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1
#n

.*/
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I
q
8I
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4
)

(C.6)

"r2!r
Dh

3
D2

h
8

. (C.7)

Since the noise variance p2'0, we have C'I
nq~1

. Then

P
I
q
I
E
4
"EP

I
q
I
!P

I
q
8I
#P

I
q
8I

E
4

)EP
I
(q

I
!q

8I
)E

4
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I
q
8I

E
4

(Eq
I
!q

8I
EC#EP

I
q
8I

E
4

"d#EP
I
q
8I

E
4
.

Therefore,

J(q)!J(q
3
)"C2Ad2#

1

h
8
B

2
#n

1
#n

.*/
EP

I
q
I
E4
4DDhD4

!2rAd2#
1

h
8
BDhD2#r2#
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8
(n

1
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I
q
8I

E4
4
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h
8
B

2
#n

1
#n

.*/
(d#EP

I
q
8I

E
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)4DDhD4

!2rAd2#
1

h
8
BDhD2#

r2

2#h2
8
(n

1
#n

.*/
EP

I
q
8I

E4
4
)
"c

2
(d)DhD4#c

1
(d)DhD2#c

0
. (C.8)

3. To show that there is CM receiver in B(q
8
,d

U
,h

L
,h

U
), we need to show the CM cost of every point on the

boundary of B(q
8
,d

U
,h

L
,h

U
) is greater than that of reference q

3
and the reference is inside B(q

8
,d

U
,h

L
,h

U
).

(a) Consider all points on the peripheral surface S
p
"Mq:Eq

I
!q

8I
E
C
"d

U
,h

L
)h)h

U
N shown in Fig. 10.

First we need to show c
2
(d)'0, ∀d3(0,Eq

8I
E
2
).
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Fig. 10. Three surfaces of the sliced cone.

According to Eq. (31),

c
2
(d)"2Ad2#

1

h
8
B

2
#n

1
#n

.*/
(d#EP

I
q
8I

E
4
)4"(2#n

.*/
)d4#4n

.*/
EP

I
q
8I

E
4
d3

#A
4

h
8

#6n
.*/

EP
I
q
8I
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4Bd2#4n
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I
q
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E3
4
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2
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8

#n
1
#n

.*/
EP

I
q
8I

E4
4
. (C.9)

From 1!h
8
*(1!h

8
)2#h2

8
Eq

8I
E2
2

[14], we have Eq
8I

E2
2
)(1!h

8
)/h

8
. Therefore,

EP
I
q
8I

E
4
(Eq

8I
E
2
(S

1!h
8

h
8

. (C.10)

Substituting Eq. (C.10) into Eq. (C.9), it can be obtained

c
2
(d)'(2#n

.*/
)d4#4n

.*/
Eq

8I
E4
2
#A

4

h
8

#6n
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8I

E2
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.*/
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2
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4
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8

h
8
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2
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8

#n
1
#9n

.*/A
1!h

8
h
8
B

2

"(2#n
.*/

)d4#
4#6n
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!6n
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h
8

h
8

d2#
1
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8
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1
#9n

.*/
)h2

8
!18n

.*/
h
8
#(2#9n

.*/
)]. (C.11)

Now we want to find the condition for h
8

in which c
2
(d)'0 for any d3(0,Eq

8I
E
2
). There are three terms in

Eq. (C.11). If

4#6n
.*/

!6n
.*/

h
8
'0 (C.12)

and

(n
1
#9n

.*/
)h2

8
!18n

.*/
h
8
#(2#9n

.*/
)'0, (C.13)

then c
2
(d)'0.

Eq. (C.12) is equivalent to

h
8
'1#

2

3n
.*/

. (C.14)

The left-hand side of Eq. (C.13) is a polynomial of h
8
. Define

u(n
1
,n

.*/
)¢(18n

.*/
)2!4(n

1
#9n

.*/
)(2#9n

.*/
), (C.15)
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then Eq. (C.13) is equivalent to

18n#Ju(n
1
,n

.*/
)

2(n
1
#9n

.*/
)

(h
8
(

18n
.*/

!Ju(n
1
,n

.*/
)

2(n
1
#9n

.*/
)

. (C.16)

It is easy to see

u(n
1
,n

.*/
)"4[!2n

1
!9n

.*/
(2#n

1
)]'4[!2n

1
]'4n2

1
,

hence, (18n
.*/

!Ju(n
1
,n

.*/
))/2(n

1
#9n

.*/
)'1, which means h

8
((18n

.*/
!Ju(n

1
,n

.*/
))/2(n

1
#9n

.*/
)

is always true.
Now we have shown that c

2
(d)'0, ∀d3(0,Eq

8I
E
2
), when Eq. (32) holds.

Also we know 0(d
U
(Eq

8I
E
2
; therefore,

J(q)!J(q
3
)'c

2
(d

U
)DhD4#c

1
(d

U
)DhD2#c

0
*0, ∀q3S

p
. (C.17)

(b) Now we check the points on the upper surface S
U

defined by h"h
U
,0)d)d

U
. Since

DhD2"(h
U
)2*

!c
1
(d)#Jc

1
(d)2!4c

2
(d)c

0
2c

2
(d)

, (C.18)

and c
2
(d)'0, then the polynomial c

2
(d)DhD4#c

1
(d)DhD2#c

0
*0. Thus, J(q)!J(q

3
)'0. Similarly,

J(q)!J(q
3
)'0 ∀q3S

L
.

(c) Finally, we verify that (h
L
)2(Dh

3
D2((h

U
)2. From Dh

3
D2"!c

1
(0)/2c

2
(0) and Eqs. (27) and (28), it can be

obtained easily.
4. In the end, we examine the case as the noise variance pP0. From Eqs. (29)—(31), we have

lim
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c
0
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8
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1
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So
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p2?0

d
U
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and
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p2?0

h
L
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p?0

h
U
"1"h

8
.

Appendix D. Proof of Theorem 4

1. It has already been shown that E f
#
E2R'r/2 in Section 3. Define a function for any f such that E f ER"1,

/(k, f )¢JM (Jkf )"(2#n
.*/

EPHHf E4
4
)k2!2rk#r2, (D.1)
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where

P¢diagGA
n
1

n
.*/
B

1@4
,2,A

n
M

n
.*/
B

1@4

H,
then

L/(k, f )
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"2(2#n
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EPHHf E4

4
)k!2r. (D.2)

The minimum of /(k, f ) is achieved at

k
0
"

r

2#n
.*/

EPHHf E4
4

. (D.3)

Since n
.*/

(0, and EPHHf E4
4
)EHHf E4

2
(Ef E4R"1,

E f
#
E2R"k

0
(

r

n
.*/

#2
"

r

r
.*/

.

2. Now consider a local minimum of J(q) in B(q
8
,d

U
,h

L
,h

U
).

(a) Any point in B(q
8
,d

U
,h

L
,h

U
) can be represented by Jkq, where EqE2U"Eq

8
E2U"h

8
and 0)k(R.
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/(k,q)¢J(Jkq)"2h2
8
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8
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I
qE4

4
k2#r2. (D.4)

From (d/dk)/(k,q)"0, the minimum Jkq must have

k"
rh

8
2h2

8
#n

.*/
EPqE4

4

. (D.5)

If k(1, then Eq
#
E2U(Eq

8
E2U. In order to get the condition for k(1, we adopt the following two steps:

(i) Bound EPqE4
4

by DhD and h
8
: Since

EPqE4
4
(EqE4

4
"DhD4#Ehq

I
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Define a polynomial of DhD as

p(DhD)¢2n
.*/

DhD4!2n
.*/

h
8
DhD2#r

.*/
h2
8
!rh

8
, (D.7)

then p(DhD)'0 results in k'1. It is easy to see that if

2n
.*/

h
8
#JD
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h
8
!JD
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.*/

, (D.8)

then p(DhD)'0, provided that

h
8
'
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, (D.9)

which means D"4n
.*/

h
8
(n

.*/
h
8
!2r

.*/
h
8
#2r)'0.
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(ii) Bound DhD by h
8
: According to qtUq"DhD2(d2#1/h

8
)"h

8
, and d2(Eq

8I
E2
2
((1!h

8
)/h

8
, we know
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It can be shown that
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Therefore, Eq
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8
E2U(1 and Dh

#
D)h

8
, when Eqs. (36) and (37) hold.

(b) Prove by contradiction. Suppose that Eq
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E
4
(Eq

8I
E
4
. Let
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8I
B. (D.10)

Obviously, qK
#
3B

p
(q

8
,d

U
,h

L
,h

U
), and EqK

#
E
4
'Eq

#
E
4
. According to Eq. (C.1),
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Also we have known EqK
#
E2U'r/2, therefore

J(qK
#
)(J(q

#
) (D.12)

which contradicts that q
#

is the CMA minimum in B(q
8
,d

U
,h

L
,h

U
).

Appendix E. Proof of Theorem 5
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If h
#
is real,
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Thus, we obtain the bounds in Eq. (41):

*EY "(h
3
!h

8
)2

h
8

"A
h
3

Jh
8

!Jh
8B

2
. (E.3)
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According to Eq. (C.5),
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hence,
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From Eq. 100, we have
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