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Abstract

We consider a reservation-based medium access control (MAC) scheme where users reserve data channels through a
slotted-ALOHA procedure. The base station grants access to users in a Rayleigh fading environment using measurements at
the physical layer and system information at the MAC layer. This paper has two contributions pertaining to simple reserva-
tion based medium access. First, we provide a Markov chain formulation to analyze the performance (throughput/channel
utilization) of multichannel slotted system. Second, a Neyman-Pearson like MAC design optimized for performance is pre-
sented. This design can serve as a benchmark in evaluating the performance of other designs based on conventional physical
layer detectors such as Maximum A posteriori Probability, Maximum Likelihood and Uniformly Most Powerful detectors.
Results show that utilizing system information in addition to the physical layer measurements indeed leads to a gain in
performance. We discuss the issue of further improving the performance in fading by means of multiple measurements and

also comment upon the delay/channel-utilization trade-off for the optimal MAC design.

I. INTRODUCTION

Standard designs of reservation-based medium access control (MAC) consist of two separate steps: a
detector at the physical layer (PHY) that estimates the number of requests on a particular channel and
an acknowledgement protocol at the MAC sub-layer based on the PHY layer output. Typically, if each
channel can accommodate a single transmission, the detector at the physical layer tests the hypothesis
that there is exactly one user requesting the channel. For example, a simple MAC design for the random
access channel (RACH) of the UMTS-WCDMA [18] may acknowledge a particular channel if the strength
of the measured signal exceeds certain thresholds [11], [20].

It is not obvious that treating the MAC problem as one of detecting the number of users followed by
some acknowledgement protocol leads to any optimality at the MAC layer; the detector that minimizes
the probability of detection error at the PHY layer need not be the one that maximizes the throughput
or the one that minimizes the expected delay. In their seminal papers [9], [16], Kleinrock and Tobagi
analyzed the impact of physical layer detection of the busy-tone in the context of carrier sensing multiple
access (CSMA). There they showed the unusual effects of miss detection and false alarm on the MAC
throughput.

Also missing in the separate design of PHY and MAC layers is the possibility of utilizing the MAC
parameters at the physical layer, and in the reverse direction, the measurements at the PHY layer in the
MAC acknowledgement. This interaction is particularly relevant in a multichannel MAC where the traffic
statistics of the number of users requesting a channel are intertwined with the number of channels that
are occupied in a particular time slot. Passing down the information on the number of available channels
at a particular time to the detector may improve the performance.

In this paper, we consider a generic multichannel reservation-based MAC in a Rayleigh fading environ-
ment where users request transmissions by sending a signature randomly chosen from a pool of orthogonal
codes representing the set of available channels. The receiving node grants or denies their transmissions
based on the measured signal strength. A collision occurs if multiple (> 1) users send requests for a

channel and that channel is acknowledged by mistake. On the other hand, if a channel is acknowledged
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without any user requesting for it, it is mistakenly taken out of the pool of available channels for other
users, which causes inefficient channel (code) utilization, heavier traffic, and more frequent collisions in
other channels. Such random access schemes have been proposed for the UMTS-WCDMA [18].

One of the difficulties of a joint PHY and MAC design, in general, is the lack of analytical expressions
that relate MAC performance to PHY layer parameters. Our first objective is to obtain such an analytical
expression. We model the MAC scheme as a finite state Markov chain for which a stationary distribution
exists and is parameterized by two probability vectors. When the number of codes assigned to the receiver
is two (N = 2), the stationary distribution can be obtained exactly, which leads to an analytical expression
for the MAC throughput as a function of certain MAC parameters.

The second step is to optimize the MAC function based on the throughput expression. Here we derive
the optimal randomized MAC function that maps the measurements at the PHY layer and the system
states to the probability that a channel is acknowledged. In a proof similar to that of the celebrated
Neyman-Pearson Lemma, we give the form of the optimal MAC function.

The third step is to compare the optimal MAC with several sub-optimal but simpler MAC functions.
Some of these suboptimal MAC protocols also employ the idea of cross-layer design but make less restrictive
assumptions on the traffic statistics. The performance loss is evaluated through simulations.

The approach presented in this paper applies to two different types of networks. The first is the cellular
network where the base-station allocates channels using some form of demand-assignment strategies. The
second type is the ad hoc network that employs code division multiple access (CDMA) and receiver-
based transmission protocol [15]. In such a network, a transmitting node wishing to communicate with a
receiving node must know and use codes assigned to the receiver, and a request-acknowledge process may
be necessary. The MAC considered here is similar to the widely used RTS-CTS protocol except that the
request and acknowledgement are performed at the signal level. For ad hoc networks, the number of codes
available at each node is small, which makes our exact analysis attractive. On the other hand, ad hoc
networks are often half-duplex, and the ultimate performance is measured by the end-to-end throughput.
Our results should be viewed as applicable to the local MAC performance when the node is in the receiving
mode.

Although the literature on the joint optimization of PHY and MAC sublayers is scarce, there have been
recent interest in the cross layer design of MAC for wireless networks [17]. Signal processing techniques
have been used for separating colliding packets [19], [22], and more sophisticated MAC protocols are
needed to take advantage of the improved PHY layer [21], [1]. The impact of PHY layer performance
(fading, capture, and multipacket reception) on the MAC layer has been investigated by a number of
authors [7], [13], [14], [3]- Chockalingam et. al. [6] investigated a multichannel reservation system very
similar to the one presented here. However, the issue of designing an acknowledgement strategy does not
arise in the set-up they consider. Kleinrock and Tobagi were, perhaps, the first to address the issue of

detection error on the (CSMA) MAC protocol. The idea of combining signature detection with channel

April 2, 2003 DRAFT



allocation was considered by Butala and Tong[5], [4]. The optimal MAC, however, was not considered
there.

The paper is organized as follows. We present the basic functions and assumptions for mobile and
base stations and the fading signal model in Sec.II. In Sec.ITI, we present the Markov chain formulation
for obtaining the throughput which is the criterion for optimization. Sec.IV presents the optimal MAC
design based on the received signal power and the number of available codes. Other sub-optimal designs
are considered in Sec.V. In Sec.VI we deal with issues such as delay and improving the throughput through
multiple measurements. Simulation results are presented and analyzed in Sec.VII; and some concluding

remarks are given in Sec.VIII.
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Fig. 1. A reservation-based random access CDMA scheme. CMF: Chip-matched-filtering and sampling. MF: Code matched
filter.

II. SYsTEM MODEL

The system considered here is similar to that used in the random access channel (RACH) in WCDMA
[18] and is illustrated in Fig. 1. It is worth pointing out again that we use the term base station to include
the usual cellular base station, as well as clusterheads or privileged nodes that have multiple codes in an

ad hoc network.

A. The Mobile Stations

The random access scheme is based on slotted ALOHA channel reservation. At the beginning of slot t,
the base station broadcasts a set C; of available orthogonal preamble signatures for uplink reservation. We
will denote the number of available signatures by Fy, thus F; = |C¢| < N, where N is the total number of
channels in the system. An interested user transmits a randomly selected signature from C; and waits for
an acknowledgement. If a positive acknowledgement is received, the user proceeds to transmit data using
an orthogonal code that has a one-to-one relationship with the preamble signature. The data transmission
lasts for a fixed duration of L slots. If a channel is acknowledged when two or more users attempted access,

a collision occurs and the channel becomes locked, i.e., it is unavailable to the other users even though
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the channel is not contributing to the throughput. We further note that a channel might get locked when
the base station transmits an ACK even when no user is attempting access. Regardless of the way a
channel is occupied, we assume that the channel remains unavailable to other users for a length of L
slots. The rationale for this assumption is that a base-station expects data-transmission to follow on an
acknowledged channel. In case no acknowledgement is received, the user backs off and retries after a
random delay. A user’s back-off timer may expire when no channels are free; in such a case, it will reset
its back-off timer to a new random value. We assume that no preamble power ramping is carried out i.e.,
a user does not increase power on retries.

We make the classical assumption that the access attempts, which include new arrivals as well as retries,
are points of a Poisson process with intensity A attempts/slot. We emphasize that A denotes the aggregate
attempt rate and not the packet arrival rate. It corresponds to the parameter G used by Kleinrock and
Tobagi in their analysis of CSMA [9]. In light of this assumption the resulting throughput analysis should
be seen as a steady-state analysis (the input arrival rate being equal to the departure rate) with stability
implicitly assumed. The Poisson assumption, of course, may not hold in practice, and it disregards the
detailed retransmission mechanisms. Also, by making this assumption, we have implicitly assumed that
we are working with an infinite-user, single-buffer scenario. Nonetheless, this assumption lends itself to
tractable analysis which can yield sufficient insight for dealing with more realistic scenarios. See [2, Ch.

3-4],[9] for comments in this regard.

B. The Base Station

After announcing the available preamble signatures C;, the base station performs matched filtering
for each code in C;. Based on the output of each matched filter, the base-station makes decisions on
acknowledgement. The assumption of Poisson arrivals makes it possible for individual channels to take
decisions independently, as shown in Fig. 1.

To assemble the set of available preamble signatures for the next slot, the base station first takes out
codes acknowledged in the current slot. It then checks whether any codes had been allocated L slots

earlier (which should now be free), and adds these released codes to the new signature pool.

C. The Signal Model

The preamble power received at the detector is a critical parameter in the MAC design problem.
The results obtained in this paper apply to systems in which transmissions over different channels are
orthogonal. This orthogonality can be achieved by various means we are familiar with - channels could
be separated by means of codes, time, frequency or a mix of them.

We shall now obtain the distribution of received power for the specific signal model used in this paper
which achieves this orthogonality through codes. As shown in Fig. 1, the detector takes as its input

the sampled chip-matched filtered signal. We assume that the transmitted signal undergoes Rayleigh flat
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fading, the Rayleigh parameter having the same value (¢3) for each user. This corresponds to a situation
in which power-control has been achieved to combat long-term (shadow) fading, but, the system is still
susceptible to short-term fluctuations in the signal strength. Assume that in slot ¢, F; = f channels are
available and K users contend for reservation. The sampled output of the chip-matched filtered can be

written as:
K
r—= Z VgSk + W (1)
k=1

where vy, are the complex amplitudes which are realizations of i.i.d. random variables (in keeping with our
assumption of partial power-control) with distribution CN(0, 02 /2) where o2 is the SNR; symbols in bold
font denote vectors of length Ny, the signature length. The signatures, si, belong to the set of available
orthogonal signatures, C; = {c1,¢s,...,cs}. The elements of C; have a one-to-one relationship with the
set of available channels, and ¢c; = 1 for i = 1,2, ..., f (H denotes the Hermitian operator). The noise
term w is a realization of AWGN with distribution CN (0, %I), in accordance with our definition of o3 as
the SNR.

At the it" detector, decorrelating with the signature c; we get:

z; = cfr (2)
= Z Nyvp + w; = 2; + w; (3)
k:sp=c;

where z; is a realization of X; ~ CN(0,6;03/2), 6; being the number of users selecting signature c;, and
w; is a realization of a random variable with distribution CA(0,1/2). The assumption of the arrivals
being Poisson implies that 6; itself is a realization of ©; ~ Poisson(A/f). We can interpret z; to be a

realization of Z; ~ CN(0, (§;03 + 1)/2). Thus, the received signal power Y; = |Z;|?, has the distribution:

1 —Yi
Py;je; (yil6:) = W exp (W) . (4)

The MAC must use the received signal to decide whether or not a single user is requesting access, i.e.,
if ©; = 1, and then based upon the accuracy of this decision carry out the appropriate acknowledgement
procedure. We note that as a result of the Rayleigh fading assumption, Z; is circularly symmetric complex
Gaussian and, thus, Y; is a sufficient statistic that can be generated from r for this purpose. We will drop
the subscript i for the detector here onwards, as, given F; = f, the working of each detector is identical
to that of the rest.

Now, the size of C; varies from slot to slot, which makes the attempt rate time varying at each channel
(even though the overall attempt rate is constant). The fluctuation of the available signatures and,
therefore, fluctuations in traffic affect the distribution of the received signal power. This dictates that
a MAC function should adapt to the system state in order to deliver optimal performance making the
optimal MAC design problem non-trivial. In the next section, we give a formulation to compute the
performance (throughput) achieved using a given MAC policy. We will then consider designs that optimize

the performance in Sec.IV.
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III. MAC PERFORMANCE

We consider MAC functions that devise their ACK policies based on the number of free codes available
and the received signal power for each of these. In this section, we will show that such MAC functions
induce a Markov chain structure facilitating throughput analysis. For a MAC function §, throughput
will be seen to depend upon as(f) (= 1 — Bs(f)) and ~5(f); as(f) is the conditional probability of
acknowledging a channel, given that there are f free channels; v5(f) is the conditional probability of

successfully acknowledging a channel, given that there are f free channels.

A. Markov Chain Formulation

A channel once occupied remains so for a duration of L slots. The system, thus, has a memory of L

slots. We define the state vector as
nt:[nt—L+1,"',nt] G{S[),"',S‘g|_1}=$ (5)

where n; is the number of newly locked channels at the beginning of slot ¢, and S denotes the state space.
Note that ElL:l ng_41 < N for all t and, thus, |S| is finite and we can enumerate the states as in (5). We
must represent state i itself by a vector as S; = [S;(1),...,S;(L)]. Thus, if n; = S;, it would mean that
Si(l) = n¢(l) = n¢— 41 channels got locked at time (¢t — L+1) for I =1,...,L; [ here denotes the index of
an element in a vector. The enumeration of the states can be done arbitrarily, e.g., for N =2, L = 3, an
enumeration is shown in table I. Thus, when the system is in state 7 ([0 1 1]), it means that one of the
channels got locked in the previous slot and the other channel got locked in the slot before the previous
one, leaving no channels free in the current slot (f; = 0). Whereas if the current state is 2 ([0 1 0]), we
can say that one of the channels got locked in the slot before the last one, but the other channel is free
(f2 = 1) and users with packets to send can contend for this free channel.

The Poisson traffic assumption means that the traffic statistics are known when the number of free
channels is known. For our definition of states, the number of free channels with the system in state 4
is given by N — Zlel Si(l). We see that if the MAC bases its decisions on the traffic statistics and the
received signal power, the transition probability from current state to the next depends solely on the two
states involved and is independent of the transition history leading to the current state. The system can,
therefore, be modelled as a Markov chain with the states defined as above. The transition probabilities
from state 4 are dependent on as(f;) - the conditional probability of acknowledging a channel when using
the MAC function 4, given that there are f;(> 0) free channels.

For an enumeration of the states, {0, ..., (|S| — 1)}, denote the transition matrix by P. The (i+1,j+1)"
entry of the transition matrix is the probability that the state in slot (¢ + 1) is j, given that the state in

slot ¢ was i:

Pit1,j41 = Prob{ngy1 = Sjlny = S;} . (6)
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Symbol | State | f;
So [000] | 2
S 001]| 1
S 010]| 1
Ss [100] | 1
Sy 002] ] 0
Ss [020]| 0
Se [200] | O
Sz 011]] 0
Ss |[1o1]| o
Sy [110]| 0

TABLE I

STATE TABLE FOR N =2, L =3

Now, we have the obvious condition that n;y;(l) = ny(l + 1) = nyyyy1-r, for Il =1,..., L — 1. We also
have the condition that n¢41 < N — Elel N¢—141, since the number of channels that get occupied can only

be less than or equal to the number of available codes. Thus, P;y1 ;41 is nonzero only if

S;(l)y = Si(t+1),1=1,...,L—-1 )
Si(L) < N- isi(l) 2. (8)
=1
When f; = 0, the condition in (8) becomes:
S;(L)=0. 9)

We note that for any state i with f; = 0!, there is only one j that satisfies conditions (7) and (9) and,

therefore, for this pair of states:

Pit1j41=1. (10)

Fig. 2 shows the state diagram of the Markov chain for N = 2, L = 3 with states as given in table I. We
see that the transitions from states 4,...,9 (states with no free channels) are fixed.

When f; > 0, we note from (8) that S;(L) € {0,..., f;}. This means that we can go from state ¢
to one of (f; + 1) number of states depending on how the free channels are acknowledged. Since the

acknowledgement probability, as(fi), is identical and independent for all free channels, the transition

INote that we do not define any acknowledgement probability a;(0) as there are no channels to acknowledge when there

are no free channels.
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probability from state ¢ to state j, provided conditions (7)-(8) are satisfied, is Binomial(S;(L), fi, as(f:)),
ie.,

Pansnr = (5 1)) @800 805 (1)

Referring to Fig. 2, from state 0 (2 free channels) we can either go to one of states 0 and 4 or come
back to state 0. In order to make a transition into state 4, both the free channels will have to get locked.
Since the acknowledgement probability for a free channel in this case is @(2), both channels get locked
with a probability o?(2). Similarly, we come back to state 0 if none of the free channels get locked which
happens with a probability 32(2) as shown in Fig. 2. It can be shown that the Markov chain is aperiodic
and irreducible for arbitrary N and L when 0 < as(f) < 1 for all f > 0 [12]. The proof is based on the
facts that (i) any state is accessible from Sy, (ii) state Sy is accessible from any other state and (iii) there

is always a self-loop associated with state Sy.

Fig. 2. Markov Chain for N =2, L =3

Since the chain is irreducible, aperiodic and finite state, a unique stationary distribution exists. The
calculation of the stationary distribution from the transition matrix can be simplified by noting that
there exist groups of states which have the same stationary distribution. For example, with N = 3 (with
arbitrary L), all the states of the form [0...030...0] will have the same stationary probability as the state
[0...03]. In the appendix, we derive the stationary distribution for N = 2 for arbitrary L. So far, N =2
is the case for which closed form expression for the stationary distribution for general L could be obtained.
For other cases, it is, of course, possible to obtain the stationary distribution numerically. The state space
size increases exponentially with N and L with |S| = f;%(N’L) (1,:[ ) (i) However, the transition matrix
is sparse, e.g., for N = 2, it is easy to show that the number of non-zero entries is (L + 2)(L + 3)/2,

whereas the number of states is (L + 1)(L + 2)/2, so that the fractional number of non-zero entries is of

order 1/L?. The sparsity holds for general N, L.
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10

B. Throughput and Channel Utilization

Having obtained the stationary distribution (which we will denote by 75 = [0, ..., 75,(|s|—1)]) one can
now obtain figures of merit for network performance. We consider two figures of merit, throughput and
channel utilization. Throughput is defined as the average number of successful access attempts per slot
and channel utilization is the number of successful transmissions per slot per channel. Channel utilization
can also be thought of as the fraction of the slots that actually get utilized for data transmission.

With f free channels in a slot, the expected number of successful access attempts is fy(f). Thus, the

throughput can be written as:

[S]—1
me =Y five(fi)ms,i - (12)
i=0
We can rewrite the last equation in the form:
N
e =Y fr(f)m(f, as) (13)
f=0
where 7(f, as) is given by
m(fyas)= Y, T (14)
ie{j:fi=f}

We can interpret m(f, a5) as the stationary distribution of F;. In (14), we have tried to emphasize the
dependance of the stationary distribution on as. Note that 4 does not affect the stationary distribution
but affects the throughput. This apparent ”decoupling” between a5 and -; has consequences in the
derivation of the optimal MAC function as will be seen later.

Each successful user occupies the channel for L slots. Thus, the average number of successful transmis-

sions per slot per channel, i.e., the channel utilization, is given by:
C(; = Lng/N . (15)

Thus, for a given L, the detector strategy that maximizes n also maximizes the channel occupancy. In
the appendix, we obtain the throughput and channel utilization expressions for the case of N = 2 for
arbitrary L.

In the next section, we give the form of the optimal MAC function which is the principal contribution
of this paper along with the Markov chain performance analysis. The function optimizes the performance

in terms of throughput as derived in this section. We give proof of its optimality and existence.

IV. THE OpTiMAL MAC

As pointed out before, MAC functions should base their ACK policies on the number of free codes

available and the received signal power for each of these. We define the MAC function as:
A
0=Ry xF —[0,1] (16)
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11

where R} is the set of non-negative reals, F = {1,2,..., N} is the observation space of F; and d(y, f) = ¢
means that the channel is acknowledged with probability ¢ when ¥ = y and F; = f. This definition of a
MAC function helps us evaluate the probabilities: as = [as(1),...,as(N)] and v5 = [y5(1),.-.,vs(N)],
where as(f) and 75(f) are as defined in Sec.III. We have:

as(f) = E@|F=f) (17)
= / 5" pyio(Wl6)poir, (6]1)dy (18)
6=0
and
v(f) = E(6le=1|F; = f) (19)
- / 5pyio()pelr (11f)dy (20)

Here, py|o(y|f) denotes the p.d.f. of the received power given the number of users and is given in (4),
and pe|p(0|f) is the p.m.f. of the number of users given the number of free channels. The stationary
distribution can then be obtained as in the previous section from which the throughput can be computed

using (12).

A. The Problem

We can formulate the problem as: Given the total number of channels N, packet length L and overall
arrival rate A, and given that py|e(y|f) and pe|r(0|f) are known, determine the MAC function ¢ which
maximizes the throughput (12), i.e., find §, such that

N
60 = argmdafo'yg(f)w(f, a&) . (21)
F=1

We first define the aposteriori probability functions as:

;) 2 3 prieWl8)pe r(©lf) (22)
0#£1
L f) 2 prieDpe r(lf) - (23)

The principal result concerning the optimal MAC function is given in the following proposition modelled
on the Neyman-Pearson Lemma.

Proposition 1: For a system with lo(y; f) and I (y; f) as given in (22), (23) and a > 0, the following
statements are true.

Optimality: Let § be a MAC function such that a5 = a and let §* be a MAC function of the form:

1 when Iy (y; f) > prlo(y; f)
6*(y,1) = § &(y,9) when Li(y; f) = prlo(y; f) 29
0 when 11 (y; f) < pslo(y; f)
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12

with py > 0 and 0 < {(y,4) < 1 such that a5« = . Then ns > ;.
Existence: For every a € (0,1)V, there exists a MAC function J, of the form in (24) with &(y; f) = &(f)
such that a5, = o

Proof: Optimality
We first prove that among MACs with as = «, the MAC of the form in (24), if it exists, gives the highest
throughput.

Let 6*(y; f) have the specified form with as« = . The existence of such a MAC will be established
later. Let d(y; f) be any other MAC function with a5 = a. Define

{y:h(y; £) > prloly; Y, OT5(H) 2 {y = Ly ) = prloly; )}
{y: Uy f) <prlo(y; £)}

I7(f)
L5 (f)

>

Compare the probabilities of successful reservation:

wh) =) = [ 6 s £) — 3y £ (s £)dy

/ (1 —=0(y; NI (y; fldy + / (&(y; ) = 6(y; £))a(y; fdy
i (f)

21E))

- / 5(y; £l (y; f)dy
5(H)

> Pf/ (1—5(y;f))lo(y;f)dy+pf/ (&(y; ) — 6(y; )l (y; fdy
i (f)

216))

s [ 8 Dotas D)y
rs5(h)
= pslas(f) —as(f)) — ps(ve (f) —vs(f))
= —ps(vs- (f) —75(f))

We have that s+ (f) —vs(f) > 0. Now, since a5+ = a5, we have w5+ = 74, thus implying that 7« > 1;.
FExistence

We now show that for any «, there exists a MAC § of the specified form with as = a. With this, we
conclude that the optimal MAC function can be obtained using the specified form. We only need to
consider the case when ly(y; f) > 0. Now, let

A ll (Ya f)
alp)=1-— Pr[lo(Y; i < p]. (25)

Since Pr[;;g;g < p] is a cumulative distribution function, a(p) is right-continuous and monotonically

decreasing. Hence for any a(f), we can always find a py and a & such that

a(f) = alpy) + &Pl (Y5 f) = prlo(Y; )] (26)
This completes the proof. O
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B. Optimization

Proposition 1 above suggests that we consider MAC designs as in (24) and optimize for a, through
p = [p1,---,pn], to obtain the design which gives highest throughput. Unfortunately, the throughput
needs to be obtained via the Markov chain formulation and we have to search for this optimal design

numerically. We will first see how to obtain the throughput for one set of parameters.

We know that the conditional distribution of ¥ given © = 0 is

_ 1 -y
p(yl6) = [ (003 n 1) : (27)

Since the arrivals are Poisson, given that f channels are free, the access attempt rate for a particular

channel is Ay = A/ f. Thus, the prior probability for © given the arrival rate can be written as

[4
p(011) = exp(-2p) 20 (28)

The ratio of the aposteriori probability functions is, thus, given by:

1 —
ll(y3 f) gg+1 exp (‘Td*y'l) )\f

1 —y )\ 2
21 7271 OXP (%gﬁ) o

Given for F = f, we can numerically determine the decision regions?, I'1(ps,As) and To(py, As) corre-
sponding to the two hypotheses. Note that for a system operating at an SNR of o2, the decision regions
are dependent on the number of free channels through py and Ay and we have chosen to emphasize this
dependence by denoting the decision regions as I';(ps, As) rather than I;(f). Note that for the region

where the aposteriori ratios are equal, 0Ty, is of measure zero. The decision regions are of the form:

y € Tilps, Ap) if mi(ps, Ap) <y < 7alps, As) (30)

y € Tolps, Af) otherwise (31)

where 71(pf, A\s) and 72(ps, Af) can be interpreted as power thresholds based on which the detector makes
its decisions. The decision regions were obtained numerically as no closed form expressions could be found.
Intuitively, we would expect the decision regions to be of the form given in (30)-(31), so that power falling
below the lower threshold corresponds to the case of no user attempting access, while power falling above
the upper threshold corresponds to the case of two or more users attempting access.

In Fig. 3, we show the thresholds as a function of access rate Ay for SNR’s of 5 dB and 10 dB with
pr = 1. Also plotted in Fig. 3 is the variation of thresholds vs. SNR for Ay = 0.5, py = 1. The upper
threshold 7» decreases as the SNR decreases and as Ay increases, which is intuitive. What is surprising
is the lack of variation of the lower threshold 7, which is not very sensitive to Ay or SNR. Contrary to
intuition, it does not go down as Ay increases.

ZNote that in the current problem setting, Pr[l1(Y; f) = pslo(Y; f)] = 0, and thus, the randomized nature of the MAC

function is not conspicuous.
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Having obtained the decision regions, we can now obtain the event probabilities needed for the Markov
chain formulation. Let 75 = 71(Af, py) and 7oy = 72(Ay, py) be the lower and upper thresholds given that
f channels are free. From the thresholds we can compute the probabilities needed in the Markov chain

formulation using;:

>0 67/\f Ao 2 2

as(f) = Z a1 f (e—Tlf/(9¢7d+1) _e—Tzf/(%d-H)) (32)
6=0 ’

v (f) = e*’\f)\f(e*ﬁf/(a?ﬁl) _ e*TZf/(Ug‘f‘l)) (33)

Optimization now involves searching for the optimal vector of cost-ratios:

po = argmax n; (p) - (34)

The highest throughput that can be obtained is, thus, 75(py). We would like to see how other designs
compare to the optimal one. In the next section, we present some alternate designs and obtain expressions

through which we can determine the throughput they deliver.

V. SUB-OPTIMAL DESIGNS

The cross-layer function can be viewed in split form; a simple MAC layer entity which merely ACKs or
NACKSs depending on the decisions of a physical detector. The physical layer detector performs hypothesis

testing on the pair,

g

HO : 66{072737'“}:‘/\0
H : ©c{l}24A,. (35)
In this setting, the function § can be viewed as a physical layer decision rule, a detector®, on the binary

hypotheses pair. The MAC entity follows the procedure of acknowledging when hypothesis H; is held to
be true and NACKing when Hj is held true.

3We will be using the term detector interchangeably with the phrase decision rule.
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We could also consider decision rules on multiple hypotheses -
Hg :0=90. (36)

Such decision rules could prove useful in cases in which a single channel can support multiple users. For a
collision channel, a MAC based on multi-hypotheses decision rules ACKs a channel only when #; is true.

By considering the problem on split-layers, we sacrifice the optimality achieved with the truly cross-
layer design of the previous section. However, the schemes that we consider in this section have certain

advantages as we shall see.

A. The Multi-hypotheses MAP

The optimal MAC function does not admit a closed form expression for thresholds; numerical optimiza-
tion must be carried out for different traffic rates and available free channels. We consider a detector for
which the decision regions can be determined in closed form. The detector is actually a multi-hypotheses
MAP detector which optimally detects the number of users attempting access based on the a posteriori
probabilities of each # € ©. The detector gives § = argmaxg p(y|0)p(6|f). The MAC protocol can then
make a decision based on §. H; will be held to be true when § = 1 has the maximum a posteriori

probability amongst all 8 € O, i.e., when:

arg max p(y|@)p(6]f) =1 . (37)

The Multi-hypotheses MAP detector also leads to decision region as given in (30)-(31); it can be shown
that 71(Af) and 7»(Ay) are determined by (see [12] for a proof):

Tl()\f) = maX{’ltl,O},Tg(/\f) = inf{7~'g : 0 > 1} (38)
where
o2 +1 o2 +1
F(\ — d 1 d
Al = Tt (751) (39)

To(Af) =

(05 +D)(60% +1) ( (652 +1)0! ) _ (40)

(6 — 1)o7} AP D02 +1)

The probabilities a(f) and v(f) can now be computed (via (32)-(33)) with a(f) and v(f) depending only
on Ay to obtain the throughput. Since the thresholds are fixed directly by o3 and Ay, this detector does
not involve any optimization. One problem is that if s is large enough, 7 could become negative. In

this case, the detector never ACKs a channel request, essentially leading to a system breakdown.

B. A Single Threshold Detector

We consider now the class of single threshold detectors which acknowledge a channel when the power

exceeds a given threshold (the upper threshold 7 = 00). Let 755 be the single threshold when f channels
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are free. Then the detector is given by:

1 Tsf <Y
8y, f) =9 0orl y=r1 (41)
0 Y > Tsf -
In this case, we want to find the optimal among the 7 = (751, ..., Tsn), so that
To = argmax n(T) . (42)

Given T, we can obtain a(f) and < required in the throughput expression. We can also evaluate the
detector operating characteristics under the constraint of having a single threshold. The false-alarm and

detection probabilities are directly related to T by:

Pp(f) = e Ter/loitD) (43)
1 )\ge_)‘f - fo24+1
Pr(f) = 1—,\fe—AfZ e ar/(003+1) (44)
6#1

We can consider the optimization in terms of the false-alarm probabilities as against the thresholds

themselves. The optimization problem now becomes finding Pr, = (Pr,(1),..., Pr,(N)) such that:
Pp, = argmax n(Pr) . (45)
Pr
where PF = (PF(].), . ,PF(N))

C. UMP and ML detectors

In determining the thresholds for the optimal and Multihypotheses MAP designs, we require knowledge
of the traffic statistics. We could use detectors which do not require prior probabilities when the knowledge
of traffic statistics becomes unreliable. A Uniformly Most Powerful (UMP) test with parameter p given

in [10], does not require the priors to be known. The test can be written as:

1 () <y < 2(p)
Sy) =< 0orl y=m(p) ory=mu (46)
0 y >1i(p) ory < m2(p)
where 71 and 7, satisfy:
E@)0=0)=E@yI0=2)=pn. (47)

The condition above leads to the following expressions from which we can evaluate the thresholds:

(M+67T2)1/(20'2+1) — 'u+ef‘r2/(2a'2+l) (48)

e

pte ™ (49)
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We can then compute the throughput having obtained «(f) and (f). Again, the parameter might
depend on the number of free channels. The search must, therefore, be made over u = (u1,. .., un). The
optimization involves finding:

po = argmax n(p) - (50)

We could also use the Maximum Likelihood test for multihypotheses to determine thresholds when the

priors are not known. The thresholds for the ML detector are given by:

o2 +1
n1(Af) = d<72 log(o3 + 1) (51)
d
(02 +1)(20%2 +1) 202 +1
() = d Ufl d lo U{_}_ 1 . (52)

As in the case of the Multihypotheses MAP, we do not have any degrees of freedom to optimize throughput.

The number of free channels immediately fixes a(f) and v(f).

VI. EXTENSIONS
A. Multiple Measurements

We expect throughput to increase with SNR. However, as will be seen through simulation results, under
fading, the throughput saturates without reaching the ideal value. This is because, for a high SNR, we
can only expect to make no error in judging the presence or absence of user(s). However, errors will still
be made in distinguishing the presence of exactly one user.

We can hope to achieve ideal detection by making decisions based on multiple independent measure-
ments of the reservation requests. Such multiple measurements could be obtained in the same slot or be
spread out over consecutive slots depending on how fast the fading occurs.

Let the sampled, despread and match-filtered received vector obtained after n measurements be Z =
(Z1 Z>...Z,), Zs are iid. CN(0,802% + 1) where o7 is the SNR (the number of users attempting access
is assumed to be #). Since Z;’s are normal, a sufficient statistic is the sum of power of the received

components:

Y =T(Z) =Z|Zz-|2. (53)

Conditioned on © =6, |Z;|* ~ Exp(1/(fc2 + 1)), thus, the conditional distribution of y is given by:

y(”fl)

)
602 +1
@2+ )r(n—1)1° ° (54)

p(ylo) =

The ratio of aposteriori probabilities for the optimal MAC design is given by:

1 —
Wy f) _ @ &P (agfl) As
lo(y; f)

. (55)
1 — A
o o o (7 ) 5

For this case too, the decision regions are of the form in (30),(31) and have to be obtained numerically.
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We can also consider the Multihypotheses MAP detector for the multiple measurements case for which

the thresholds are given by:

- o2 +1 (62 +1)"
. (02 4+1)(80% + 1) (6o2 + 1)"6!
To(A = log| +—5F+—+——| . 57
) 6 -3 AI=D (g2 4 1y 7
and
n = max{ﬁ,O}, T = inf{’fg 160 > 1} . (58)

For the ML detector, the thresholds are simply n times of the ones for the single measurement case

2
1
n0y) = n7L log(od + 1) (59)
d
(02 + )(2% +1) 202 +1
A - 1 :
T2 (Ay) n P og 241 (60)

Having obtained the two thresholds, the probabilities required for evaluating 1 can be obtained from:

—'rlf n—1 —-er n—1

’Y(f) — )\fe— 7 e( 251) j: 7'lf e( 231 } : T2f (61)
o) e_)\f )\f (H_lel) n—1 Tlf (9—1-2_{1) n—1 Tzf

e G' 0' A 62

a(f) ; Z 00 +1 Z 00 + 1) (62)

B. Delay

When L is a system design parameter, one has to deal with a trade-off that exists between throughput
and channel utilization. Channel utilization increases with increasing L. But an increasing L implies
that the base station cannot service as many access requests per slot as before, leading to a decrease in
throughput. This in turn would lead to longer delays for newly generated packets.

We can get a measure of the delay incurred by calculating the expected number of (re)transmissions of
the reservation request a user has to make before it transmits data [16]. Since the rate of requests (X)
and the rate of those that are successful () are known the expected number of (re)transmissions required
can be computed from:

R=M\/n. (63)
Obviously, for the same arrival rate, having a better throughput also means less number of access attempts
before data transmission. Note that in the infinite user single buffer scenario, queueing considerations do
not arise and, therefore, we do not deal with delay introduced by queueing.
VII. NUMERICAL RESULTS
In this section we present the results of numerical evaluation of the throughput and channel utilization

obtained with the various designs. We will also consider aspects such as the dependence of throughput on
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the SNR (afi), the packet length, L, and multiple measurements. Finally, we will look into the trade-off
between channel utilization and throughput for variations in L. We will be working with N = 2 receiver

codes throughout this section.

A. Comparison of designs

= Multihyp
ML

061 —— UMP R 061
o Optimal
— Single T
— Ideal

o
o
T
o
o
T

Channel Utilization
Channel Utilization

~o~ Optimal

- Single T

—— UMP

— ML

o1 | o1l -8~ Mulihyp
i — Ideal

L L L L L L L L L L
0 05 1 15 2 25 3 0 05 1 15 2 25 3

Fig. 4. Normalized Channel Utilization vs. Arrival rate for various designs with N = 2, L equal to 10 SNR = 0dB(left),
SNR = 10dB (right). Optimal -0, Multi-hypotheses MAP-0O, Single threshold -57, UMP -+, ML-plain

Plotted in Fig. 4 is the channel utilization for various designs for various SNRs with L equal to 10. In
this case, the ideal scenario would be for a succession of user pairs to occupy the two channels for the
duration of L slots corresponding to an arrival rate of about 0.2 users per slot. We restrict our simulation
results to arrival rates of upto 2.5.

For low SNR, the single threshold and UMP detectors are close to the optimal achievable. The perfor-
mance of the multihypotheses MAP is not encouraging for low SNR, but for high SNR, it gives channel
utilization close to that achieved using the optimal MAC design. We would expect the decisions made
by the Multihypotheses MAP detector to be reliable at high SNR, which is what we see. Practically
speaking, we would like to keep the SNR for the reservation requests to be as high as possible bearing in
mind how crucial the reservation phase is to the performance of the whole system.

Knowledge of the arrival rate does improve the performance as is seen in the difference in performance of
the UMP /ML based schemes and the others. Neither UMP nor ML based designs takes into consideration
the knowledge of the arrival rate. As such, these schemes can be considered to be acting based solely on
the received signal power. For the single threshold plots, we can say that knowledge of the arrival rate

has been assumed while optimizing to find the best single threshold.

B. Increasing the packet length

The channel utilization can be expected to go up as L increases. However, the utilization obtained need

not be arbitrarily close to the ideal. The limit as L grows large depends on the fading conditions and

April 2, 2003 DRAFT



20

0. T T T T T 1 T T T T T

081 1 Limit for large L

Channel Utilization
Channel Utilization

Fig. 5. Effect of increasing L on channel utilization (N = 2). Optimal design, SNR = 0dB(left), SNR = 20dB (right)

the detector ROCs. From Fig. 5, it is evident that increasing L leads to increased channel utilization.
However, the channel utilization does not increase beyond a limit as computed in (73) of the appendix,

and the limit is reached only gradually, as can be seen from the figure.

No. of transmissions required for success
No. of transmissions required for success

L=5

L L L L L L L L 1 L L L L L L
0 0.05 0.1 0.15 0.2 025 0.3 0.35 04 0.45 0.5 0 01 0.2 03 0.4 05 06 0.7 08 0.9

Channel Utilization Channel Utilization

Fig. 6. Optimal design: Trade-off of channel utilization and number of retransmissions required. N = 2, SNR = 0dB (left),
SNR = 20dB(right)

Fig. 6 depicts the trade-off that exists between channel utilization and the number of (re)transmissions
required. The plots are related to the plots in Fig. 5 and have been obtained for arrival rates less than
or equal to the ones corresponding to the peak channel utilization for the respective L. For arrival rates
higher than the one with peak channel utilization, the number of retransmissions required will be higher
with less channel utilization. The points on the trade-off curves for rates higher than those corresponding
to peak channel utilization have not been plotted. The trade-off is especially severe when the SNR is
low, higher channel utilization coming at the price of increased number of retransmissions required and
therefore, incurring more delay. The trade-off is almost non-existent for higher SNR, though the channel

utilization peaks for a lower offered rate, A, as is seen in Fig. 5.
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C. Increasing SNR and Number of Measurements

As we commented in Sec.VI-A, throughput and, hence, channel utilization saturate with increasing
SNR, as seen in Fig. 7. With increased number of measurements, channel utilization close to the ideal
can be reached. Fig. 8 shows how the channel utilization increases with the number of measurements for
Optimal and Multihypotheses designs at SNRs of 10dB and 20dB. It is can be seen that increasing the
number of measurements does not change the saturation effect w.r.t. SNR, as the plots for SNRs of 10dB
and 20dB are very much close together. Again, the Multihypotheses detector gives performance close to
the optimal one at high SNR.

In Fig. 9 we see the how the channel utilization converges towards the ideal for the Multihypotheses
detector operating at SNR 20dB. Plotted is the ratio of the Multihypotheses channel utilization to the ideal
channel utilization versus the number of measurements. The convergence seems to be of the form (1—e~ )
with the exponent decreasing for increasing A. The exponential form of convergence is to be expected, as
with multiple number of measurements, the decision error probabilities go down exponentially. What is
surprising is the varying exponent for different A’s. The ideal channel utilization is achieved for A = 0.02
with less than 5 measurements. However, for A = 2.3, ideal channel utilization has not been reached even

with 40 measurements.

SNR 20dB

‘/SNR 30dB

o
o
T

SNR 10dB

Channel Utilization

SNR 0dB

L L L L
0 05 1 15 2 25 3

Fig. 7. Saturation of channel utilization with increasing SNR. Optimal MAC design, L = 10.(Ideal-o)

D. A Comment on the Kinks

Notice the kinks in the plots for the optimal, UMP and Single threshold designs for 0dB SNR (see
Fig. 4). The behaviour is unusual as we expect the variation of the performance to be smooth with
respect to the arrival rate for an optimal design. We checked the correctness of our results by carrying
an extended simulation, where the actual contention process itself was simulated, not just the random
variables pertaining to the decisions at the PHY/MAC. The set-up had M = 100 users each having a

(re)transmission probability of g chosen so as to correspond to a given arrival rate A, i.e., g was chosen
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Fig. 8. Approaching the ideal - Channel utilization with multiple measurements for the optimal and Multihypotheses designs

(L =10,N =2).
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Fig. 9. Approaching the ideal - Channel utilization as a fraction of the ideal vs. the number of measurements for A =

[0.02 0.1 0.3 0.7 1.1 1.5 1.9 2.3], SNR = 20dB.

such that Mg = A. The reservation signal strength at each free channel was generated to have a Rayleigh
distribution based on the number of users selecting the correspoding signature. A channel was ACKed if
the signal strength fell within the two thresholds obtained through the optimization process as described
in Sec.IV. Fig. 10 shows an excellent agreement between the plots obtained from the extended simulation
and numerical computation. Similar agreement was obtained for the other plots that have been presented
here.

It is observed that for arrival rates greater than the point corresponding to the kink, the optimal policy
is to always NACK when only one channel is free (a; ~ 0) and always ACK when both channels are free
(aa =~ 1). This fact is also depicted in Fig. 10. For high arrival rates, the number of cases of multiple
users attempting access increases, but low SNR means that the detector cannot reliably decide whether
exactly one user or multiple users are attempting access. It is as if, for low SNR, the detectors give up on
the information available in the signal strength and let the system revert back to the elementary slotted

ALOHA random access to achieve optimum performance. The peak throughput (and hence channel
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utilization) for such a policy occurs when Ay = 1%, 4.e., when A = 2, as is seen in the figure. Note that
such a policy (a1 & 0,as & 1) is achievable with single threshold or UMP detectors, making it possible for
them to give optimal performance for high arrival rates at low SNR. With the single threshold detector,
such a policy seems to be the best at even higher SNR (notice the slight kinkiness in the plot for the single
threshold detector for SNR = 10dB).

The kinks seem to result because the “optimal” MAC design we have considered does not take the entire
system information into consideration. The system state is described by n; as we described during the
Markov chain formulation. However, the MAC designs that we have considered utilize only the number
of free channels into consideration. Consider two situations for the case N = 2 both of which have one
free channel at the time of observation: (a) the other channel was occupied only in the previous slot,
(b) the other occupied channel will become free by the end of the next slot. The MAC designs that we
have considered will treat the above situations similarly. However, in case of situation (b) one might want
to delay making decisions until the next slot when both channels will be free, thus reducing the risk of
collision. We, therefore, should have treated the two situations differently. Unfortunately, that would
entail considering an optimization on a far larger scale. The resulting suboptimality is, we conjecture,

seen in the presence of the kinks in the plots.

5 Optimal - Numerical
+a,=0.a,=1
04l —x Optimal - Real-time

Channel Utilization

Fig. 10. The kinks in the plots - For SNR = 0dB, Optimal channel utilization (Numerical and Extended (real-time)) and

the channel utilization obtained with a; &~ 0,02 & 1

VIII. CONCLUSION

For a system employing reservation for multi-access over multiple channels, we have given a framework
wherein the performance at MAC level can be analyzed and optimized under fading channel conditions.
Based on this framework we have given an optimal Neyman-Pearson-like MAC design which utilizes
knowledge about the number of free codes in its decision making process. The design is characterized

by the acknowledgement probability given the number of free channels optimized with respect to the

4Recall that it is with arrival rate equal to unity that the peak throughput of slotted ALOHA is achieved [2].
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throughput function. The design is not truly optimal as it does not use the system state information
in its entirety. The design still provides a more realistic benchmark of performance (as compared to the
performance in a ideal situation) to compare the performance of various other designs including MAC
designs based on classical physical layer detectors such as UMP, ML, MAP etc. Knowledge of the traffic
statistics and the partial system state (number of free channels) improves the performance as seen by
comparing the performance of the optimal design with that of a design based on the ML detector.

In this paper, we have given the closed form expression for the throughput with N = 2 receiver codes and
an arbitrary packet length L. Throughput with other parameters can be obtained, but must be evaluated
numerically. However, the transition probability matrix is sparse and structured because of the fact that
the memory over L slots is incorporated in the definition of the states. This fact may be used in evaluating
the performance through methods employing sparse matrices. The dimensionality of optimization involved
while computing the optimal performance may be reduced by appropriate classification of the states.

A number of issues are not addressed in this paper. For example, the framework used in this paper
does not allow analytical treatment of stability either in the finite user infinite buffer or the infinite
user single buffer regime. One hopes that stability results similar to the case of slotted ALOHA can be
obtained. Also missing is a justification for the aggregate attempt rate being Poisson. For the case of
slotted ALOHA Ghez et.al. [8] proved that it is indeed possible to obtain Poisson aggregate attempts
(which, in fact, optimize the throughput) for any input traffic statistics. Unfortunately, we cannot claim
to have achieved any such connection between the input traffic (new arrivals) and aggregate traffic. The
Poisson assumption also means that we have implicitly assumed an infinite user population restricting,
perhaps, the applicability of the results to networks with a large number of nodes. In computing the
channel utilization, we have also ignored the failure in data transmission. This omision, however, does
not affect the optimality of the MAC protocol, and it is easy to take into account the effect of fading in

the computation using existing results.
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APPENDIX
I. STATIONARY DISTRIBUTION FOR N = 2, GENERAL L

For N = 2, we can partition the state space into four groups:
S=5PS1 PSS . (64)
So contains the state Sp. Sp = {[0...0]}. & contains states with a single locked channel:

S 2{0...01],...,[10...0]} = {S1,...,SL} . (65)
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So contains states with two simultaneously locked channels:
A
Sy ={[0...02],...,[20...0]} = {SL+1,---,S2L} - (66)

83 contains states with two channels locked at different slots:

e

Ss {[0...,011],[0,...0101],...,[10...01],[0...0110],...,...,[10...10]}

= {Sor41,---,5L-1,8L,---,5s-1} -

It will later be shown that the states within the same group have equal probabilities in the stationary dis-
tribution. It can also be seen that there is a 'translational invariance’ between the components describing
the states within each group. For example, with L = 3, [011] and [101] belong to the same group - S3°.
It can be verified that the Markov chain described by n; (see (5) in Sec.III) is aperiodic and irreducible.
Consider Fig. 2 showing the Markov chain for N = 2 and L = 3, with the states being numbered as in
Table I. The self-loop on Sy makes the chain aperiodic, and it is possible to go from one state to any
other in a finite number of steps with positive probability when 0 < a;,as < 1. The chain is also finite
and, thus, has a stationary distribution. Let w5 = [mo,---,m|s|—1] be the stationary distribution. The
stationary distribution must satisfy the following conditions (obtained by looking at the transitions into

the states on the LHS for each equation):

0 = 3w+ B + oL
T = 2asfem +oaqmy
T = Pimi—1 + 7 V1< i< L,for some j(i) > 2L
TL+1 = Q3T (67)
T = Ti-1 VL+1<i<2L
T = 01T—32L V2L <i<3L
T o= T V3L <i < |S|,for some 2L < j(i) < 3L

Claim: The stationary distribution is given by:

L Spp i=0
La3+2Losfa/B1+2(5)arasBe/Bi+1 Po -
_ ) 20080781 £ 1 V1<i<L
= A (68)
a3mo = pe VL<i<2L
A .
2a1a2B2m0/B1 = p3 V2L <i<|S].

Proof: It is easy to see that the distribution above satisfies the identities listed in (67). For example,

plugging the values in the second identity, we have to check if:

p1 = 202pg + aip - (69)

5For general N, though groups with states having the same stationary probabilities will certainly exist, states with

translational invariance need not necessarily have the same stationary probabilities.
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This is equivalent to checking if 51p; = 2a282p¢. But since p1 = 2aa02p0/ 51, we know that it holds.
Thus, the distribution in (68) is a stationary distribution. We know that for an aperiodic, irreducible,
finite state Markov chain, there exists a unique stationary distribution. Thus, the unique stationary
distribution is as given in (68).
Note that a stationary distribution does not exist when ay = 0, a3 = 1 but (68) gives us pg = p2 = L+r1
which is not entirely meaningless considering that the fact that, for this case, the chain merely cycles
through Sp, Sr41,---,S2r in order. The reader can verify that, fortunately, the other cases, where the

stationary distribution does not exist, do not make practical sense from a system point of view.

II. THROUGHPUT WITH N = 2

Plugging in the values obtained from the stationary distribution in (12), we get for N = 2:

L
n = 2ym+ Z M = 272p0 + Lyipr (70)
i—1
_ 272 + 2Ly1022 /1 (1)
La3 +2Lasfa /B +2(5) arasBa/Bi + 1

where it can be seen that 2, is the expected number of access attempts that are successful when in state

So and 7 is the corresponding value when in a state belonging to S1. Note that only py and p; appear
in the expression for throughput, ps and ps do not figure because no contention occurs when the system

state belongs to S or Ss.

A. Channel Utilization for large L

Substituting the expression for 7 obtained in (71) we can directly evaluate the limit for (15) as L — oo.

We have
L(2v2 + 2Lya282/51)

(Lad + 2LasfBs /B + 2(5)crazfa/Bi + 1)
Note that we get two different limits for the cases a; # 0 and @y = 0. When a3 > 0, collecting the terms

¢= 5 (72)

with L? in the numerator and denominator, we have ¢ = m1/ar. When a; = 0, we have v; = 0 and,

therefore, ( = v2/(aa(1 + B2)). Optimizing over the ROCs we get:

¢ s (ma (1) o (2 ) (73
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