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Abstract— A wireless sensor network designed for distributed
detection undergoes a Byzantine attack in which a fraction of
sensors cooperatively transmit fictitious signals to impair the
detection capability of the fusion center. The optimal attacking
distributions are derived and the fundamental tradeoff between
detection power (best asymptotic exponent of the miss detection
error probability) and the attacking power (fraction of compro-
mised sensors) is characterized.

Also considered is a hierarchical network made of m-sensors
clusters. For large m the optimal miss detection error exponent is
found to be a binary divergence, and the asymptotic performance
is shown to scale with the number n of clusters but, remarkably,
not with the cluster size m. The optimal test, in this case, reduces
to a kind of infected-cluster counting.

Index Terms—Distributed detection, Sensor networks, Byzan-
tine attack, Network defense.

I. INTRODUCTION

We consider a large Wireless Sensor Network (WSN) en-
gaged in the task of distributed binary detection. The network
consists of n nodes or sensors, each making an indepen-
dent and identically distributed (iid) observation about the
State of the Nature (say H1 or H0). These observations are
successively delivered to a common fusion center (parallel
architecture) for the final decision on the underlying statistical
hypothesis. Actually the network is under attack: a clique of
traitorous sensors cooperatively works against the network.
These sensors, referred to as the Byzantines (and the kind
of attack described is then called Byzantine attack [1]), de-
liver data according to certain fictitious distributions properly
designed in order to impair the detection capability of the
fusion center. The Byzantines are assumed to know the true
underlying hypothesis; the uninfected and FC, obviously, do
not. The fusion center, however, is aware of the presence
of the Byzantines. Specifically, it knows that a fraction α
of the sensors are traitorous and will deliver data drawn
according to the optimal (from the Byzantine viewpoint)
attacking distributions. As a consequence, the decision rule
implemented at the fusion center is a Neyman-Pearson test that
do account for the fraction of fictitious data. The addressed
problem is schematically depicted in Fig. 1. Note that the
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Fig. 1. Conceptual scheme of the addressed problem. A sensor network
designed for binary hypothesis testing undergoes a Byzantine attack where
a fraction α of nodes cooperatively conspire with the aim of impairing
the detection capabilities. The Byzantine sensor deliver to the fusion center
samples drawn iid from certain attacking distributions, in place of the
observations ruled by the underlying State of the Nature.

described strategy is more sophisticated than the naivest black-
hole attack, in which the intruder simply destroys the owned
fraction of sensors.

In the above we implicitly referred to a network where each
node makes a single observation about the State of the Nature.
Also considered in this work is a hierarchical network in which
m individual sensors form a cluster, and there are n different
clusters. In this scenario, either all the m sensors of a cluster
are Byzantine or all are honest, and the sensors shown in Fig. 1
become clusters of sensors, with each cluster delivering to the
fusion center a vector of m samples.

In the two described system architectures we address the
following basic questions. What are the optimal attacking
distributions that the Byzantine will employ? What is the
resulting test performance? What about the minimum fraction



of traitorous sensors/clusters such that the network becomes
useless?

General network security is widely considered in the lit-
erature, see e.g., [2], while less investigated is the the topic
of secure sensor networks for distributed detection and data
fusion [3]–[5]. Relevant to our approach are also [6]–[8]. For
an entry point to the notion of the Byzantine general problem
see [1]. A related information theoretical view of Byzantine
attacks in wireless sensor networks is provided in [9], where
the focus is on the capacity of collaborative fusion. The
presence of misinformed nodes is instead dealt with in [10].

The paper is organized as follows. In the next section the
problem is formalized and answers to the stated questions
are provided. Extension to the hierarchical architecture is
dealt with in Sect. III, while final comments are provided in
Sect. IV.

II. PROBLEM STATEMENT & SOLUTION

Let n be the number of sensors in the network and as-
sume that a fraction α of these are cooperatively traitorous,
i.e., Byzantine sensors. The statistical hypothesis test can be
formulated as

H0 : Pr{K(j) = k} = zk := (1 − α)qk + αyk,
H1 : Pr{K(j) = k} = wk := (1 − α)pk + αxk,

(1)

where j spans the sensor class, K(j) is the scalar observation
made at the jth node (observations are assumed iid under both
the hypotheses), k ∈ K := {0, 1, 2, . . . , |K| − 1}, and p q, x
and y are probability mass functions defined over K.

The Byzantine sensors deliver to the FC fictitious samples
drawn iid from suitably chosen attacking distributions x and y
in the attempt of worsening the network performance. As our
focus is on large sensor networks, this latter is here measured
in terms of the Kullback-Leibler divergence D(z||w); we also
use the symbol d(y;x) to denote such a divergence, where
the dependence on the attacking distributions is emphasized.
The fusion center collects the nodes observations, with no
possibility of distinguishing between fair and fictitious, and
finally implements a Neyman-Pearson test between the actual
pmfs w and z, being aware of the presence of the Byzantines.

The final exponent of the test (asymptotic miss detection
error rate) will be the minimum of the divergence between
the two hypotheses

∆(α) = min
x,y

d(y;x),

where the pmfs (x, y) attaining such minimum are the attack-
ing distributions employed by the intruder, as characterized in
the next theorem.

Let us define the blinding power

αb :=
∑

(qk − pk)+

1 +
∑

(qk − pk)+
6 1

2
, (2)

where (c)+ stands for max{0, c}. The following result can be
proven.

Theorem 1
(i) For α > αb, ∆(α) = 0.
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Fig. 2. The fundamental tradeoff between the detection power of the network
∆(α) and the attacking power of the intruder α. For α = 0 no Byzantine
sensors exist. By increasing α, the fraction of traitorous nodes, the conspiracy
takes place and the detection capabilities of the network are accordingly
reduced. At α = αb the intruder blinds the system, and ∆(α) falls to zero.

(ii) If α = αb, then the unique pair of distributions (x, y)
that nullifies the test exponent is, ∀k ∈ K,{

xk = 1−α
α (qk − pk)+ ,

yk = 1−α
α (pk − qk)+ .

(3)

If α > αb, there exist infinitely many solutions (x, y) that
nullifies the test exponent. These are obtained by starting with
xk = 1−α

α (qk − pk)+ (which is not a pmf) and increasing
arbitrarily some of the xk’s until x becomes a pmf; the
corresponding y is then obtained as yk = xk + 1−α

α (pk − qk).
(iii) If α < αb, ∆(α) > 0 and the unique pair of pmfs

(x, y) that attains such minimum is given by, ∀k ∈ K,
xk =

1 − α

α
(γxqk − pk)+ ,

yk =
1 − α

α
(γypk − qk)+ ,

(4)

where 0 < γx, γy 6 1 are constants to be set in order to fulfill∑
xk =

∑
yk = 1.

(iv) The function ∆(α) is continuous, decreasing, and
convex ∪ over the interval α ∈ (0, αb), with ∆(0) = D(q||p)
and limα→αb

∆(α) = 0. 4
Proof: Provided in [11].
Part (i) of the above theorem, along with the condition

αb 6 1/2, implies that the divergence can be always nullified,
provided that the fraction of Byzantine sensors exceeds 50%.
In this case no meaningful inference about the surrounding
hypothesis can be made, and we say that the attack has
completely blinded the network. The system is useless.

Solution (3) in part (ii) is actually a special case of that in
eqs. (4), obtained with γx = γy = 1.

As to statement (iii), it can be shown that the likelihood
ratio test corresponding to solutions (4) reduces to a censored



p q

x y

w z

p q

x y

w z

p q

x y

w z

First example Second example Third example
F

in
a
l 
p
m

fs
A

tt
a
c
k
in

g
 p

m
fs

In
it
ia

l 
p
m

fs

Fig. 3. Examples of application of the theory. See the main text for details.

version of the original test between p and q. This is reminiscent
of some statistical tests arising in the context of robust
detection, and in fact w and z are nothing but α-contaminated
mixtures, and w and z, accounting for eqs. (4), are nothing but
the least favorable distributions of the test [12]–[14]. This also
implies that a Byzantine change of the attacking distributions
when the network is not aware of this (i.e., when it still
implements the censored test), cannot provide any advantage
from the intruder’s viewpoint.

According to part (iv) of the theorem, a typical shape of
∆(α) is depicted in Fig. 2. Note that the straight line (1 −
α)D(q||p) corresponding to a black-hole attack, lies always
above ∆(α), confirming the higher power of the Byzantine
conspiracy.

Figure 3 gives three examples of applications. We are given
the initial distributions p and q and the attack power α.
Then, the attacking distributions x and y, can be computed
as indicated by Theorem 1. These are depicted in Fig. 3; also
depicted are the final distributions, used at the fusion center
to implement the Neyman-Pearson test. In the first example
p and q are such that αb ≈ 0.49. If we assume that the
intruder power is α = 0.4, the attacking distributions and
the final pmfs are as shown in the figure. The divergence
between the hypotheses is D(q||p) ≈ 8.3178 nats while, as
consequence of the attack, the final divergence between z and
w reduces to ∆(α) ≈ 6.4 10−2 nats. In the second example the
divergence can be nullified. There, in fact, we set α = 0.3,
while αb ≈ 0.22. We start from D(q||p) ≈ 0.237 and the
result of the Byzantine attack is ∆(α) = 0. The last examples
deals with a singular detection problem (D(q||p) = ∞) and
the attack leads to ∆(α) ≈ 8.1 10−2 nats. In this case
0.4 = α < αb = 1/2.

III. BYZANTINE ATTACKS TO CLUSTERED NETWORKS

In some applications sensor networks may be clustered, in
the sense that several individual nodes are somehow aggre-
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Fig. 4. Binary attacking distributions versus the cluster size m, in the case
that p = [0.1, 0.9], q = [0.4, 0.6], and α ≈ 0.19 < αb. The shown curves
refer to x0, y0, q0, and p0. We know that at m = 1, x0 = 1 and y0 = 0
(from eq. (4)). We also know that, at large m, x0 → q0 and y0 → p0

(hypothesis-reversed attack, see Theorem 2).

gated (e.g., closely deployed) to form a supernode, or cluster.
We now assume that the sensors of the network are grouped m
by m to form a clustered architecture of neighborhood nodes.
One implications of the spatial proximity is that either all the
m nodes of a cluster are traitorous or none is. At the same
time, sensors’ closeness is not enough to produce significant
correlation among the observations made at the m nodes of
the same cluster.

Let K(j) be the m-dimensional vector of per-cluster ob-
servations, and let W and Z be its statistical distributions
under H1 and H0, respectively. Define also Q(k) =

∏m
i=1 qki

Y (k) =
∏m

i=1 yki , P (k) =
∏m

i=1 pki and X(k) =
∏m

i=1 xki .
The pertinent hypothesis test can be now reformulated as

follows. For j = 1, 2, . . . , denoting the cluster index, we have

H0 : Pr{K(j) = k} = Z(k) := (1 − α)Q(k) + αY (k),
H1 : Pr{K(j) = k} = W (k) := (1 − α)P (k) + αX(k).

Let us denote with dm(y;x) the Kullback-Leibler distance
between Z and W , thus emphasizing the dependence upon
the marginal distributions x and y. Also, let ∆m(α) :=
minx,y dm(y;x) be the worst test exponent forced by the
Byzantine sensors when the emissions of these latter are reg-
ulated by the optimal attacking distributions. In what follows
we always assume m > 2, and some attention is payed to the
behaviors of d∞(y;x) and ∆∞(α) describing the asymptotic
case of m → ∞.

We have the following result, in which h(α) is the KL
distance between the binary pmfs [1 − α, α] and [α, 1 − α].

Theorem 2
(i) For any α > 1/2, we have ∆m(α) = 0. The hypothesis-

reversed emission strategy, that is, x = q, y = p, acting on
exactly 50% of the nodes, achieves such minimum.

(ii) For any α < 1/2, ∆m(α) is strictly larger than zero.



(iii) For any α < 1/2, ∆∞(α) = h(α) and the pair (x, y)
achieving such minimum again corresponds to the hypothesis-
reversed emission strategy. 4

Proof: Provided in [11].
Note that part (ii) of the above theorem implies that,

differently from the scenario considered in Theorem 1, an
attack based on less than 50% of the nodes can never impair
the system.

On the other hand, part (iii) tells us that infinitely many
observations (per cluster) do not imply error-free decision.
At first glance, perhaps one would expect dm(y;x) to scale
linearly with the number of local observations m, and therefore
d∞(y;x) = ∞ (error-free, singular test). Instead, there exist
attacking distributions x and y such that d∞(y;x) < ∞. The
traitorous Byzantines, obviously, will choose that.

This admits an intuitive explanation. Consider the ensemble
of m samples collected by a generic cluster and made available
to the FC. Assume further that m is so large that the FC can
exactly know whether these samples come from p or from q.
For instance, if they are known to be drawn from p then,
in view of the reversed emission strategy, this lead to the
conclusion that either the true hypothesis is H1 and the cluster
is honest (this happens with probability 1 − α) or the true
hypothesis is H0 and the cluster is infected (with probability
α). Similarly, if data comes from q, then we either have a
honest cluster and H0 is true (probability α) or the cluster
is infected and H1 is true (probability 1 − α). Exploiting the
many clusters of the network, the FC implements a test whose
asymptotic miss detection error exponent is just h(α).

Comparing the results of Theorems 1 and 2 in the simple
scenario of binary alphabets, we see that by increasing m
the optimal attacking distributions move from a deterministic
delivering x0 = 1, y0 = 0 (which is the best for the case
of m = 1, as a simple derivation from eq. (4) reveals)
to the asymptotically optimum hypothesis-reversed emission
strategy, i.e., x0 = q0, y0 = p0. This is illustrated in Fig. 4.

IV. CONCLUSIONS

A sensor network designed for distributed detection and
subject to a Byzantine attack has been considered, with two
system architectures addressed: a network made of individual
sensors, and a hierarchical structure with groups of m sensors
tied together to form a cluster.

For the former architecture we show that if more than 50%
of the nodes are Byzantine, the attack can always destroy any
detection capability: the network become useless. Actually this
turns out to be true provided that the fraction of traitorous
nodes exceeds a quantity that we call the blinding power αb

(which is always smaller than or equal to 1/2).

The fundamental tradeoff between detection capability and
attacking power is characterized, the optimal attacking proba-
bility laws are derived, and the decision rule implemented at
the fusion center turns out to be a censored likelihood ratio
test. This bears similarities to Huber’s robust statistics.

In the clustered network, this analogy breaks down and
different behaviors arise. In fact, attackers owning less than
one half of the total sensors cannot completely impair the
system. They can, however, severely degrade the performance
of the network, and the optimal attacking distributions that
achieve this goal are “hypothesis-reversed”: the Byzantine
emissions are drawn from the distribution corresponding to
the false State of the Nature. A remarkable fact is that the
asymptotic detection probability does not scale exponentially
with the cluster size. Actually, it does not scale at all with m.
The practical consequence is a saturation effect: increasing the
number of per-cluster sensors beyond a certain amount does
not provide any significant performance improvement. On the
other hand, the expected scaling law is instead preserved with
respect to the total number of clusters.
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