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Distributed Detection in the Presence of
Byzantine Attacks
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Abstract—Distributed detection in the presence of cooperative
(Byzantine) attack is considered. It is assumed that a fraction of the
monitoring sensors are compromised by an adversary, and these
compromised (Byzantine) sensors are reprogrammed to transmit
fictitious observations aimed at confusing the decision maker at the
fusion center. For detection under binary hypotheses with quan-
tized sensor observations, the optimal attacking distributions for
Byzantine sensors that minimize the detection error exponent are
obtained using a “water-filling” procedure. The smallest error ex-
ponent, as a function of the Byzantine sensor population, charac-
terizes the power of attack. Also obtained is the minimum fraction
of Byzantine sensors that destroys the consistency of detection at
the fusion center. The case when multiple measurements are made
at the remote nodes is also considered, and it is shown that the de-
tection performance scales with the number of sensors differently
from the number of observations at each sensor.

Index Terms—Byzantine attack, distributed detection, network
defense.

I. INTRODUCTION

W E consider the classical problem of distributed detection
but under the assumption that some of the sensors have

been compromised by an intruder. The compromised sensors
are referred to as Byzantine and they can be reprogrammed by
the intruder to attack the fusion center by transmitting fictitious
observations. The rest of the sensors are referred to as honest,
and they follow the expected rule of operation.

In the context of distributed detection, the Byzantine sensor
problem is motivated by applications of envisioned wireless
sensor networks where sensors are more vulnerable to tem-
pering. In particular, wireless sensors may be made of low cost
devices with severe constraints on battery power. Such prac-
tical limitations may make the use of sophisticated encryption
unrealistic. Furthermore, the wireless transmission medium is
more vulnerable to eavesdropping, which makes it possible for
the attacker to extract information from sensor transmissions.
As a result, the adversary can employ a wide range of strategies
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including deploying its own sensors aimed at jamming the
transmission of honest sensors or, in a more sophisticated way,
transmitting optimally designed signals to confuse the fusion
center.

We are interested in an analytical characterization of the
ability that Byzantine sensors can affect the decision at the
fusion center. Specifically, from the intruder’s perspective,
what is the most effective attacking strategy by the Byzantine
sensors? It seems obvious that if too many sensors are com-
promised, the fusion center will loose its ability to detect the
underlying phenomenon. But what is the minimum population
size of the Byzantine sensors such that the fusion network is
rendered ineffective completely? From the decision maker’s
perspective, given the Byzantine sensor population, or an upper
bound thereof, what is the achievable performance not knowing
which sensor is compromised?

We adopt a standard model in distributed detection under bi-
nary hypotheses versus , with known distributions [1].
All sensors draw observations that are independent and identi-
cally distributed (i.i.d.) conditioned on the unknown hypothesis.
The classical assumption of conditional i.i.d. observations may
not always be valid in practice and the complications of corre-
lated observations are well known [2]. Recognizing its limita-
tions, we make the conditional i.i.d. assumption for analytical
tractability and gaining insights into how Byzantine sensors can
affect the overall performance.

For the Byzantine sensors, we adopt an approach that grants
the intruder with more power than usually allowed in practice,
which leads to a conservative assessment of security risk but
gains in analytical tractability. To this end, we assume that
Byzantine sensors in fact know the true hypothesis and they use
this knowledge to construct the most effective fictitious obser-
vations aimed at confusing the fusion center. This assumption
obviously is difficult (but not impossible) to satisfy in practice;
it would require that the attacker has a separate network that
allows Byzantine sensors to cooperate among themselves.1

For the fusion center, we assume that it is not compromised,
and it is able to collect data from sensors.2 We are not con-
cerned in this paper about how individual sensors deliver their
data to the fusion center except that what the fusion center re-
ceives is what transmitted by the sensors (Byzantine or honest).
This simplifying assumption also has practical implications:

1For example, the compromised sensors may send their observations to the
intruder and the intruder detects the underlying phenomenon and inform the
Byzantine sensors so that they can collaboratively attack the fusion center.

2It is possible that more than � sensors have transmitted and some transmis-
sions are not successful.
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transmissions of sensors may need to be protected by error
control mechanisms, and the Byzantine sensors are not able to
alter the transmissions of honest sensors.

We assume that the fusion center does not know which sensor
is Byzantine, but it knows the average percentage of compro-
mised sensors, or at least an upper bound, and that the Byzan-
tine sensors may create fictitious samples according to some
unknown (possibly optimized) distribution. The fusion center
makes the detection under a variant of Neyman-Pearson (NP)
setup, which the adversary knows. Different from the standard
NP problem, not knowing what distribution the attacker adopts,
the fusion center caps the false alarm probability to for all pos-
sible attacking distributions. Minimizing miss detection proba-
bility for all possible attacking strategies is not possible. A rea-
sonable approach is to minimize the worst miss detection prob-
ability, which guarantees that the miss detection probability will
not exceed that advertised the worst case, no matter which dis-
tribution is used by the Byzantine sensors.

A. Summary of Results

We first consider the case when the fusion center receives one
observation from each sensor, and no more than an average frac-
tion of the received samples are from the Byzantine sensors.
The parameter represents the power of the adversary of af-
fecting the detection performance.

Formulating the problem as one of minimizing Kull-
back-Leibler (KL) divergence, we obtain the optimal attacking
distribution by the Byzantine sensors through a “water-filling”
procedure. In the NP setup, the resulting KL divergence

—a function of —represents the worst rate of exponen-
tial decay (the error exponent) of the miss detection probability.
When , however, the fusion is “blinded” by the
Byzantine sensors, loosing its ability to distinguish the two hy-
potheses even as the number of samples, we denote it by , goes
to infinite. We show that is a decreasing convex function,
reaching zero at the “blinding” attacking power .

We then consider the case of multiple observations per sensor.
Differently form the single-sample case, now the blinding power

is always 1/2, regardless of the initial data distributions. This
implies that an intruder owing less than 50% of the nodes can
never completely blind the system. One somewhat surprising
result here is that the performances of the network under attack
do not scale with , the sample size at each sensor.

B. Related Work

Distributed detection is a classical subject in signal pro-
cessing (see [3]–[5]) and has attracted recent interest due to the
potential deployment of wireless sensors for a variety of appli-
cations from environmental monitoring to military surveillance.
See [6] for a survey of recent sensor network research from
signal processing and communications perspectives. While
there is a vast literature on secure networking for general ad
hoc and sensor networks, see, e.g., [7] and references therein,
reported work on distributed detection and data fusion in the
presence of Byzantine sensors is still limited, see [8]–[10].
Relevant to the application considered in this paper is the
witness-based approach proposed by Du et al. [11] where the

fusion center and a set of witnesses jointly authenticate the
fusion data by the use of the Message Authentication Code.
Our focus is considerably different in that we do not try to
authenticate the data; we consider most effective attacking
strategies and distributed detection schemes that are robust to
attack.

The Byzantine model assumed in this paper was originally
proposed by Lamport, Shostak and Pease [12] and further devel-
oped by Dolev [13] and later in the information theoretic con-
text by Pfitzmann and Waidner [14]. Byzantine models have also
been used in recent work on network security, see [15]. Here we
focus on the impact of Byzantine nodes on distributed detec-
tion, which has not been considered in the past. In someway,
our problem in the presence of compromised sensors is similar
to the original Byzantine general problem in the sense that a
set of sensors try to interfere the fusion center to reach reliable
detection, and the compromised sensors, like the traitorous gen-
eral, are given full options (including collaboration) to disrupt
the sensor network. A key difference is the presence of the fu-
sion center (which is always honest).

An information theoretic investigation of data fusion in the
presence of Byzantine sensors is considered in [16]. The authors
of [16], however, are interested not in the detection performance
but in recovering measurements from honest sensors at the fu-
sion center.

The signal processing problem considered in this paper is
most relevant to robust statistical inference [17]. In his sem-
inal work [18], Huber considered the problem of binary hypoth-
esis testing with -contaminated distributions. The Byzantine
sensor model used in this paper fits naturally into Huber’s ro-
bust detection framework, and results in classical robust detec-
tion apply to the Byzantine sensor problem. In particular, Huber
showed that the likelihood ratio test based on the worst distribu-
tion pair has the minimax property. It minimizes the maximum
miss detection error probability (among all possible -contam-
inated distributions) while all the false alarm probabilities are
below a preset bound .

Our results, however, are not a direct application of those
of Huber. We have used the miss detection error exponent as
our performance metric in our analysis. While as Huber we
too are interested in the worst distribution pair, our techniques
of finding them are different. Our technique leads to a “water-
filling” solution whereas Huber’s technique is algebraic. Indeed,
finding the worst distribution pair is only the first step toward
characterizing the power of the Byzantine attack. For example,
our result allows us to obtain the relation between the size of the
Byzantine sensor population and the worst detection error ex-
ponent. We have also investigated the effects of multiple sensor
measurements and the scaling behavior, which are not consid-
ered in classical robust detection.

The paper is organized as follows. In Section II the addressed
problem is formalized. Sections III and IV contain the main re-
sults of the paper, respectively for single and multiple observa-
tions. These results are presented in the form of two theorems
whose implications are discussed in due depth; the proofs of the
theorems are provided in two appendices at the end of the paper.
Numerical examples are given in Section V, while Section VI
contains conclusions and hints for future works.
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II. PROBLEM FORMULATION

In the following , denotes the observa-
tion made at sensor . We denote , , , , and as prob-
ability distributions defined over a discrete finite common al-
phabet that, without loss of generality, can be taken as

. The entries of the probability vector
will be denoted by , , and the same definition ap-
plies to other probability vectors. denotes the diver-
gence or Kullback-Leibler (KL) distance [19] between the two
probability mass functions (pmfs) and . Logarithms are to
base and divergences are measured in nats. It is assumed that

.

A. Models and Assumptions

We use the conventional distributed detection model where
we consider two hypotheses and . We make the con-
ditional i.i.d. assumption under which observations from
honest sensors are conditionally independent and identically
distributed. If sensor is honest, it observes according to
distributions and under and , respectively

(1)

where , and, for the time being, is a
scalar.

For Byzantine sensors, we assume that, through collabora-
tions, they know the true hypothesis. This allows the Byzantine
sensors to transmit fictitious observations to the fusion center
according to distributions different from that given by nature.
In particular, if a sensor is Byzantine, it generates observation

as follows:

(2)

where and are two pmfs defined over . We assume that all
Byzantine sensors use the same distribution and transmit fake
observations independently. Note that this problem formulation
can be used also when the Byzantine bases its emission on the
original observation owned by the sensor. That is, if under
the original observation taken from nature by sensor is
, the Byzantine may transmit to the fusion center a value

using the conditional pmf . How-
ever, since the fusion center does not have access to the true

, the distribution seen by the fusion center should be ac-
cordingly averaged, such that can be defined as

The same holds true under the alternative hypothesis.

We assume that the fusion center receives observations
from sensors and with probability is Byzantine. The th
sample then has the distribution

with

with
(3)

Again the observations are conditional i.i.d.

B. Problem Statement

In characterizing the power of a Byzantine attack, we first
take the perspective of the intruder and aim at degrading as much
as possible the detection performance at the fusion center. By
Stein’s lemma [19], we know that the KL divergence
represents the best error exponent of the missed detection error
probability in the NP setup. In other words, for any detector of
size3 , the miss detection error probability has the asymp-
totic representation

where is the number of samples used in the detection. Thus it is
natural that the intruder should minimize by choosing
attacking distributions and optimally.

To highlight the dependencies of on and , define

(4)

which is not to be confused with the divergence between and
. From now on, unless otherwise specified, sums such as

run over the entries of the alphabet .
Also, let

(5)

be the minimum of the divergence between the two hypotheses
with distributions and . We refer as the attacking power,

the attacking exponent, and the optimizing as the
attacking distributions. In Theorem 1, we provide the analytical
characterization of these quantities.

The KL divergence has the property that if and
only if . Therefore, if , the fusion center is
unable to distinguish the two original hypotheses and . The
intruder then is interested in the minimum attacking power that
will destroy the ability of fusion center to detect. Thus, we call

such that (6)

the blinding power. A closed form expression can also be found
in Theorem 1.

It should be obvious that for any . In such
a case, the intruder simply creates the parity by letting a fraction
of the Byzantine sensors transmitting samples generated from
the true hypothesis and the rest from the alternative. When

3That is, for any detector whose false alarm probability does not exceed �,
see, e.g., [19].
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, the fusion center sees with equal probability observations
generated under and under .

Next we take the perspective of the fusion center which knows
that the distributions of the received samples follow (3), but it
does not know the specific attacking distributions used by the
Byzantine sensors. The specific forms of distributions in (3) al-
lows us to use the framework of robust detection. In [18], Huber
considered the hypothesis testing problem given in (3) and pro-
vide a minimax solution. He showed that there exists a pair of
distributions such that a likelihood ratio detector will i) guar-
antee that false alarm probabilities under all possible are below
a preset bound ; ii) minimize the maximum miss detection
probability (among all possible ).

It is not obvious that worst distribution pair from Huber’s
robust detection theory matches that obtained under (5). This
turns out to be the case as shown in Theorem 1, and implies
that if the fusion center adopts Huber’s robust detector designed
over the upper bound, say , a miss detection error exponent
no smaller than is achievable. This coincidence gives the
operational meaning of (5).

III. ATTACKING DISTRIBUTIONS AND DETECTION

ERROR EXPONENTS

Now we describe how the intruder can minimize the test ex-
ponent, and discuss the cases in which this minimum is zero,
meaning that the system is definitely impaired and useless.

Theorem 1:
i) The blinding power defined in (6) has the form

(7)

where when and otherwise.
ii) If , then the unique pair of distributions that

nullifies the attacking exponent is, ,

(8)

If , there exist infinitely many solutions that
nullifies the test exponent.

iii) If , and the unique pair of pmfs
that attains such minimum divergence is given by,

,

(9)

where are constants to be set in order to
fulfill .

iv) The function is continuous, decreasing, and convex
over the interval , with

and .
Proof: See Appendix I.

As a first comment we note that, according to part iv) of
the theorem, the typical curve is that depicted in Fig. 1,
and it represents the best achievable asymptotic rate of the test,
accounting for the malicious intruder that plagues the system.
Also shown is the performance curve for the black-hole attack,
amounting at simply destroying a fraction of nodes. This
yields an exponent , which is always less effec-

Fig. 1. The fundamental tradeoff between the attacking exponent of the net-
work ���� and the attacking power of the intruder �. For � � � the intruder
does not affect the network. By increasing the fraction of infected nodes �,
the intruder becomes more pervasive and the detection capabilities of the net-
work are accordingly reduced. At � � � the intruder blinds the system, and
���� � �. Also shown is the exponent of a black-hole attack.

tive than the more sophisticated attack dealt with in Theorem 1,
due to convexity of the divergence.

Solution (8) in part ii) is actually a special case of that in (9),
obtained with , while the case leaves to the
intruder additional degrees of freedom in choosing the attacking
distributions. As to statement iii), it is straightforward to see that
the likelihood ratio between and , with and given by (9),
amounts to the product of terms in the form

if

if
if

(10)

that is a censored version of the original test between and .
Such kind of tests naturally arises in the context of robust detec-
tion, see Huber [18]. In fact, statement iii) of the theorem can be
found in the literature of robust inference [17], [18], [20], once
that one recognizes and as being -contaminated mixtures.
Under a variety of test performance criteria (Bayes risk, NP,
Chernoff exponent, etc.,) (9) are in fact known to yield the least
favorable distributions.4 For self-consistency, in the appendix
we opt for providing a simple proof of statement iii), tailored to
our special case of KL criterion and finite alphabets.

The analogy with robust theory also implies further prop-
erties. First, a Byzantine change of the attacking distributions
when the network is not aware of this [i.e., when it still im-
plements the censored test (10)], cannot provide any advan-
tage from the intruder’s viewpoint. In addition, would only an
upper bound be available to the fusion center, the censoring
thresholds and in test (10) should be simply computed
using . For any the ensemble of attacking distributions

and available to the Byzantines spans the -contaminated
class which, more or less obviously, is contained in the -con-
taminated. This implies that the censored test designed with
achieves an exponent no smaller than .

4Similarly, we can argue that some results in Theorem 1 can be easily ex-
tended to more general settings, such as continuous observations, different per-
formance criteria, etc.
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Fig. 2. Description of the “water-filling” procedure. For each �, we draw rect-
angular boxes of area � (bases � , and heights � �� ). When � increases
from its initial value of 0, some dashed boxes begin to appear in correspon-
dence of the indexes where � �� is smaller. The process of increasing � is
stopped when the total area of these dashed regions is equal to �������. This
is the level shown by the bold line.

The values of and appearing in Theorem 1 result from
a procedure that can be described in terms of a “water-filling,”
see Fig. 2. For each we draw a rectangle of area , whose
basis and height are and , respectively. Then, we start
to increase the level of water from its initial value of 0. When

reaches the height of the shortest rectangle (in the example
the leftmost rectangle whose height is ) the water begins
filling the correspondent dashed region. By further increasing,

passes the level so that the water simultaneously fills
the dashed regions in correspondence of and .
The process of increasing is stopped when the total area of
these dashed areas is equal to . The final value of
is depicted by a bold line in the figure and represents the sought
value of the constant appearing in the first equation of (9). In
fact, with such a value of we have found the desired pmf:

, ,
. Note that, as prescribed by Theorem 1, only

rectangles such that can be (but not necessarily are)
filled, because . Thus, only the correspondent vector
entries can be positive; in the example this happens for and

. Obviously, similar arguments apply to the computation of

. Note also that and are never both positive for a given
, as one can expect.
It is instructive to regard results in Theorem 1 from a geomet-

rical viewpoint. Let , for some
pmf over , and let , for
some pmf over . With reference to Fig. 3, these sets admit
the following geometric interpretation. In the regime ,
the intruder has enough degrees of freedom to have the chance
of selecting one of the infinitely many pairs such that

, so that . Conversely, when-
ever , the two sets in Fig. 3 are disjoint and the diver-
gence cannot be nullified: a single solution is available
to the intruder. Such solution gives the pair that achieves

. If the two circumferences in Fig. 3

Fig. 3. Probability simplex and geometrical interpretation of the sets � and
� . The circles around � and � denote � and � , respectively.

Fig. 4. Three examples of application of the theory. See the main text for
details.

would be tangent, the intersection would contain the
single element , and clearly is zero.5

Before concluding this section, let us give some examples of
application of the above theory. Assume that we are given some
prescribed initial distributions and (possible states of the na-
ture) and the intruder’s power . Then, the fictitious distribu-
tions for the intruder’s attack and can be computed as de-
scribed in Theorem 1, and these pmfs minimize the final diver-
gence between the distributions and , as perceived by the FC.
The situation is illustrated in Fig. 4, where three somehow pecu-
liar situations are illustrated, namely: one case where the orig-
inal pmfs have markedly different shapes; the second one where
the Byzantines are able to blind the network; the last degenerate
example where the original pmfs have disjoint support (i.e., in-
finite divergence). In the first example (six leftmost panels) we
have initial distributions and such that , and such
that the divergence between the hypotheses is

5For � � � the divergence minimization problem can be regarded in terms
of successive minimization of the distance between two disjoint convex sets
of probability distributions. The alternating minimization algorithm [21] is a
general approach to solve this kind of problems.
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nats. We now assume that the intruder power is . The at-
tacking distributions and are as shown in figure, and yield
and as depicted in the two left-bottom panels. The final diver-
gence (that between and ) reduces to nats.
The second example illustrates a case where the divergence can
be nullified; in fact here it is assumed , while .
We start from and the distributions and

whose shape is illustrated (this is only one of the infinitely
many possible pairs) yield identical final pmfs , so that

. Finally, in the third example the initial divergence is
and the attack leads to nats; in

fact, in this case .

IV. VECTOR OBSERVATIONS

We now consider the case that observations are collected at
each sensor of the network. It is assumed that the -vector that
each node delivers to the FC is in any case made of i.i.d. samples,
drawn from or , in the case of a honest sensor, or from or ,
for the Byzantines (i.e., no correlation can be imposed among
the samples of an infected node).

Let us extend the basic notation to the multiple-observations
case. Let be the -dimensional vector of per-sensor ob-
servations, whose entries belong to . The generic statistical
distributions of such a vector under and will be de-
noted by and , respectively, and is their mul-
tidimensional KL distance. Also, for any , we define

, and
. In what follows , , and (we often

omit the argument ) are always in product form. Thus, cap-
ital letters refer to multidimensional pmfs, while lower cases are
used for their one-dimensional counterparts.6

Assume now that a vector of i.i.d. observations is made
available to each honest node. The Byzantine sensors, similarly,
deliver to the FC a fictitious vector of i.i.d. samples drawn from
the intruder’s attacking distributions. As a matter of fact, this
breaks down the similarity with robust detection formulation
in -contaminated classes, as our contaminating pmfs are con-
strained to be in product form. Otherwise stated, while the nom-
inal distributions and lie in a -dimensional space, the
intruder is only allowed to act on -dimensional pmfs and

. As far as we can tell, no standard results in simple analytical
form are known for this contaminating model.

The pertinent hypothesis test can be now reformulated as fol-
lows. For , denoting the sensor index

(11)

We can again refer to the KL distance as performance figure.
The analogous of (4) for the case of observations is

(12)

and represents the objective function to be minimized. We re-
iterate that is a function of the marginal distributions

6We tolerate a slight asymmetry: � represents the pmf � evaluated at �, while
� ����� is the pmf � evaluated at ���, so that we use subindex in a case and paren-
theses in the other.

and , as a consequence of the assumed i.i.d. property of the
attacking distributions.

Let . This limit may be infi-
nite and in effect one would expect that it should be so. After all,
we are saying that infinite observations are available so that error
free decision should be possible, and the KL distance
should accordingly diverge. However there exist attacking dis-
tributions and such that does not scale with , im-
plying that . The malicious intruder, obviously,
will choose that. Let us see.

Define and
. In addition, denote with the KL dis-

tance between the binary pmfs and . We
have the following result.

Theorem 2:
i) For any and , . The hypoth-

esis-reversed emission strategy, that is, , ,
acting on exactly 50% of the nodes, achieves such min-
imum.

ii) For any , and , is strictly larger
than zero.

iii) For any , , and the pair
achieving such minimum again corresponds to the hy-
pothesis-reversed emission strategy.

Proof: See Appendix II.
To elaborate on the results of Theorem 2, we start consid-

ering . In this case the “hypothesis-reversed” emission
strategy and , makes both the distribution appearing
in the statistical test (11) equal to and,
therefore, the divergence in (12) goes to zero. This further im-
plies that in the regime at least one pair of attacking
distributions exists that nullifies the divergence, thus blinding
the network (just infect 50% of the nodes and carry out the hy-
pothesis-reversed attack). The conclusion is that the reversed
emission strategy is optimal (from the intruder’s viewpoint) and
completely impairs the detection capabilities of the system, pro-
vided that . This justifies statement i).

As to part ii), the implication is that, differently from the sce-
nario considered in Theorem 1, an intruder infecting less than
50% of the nodes cannot completely impair the system, regard-
less on the initial distributions and . At rigor, this turns out
to be true only if , but this is a technical condition with
little impact on many practical systems where the typical setup
is that of large .

Now, let , assume finite, and consider again the
hypothesis-reversed attack. The divergence in (12) be-
comes . A
straightforward application of the log-sum inequality (see e.g.,
[19]) then reveals that , also implying that

does not scale with . Theorem 2, part iii), simply
ensures that, in the limit of increasingly large , the bound is
tight and that no other attacking distributions can do better (for
the intruder) than that.

More specifically, the proof of Theorem 2, part iii), de-
tailed in Appendix II-B, contains the following result. The
limit can only assume one of the four
possible values shown in Table I. If such limit is strictly pos-
itive, then scales linearly with the number of local

Authorized licensed use limited to: Cornell University. Downloaded on August 16, 2009 at 23:12 from IEEE Xplore.  Restrictions apply. 



22 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009

TABLE I
POSSIBLE RESULTS OF ��� �� ������ ��� �� IN THEOREM 2, UNDER THE VARIOUS ASSUMPTIONS

observations and therefore . For instance,
let us consider the two solutions in the last column of Table I.
Here, for large , the intruder can achieve a minimum of

by selecting, or ,
respectively. This reaches the same asymptotic performance of
a black-hole attack, wherein the exponent of the test is reduced
by , the fraction of uninfected nodes.

As said, when is positive, the unnor-
malized limit diverges. However, there exist two pos-
sibilities to avoid that. These are those in Table I that nullify

, namely, , and ,
(i.e., the hypothesis reversed). In the proof of the the-

orem it is shown that the latter is better for the intruder, leading
to a lower value of . The conclusion is that the hypoth-
esis-reversed distributions are optimal for the attack; the perti-
nent divergence is then that does not scale with .

The results of the theorem admit the following interpretation.
At a first glance one can expect that, with infinitely many ob-
servations per sensor, the FC can reliably recognize which sen-
sors are honest and which ones are Byzantine. The exponent

should accordingly scale at least as ,
corresponding to having discarded the fraction of infected nodes
(see also Table I).

However, a little thought reveals that the above argument fails
when the attacking distributions are exactly the original pmfs
and used in reversed order. With this choice the FC is still able
to recognize whether the samples from a certain sensor come
from or from , but this does not enable to identify the Byzan-
tine sensors. In fact, if the samples appear to be drawn from ,
in view of the reversed emission strategy, this lead to the con-
clusion that: either the true hypothesis is and the sensor is
honest (this happens with probability ) or the true hypoth-
esis is and the node is infected (with probability ). Similar
considerations apply if data appear to come from . It is now
clear that the FC can only count the proportion of these two pos-
sibilities and, consistently, the asymptotic miss detection error
exponent is just .

It is worth noting that the log-sum inequality implies7

. As expected, from
the network viewpoint, increasing the number of observations
per sensor improves the detection performance. As conse-
quence of Theorem 2, we also have that is continuous
and convex (such being ).

Finally, wherever only an upper bound is available at the
fusion center, in the limit of the Byzantine emissions

7In fact, � ��� is a divergence encompassing the optimal choice of the
��	��-dimensional attacking distributions. This is simply shown to be larger
than the �-dimensional divergence that one obtains by marginalizing with re-
spect to the �� 	 ��th dimension which, in turn, is larger than the �-dimen-
sional divergence that one obtains by replacing � and � with those minimizing
the �-dimensional problem. This latter, by definition, is � ���.

do not change since the attacking distributions and
are obviously independent of , and the strategy of the fusion
center still amounts to a sort of counting.

V. NUMERICAL EXPERIMENTS

A. Fusion of Hard Decisions and Check of Convergence

The general results provided in Section III and Section IV
can be specialized to the binary case, which can model networks
where local sensors make their own decisions about the state of
the nature, and deliver such binary data (also called hard deci-
sions) to the FC. This latter implements an optimal fusion rule
(likelihood ratio test) in order to end up with the final decision.

Let us first consider the single-observation case, i.e., .
Assume that , with the interpretation that
whenever the local decision is for , and other-
wise. Assume also, without loss of generality, that the two ini-
tial distributions and are such that , so that neces-
sarily (if inequalities were reversed, in what follows
one should simply exchange the roles of 0 and 1). From (7), we
get . According to Theorem 1, we
know that if there exists a single pair of distributions
nullifying the divergence. Such pair is, see (8) (deterministic
emission)

(13)

Equation (9), specialized to the binary case, reveals that the
above solution is exactly the same attaining in
the case where , and the divergence cannot be brought
to zero. On the other hand, if , the infinitely many
pairs of binary pmfs that make can be put in the
form , and

, , where can be
arbitrarily chosen between zero and .

As approaches from above, the admissible values of
tend to the single value . At that point we get (13). Fur-
ther decreasing of does not modify the solution but obviously
impacts on the resulting (nonzero) . In this regime, from
(13) we see that the strategy of the intruder is to compensate the
original proportion of zeros and ones delivered by the sensors,
by enforcing the nodes under its influence to send always the
symbol 1, if is in force, and always the symbol 0 when
is the underlying state of the nature. This deterministic Byzan-
tine emissions is exactly what one expects.

Let us now switch to the case of many observations, i.e.,
. We compute numerically the minimum achievable divergence

and the corresponding optimal pair , with the aim
of checking the effectiveness of the asymptotic results given in
Theorem 2.
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Fig. 5. Attacking exponent � ��� versus the attacking power �, for different
values of the vector size � � �� �� ��. The original distributions are � �
	��
� ���� and � � 	��
� ����. The lowermost curve is � ��� � ���� consid-
ered in Theorem 1 and depicted in Fig. 1. The uppermost curve is � ��� �
���� and refers to the case of infinitely many observations per sensor. This
latter, clearly, does not depend upon the considered � and �. The inner plot
refers to � � ��
��� and shows the behavior of � ��� versus the vector size
�. A monotonic growth is observed from ���� (lower horizontal line) to ����
(upper), as expected. The rate of convergence varies from case to case; here �
in the order of a few tens may be enough.

In Fig. 5, the curve is plotted as a function of the
intruder’s power , for several values of , and for a particular
choice of the binary pmfs and . Also the (theoretical) limiting
curve is depicted. The emerging trend is that,
as predicted by the theory, the curves monotonically
approach the limiting curve , as the number of samples
per sensor grows.

An alternative view of the convergence is given in the inner
plot of Fig. 5, where is held fixed, and is plotted as
a function of . For comparison purposes, we also display the
straight lines corresponding to the values and ,
which are exactly computed thanks to Theorems 1 and 2, re-
spectively. The convergence is more clearly highlighted, and it
is seen that a relatively moderate number of observations per
sensor is sufficient to reach the asymptote.

Inner plot of Fig. 5 also suggests a further speculation. Sup-
pose that one knows the exact value of for a given .
Then, thanks to the monotone behavior of with , the
residual error that one would make in assuming true the asymp-
totic value , for vector sizes larger than , cannot exceed

.

B. Actual Detection Probability

In this section, we report the results of several Monte Carlo
(MC) simulations, aimed at verifying the effectiveness of our
asymptotic analysis, in scenarios of practical relevance. Specif-
ically, we numerically estimate the detection probability per-
taining to different attacking strategies, chosen among those
previously encountered.

As a case study, we consider an original (intrusion-free) hy-
pothesis test involving two binomial pmfs with different param-

eters , , where stems
for a pmf pertaining to a binomial experiment with trials and
probability of success . We implement likelihood ratio tests for
different choices of the intruder’s pmfs and , and for both
the cases of single and multiple observations. Specifically, we
address the following.

1) The case with the pmfs and which
are optimal for the case of a single observation per sensor
(i.e., found by the water-filling approach).

2) The case , with the hypothesis-reversed emission
strategy , , which optimizes the multiple-
observations scenario.

3) The case , with the strategy , which is
not optimal but, according to what previously discussed in
Section IV, gives a KL distance that does not scale with .

4) The case , adopting the attacking strategy ,
, that is, using the pmfs optimal for the case of

. Oppositely to previous items, this attack is expected to
give a KL distance growing with .

In Fig. 6, left panel, we plot the (MC-estimated) detection
probability as a function of , for the above four cases, for fixed
false alarm probability . The actual performances, esti-
mated by MC iterations, are compared with those computed
using the KL distances according to Stein’s lemma. Two rele-
vant features emerge from the inspection of the figure.

First, consider the behavior of the optimized solutions (items
1 and 2 above). In the leftmost curve, the detection probability
pertaining to the case is reasonably close to the asymp-
totic approximation ; similarly, the case
(rightmost curve) exhibits a good match between the actual de-
tection probability and the asymptotic value . The
only marked difference arises when in the case that

, and when is near , for . This can be simply
understood. Theorems 1 and 2, part i), establish that in these
ranges the test reduces to an independent coin flip. The simu-
lated curves behave accordingly. The inaccuracy of the theoret-
ical curves are to be ascribed to the asymptotic nature of Stein’s
lemma, from which these curves are derived.

As to items 3 and 4, the simulations evidence how these non-
optimal attacking distributions are definitely disadvantageous
for the intruder. Due to finite MC-samples effect, the estimated
detection probabilities are all too close to unity, and an increase
of the Monte Carlo runs would be necessary to compare the
results each other. This is symptomatic of the strong sub-op-
timality of the intruder’s choice.

A more quantitative analysis is given in right panel of Fig. 6
that focuses on the estimated KL distances corresponding to the
same simulations of the left panel, and compares these values
to the asymptotic values given in Table I. It is seen that the case
of is the least favorable for the network. Progressive
performance improvements are observed for the cases ,
in the expected ordering. In particular, the most pronounced in-
truder’s performance loss (gain for the network) appears in the
case , , in that, as already noticed, this choice let
the divergence scale with . In addition, starting from a certain
value of , this last curve behaves somehow irregularly. Such
a value of is recognized to be exactly and the
strange shape of the KL distance is a consequence of the arbi-
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Fig. 6. (a) With reference to the four attacking distributions as detailed in the list of Sections V-B, we estimate the detection probability by �� Monte Carlo
runs. Here the false alarm probability is � �� , the number of sensors is � � ��, and � and � are two binomial pmfs with � � �, � � ���, and � � ���.
For comparison, the detection probabilities obtained via Stein’s lemma exploiting the theoretical exponents are also shown. The optimized (from the intruder’s
viewpoint) attacking distributions (cases 1 and 2) lead to the shown curves; cases 3 and 4 are not shown because the pertinent curves all collapse to 1, as symptomatic
of a high performing network. (b) For the same attacking distributions we depict the error exponent of the statistical tests. This allows us to show all the four cases
described in the list of Sections V-B.

trary choice of the distributions, which is allowed in that range
[see Theorem 2, part ii)].

C. Two Practical Issues

In this section we discuss some practical aspects of assuming:
i) knowing an upper bound instead of the actual attacking
power ; ii) the presence of some statistical correlation among
the sensors’ delivering. We limit the analysis to a couple of il-
lustrative examples.

We consider the same scenario as in Fig. 6, left panel, for
, again with sensors. Different from the previous

simulations, here we assume that an upper bound
is available, while the actual is allowed to vary. The Byzan-
tines select the attacking distributions and corresponding
to the true , while, as previously said, the network opts for a
(conservative) design exploiting the likelihood ratio test for the
worst-case .

The resulting detection probability is displayed in the upper-
most plot of Fig. 7, as a function of . For , we obtain
the same value shown in Fig. 6. On the other hand, according
to the prescriptions of robust statistics, a decrease of the actual
attacking power results in an improvement of the detection prob-
ability and of the false alarm rate (not shown here for the sake
of brevity), which can be substantially smaller than the nominal
value 0.1.

As a comparison, we also report the detection performance
of a network having access to the exact value of (see curve
labelled as “known ”), for a false alarm rate corresponding to
the nominal requirement of 0.1. Such comparison, clearly, is not
made at the same false alarm level. To complete the analysis, we
tune the threshold of the latter system in order to let both detec-
tors share the same false alarm probability (see curve labelled
as “known , tuned threshold”). As it must be, the detector that
knows always outperforms that knowing only the bound.

Fig. 7. Detection probability in the presence of non perfect knowledge of the
attacking power (upper plot), and in the presence of non i.i.d. data (lower plot).
See the main text for details.

We now consider the effects of measurement correlation. To
impose a certain degree of statistical dependence among the
honest sensors’ observations, we simply use the classical model
of correlated Gaussian observations, with correlation coefficient

and unit variance. We consider a shift-in-mean problem, with
zero-mean variables under , and mean under . The ob-
servations are uniformly quantized before sensors’ delivering.
In this case, both the network and the Byzantines follow the op-
erational mode designed under the i.i.d. situation. In the lower-
most plot of Fig. 7, the actual detection probability is displayed
as a function of the correlation coefficient . As it can be seen,
the theoretical predictions are accurate enough for moderate de-
grees of correlation.
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VI. CONCLUSION

In this paper, we have considered distributed detection in the
presence of Byzantine sensors created by an intruder, and char-
acterized the power of attack analytically. We are able to provide
closed-form expressions for the worst detection error exponent
of an optimized NP detector at the fusion center, and for the cor-
responding attacking distributions. We also give expressions of
the minimum attacking power above which the ability to de-
tect is completely destroyed.

As to the case of vector observations, we find that an intruder
infecting less than 50% of the nodes cannot completely impair
the system, regardless of the distributions of the sensors’ ob-
servations. It can, however, severely degrade the performance
of the network, and the attacking distributions that achieve this
goal are “hypothesis-reversed”: when the true state of the nature
is , infected sensors deliver data according to the distribution
that actually pertains to hypothesis , and vice versa. A no-
table fact is that the asymptotic detection probability does not
scale exponentially with the vector size . Actually, it does not
scale at all. The practical consequence is a saturation effect: in-
creasing the number of per-sensor observations beyond a certain
amount does not provide any significant improvement.

This scaling behavior may appear rather counterintuitive if
one considers that each (honest/Byzantine) sensor contributes to
the detection statistics with independent observations. On the
other hand, the expected scaling law is instead preserved with
respect to the total number of (independent) nodes . Indeed, we
find that the asymptotic detection probability (for a given false
alarm level) is approximately , where
represents a binary divergence. This has the nice interpretation
that, once saturated, the best test that the network can implement
is a sort of honest/Byzantine-appearing sensor counting.

We should also point out several limitations of our results.
Note that we have assumed very strong Byzantine sensors that
actually know the true hypothesis. This model is overly conser-
vative in practice. Thus one should view the results presented
here are a form of worst case assessment of the risk of Byzan-
tine attack. The conditional i.i.d. assumption is also limiting.

As a future line of research it may be of interest to consider
a Bayesian formulation with a priori probabilities assigned to
the hypotheses. In this setting the asymptotic performance can
be measured in terms of the Chernoff information [19]. It might
be also assumed that the intruder not only knows the state of the
nature, but it may also controls it by tuning, to some extent, the
probability of occurrence of the hypotheses. Finally, note that
the same tools used in this paper are certainly exploitable for
studying the attacks of a less dangerous intruder that does not
know the true state of the nature.

APPENDIX I
PROOF OF THEOREM 1

Preliminary, let us note that immediately follows
from .

Conditions for Definitely Impairing the Network—Parts i)
and ii) in Theorem 1: Clearly, in (4) is zero if and only
if , i.e., if the following set of conditions hold:

Let us set . We have only three possi-
bilities.

1) . In this case is a distribution vector. From
the definition of in (7), it follows , and the
unique solution of the above system is readily obtained
assuming equality in the last equation, i.e., , and

, yielding (8).
2) . In this regime . Let us tentatively set

as in the solution (8). As , is not a pmf,
but we can clearly arbitrarily increase values of some of
the ’s until becomes a pmf. After doing that, setting

as in the first equation of the above system, verifies the
conditions for .

3) . Here . The divergence cannot be nulli-
fied because the elements of are lower bounded by those
in . This case is dealt with in the following.
Minimizing the Achievable Exponent—Parts iii) and iv) in

Theorem 1: We can formally state the problem as the following
constrained convex optimization

(14)

The objective function is continuously differentiable and
it is easily recognized to be convex in the pair . These
properties are obviously also true for the inequality constraints,

and , as well
as for the equality constraints, and

.
Accordingly, Karush-Kuhn-Tucker equations lead to the fol-

lowing result [22]. Necessary and sufficient conditions for the
point to be a minimizer of are that there must exist
constants , , and , such that (see
the equation at the bottom of the page).On accounting for the
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definitions of , , and , the above equations can be
manipulated to work out the pertinent derivatives, yielding

all

all

all s.t.

all s.t.

(15)

where we have set for simplicity , and
.

As it is easily recognized that , combining the first
and the last two formulas yields

(16)

(17)

In the above, and are to be set to guarantee that
, in order to get a valid pair . The procedure for

doing that is known as water-filling and has been described in
the main text.

The solution provided by (16) and (17) can be greatly simpli-
fied by showing that, for any , and cannot be both
positive, i.e., , . To this aim, we first show that

and are both in . In fact, from the first two equations
in (15), we get , or
equivalently, , which,
summed over , yields . In the same way, by elab-
orating on the last two equations in (15), we have .

Assume now that and are both positive for some .
Then, first and third equation in (15) immediately imply

that, accounting for , reduces to .
On the other hand, if , the same first and third
equation in (15) yield

(18)

for all such that either , or , or both, are strictly positive.
For the remaining indexes ’s, namely those such that

, second and fourth equations of (15) tell us that
and , namely ; this implies that (18) still

holds true. We have thus shown that if there exists an index
such that and , then and (18) is true
for all . The immediate implication is that ,
which contradicts our assumption of .

Capitalizing on the property that , , the
solution expressed by (16) and (17) can be simplified to the ex-
pressions given in (9) of the theorem. The existence of suitable
constants and is guaranteed by the fact that is either
zero, or a strictly increasing continuous function of :
by increasing there certainly exists an unique value such that
the sum is exactly 1. Obviously, similar arguments apply to .
This concludes the proof of part iii).

Consider now the properties of . Accounting for the
water-filling procedure (see discussion following Theorem 1),

it is easily seen that both the constants and vary con-
tinuously with . Then, from solution (9) it follows that
and are continuous in , and the same holds for and
at optimality. The continuity of the divergence with respect to
the involved distributions immediately implies the continuity of

.
As increases, the minimization of is performed

over larger and larger sets and this ensures that is non-
increasing. Thus, the function goes with continuity from

, when , to 0, when . We next show that
is convex so that all the claims of the theorem follow.

Let us pose , and further define ,
as the pmfs which minimize at the point , and ,
as the pmfs which minimize at the point . We can

accordingly write

(19)

where we have set ,
, , , and

the last inequality follows by the convexity of the divergence.
Straightforward algebra yields

(20)

where , which can be readily
verified to possess all the requirements for being a pmf. With
the same arguments, it is easy to obtain

(21)

with . Using (20) and (21), the
LHS of (19) is ,
where and are not necessarily the minimizing pmfs corre-
sponding to . The proof is now complete.

APPENDIX II
PROOF OF THEOREM 2

Vectors of Finite Size—Parts i) and ii) in Theorem 2: Actu-
ally, proof of statement i) is simple and is provided in the com-
ments following Theorem 2. Consider hence part ii). Assuming

, to completely impair the network the intruder must
nullify the KL distance in (12). This happens if and only if

.
Differently from the scalar case, we now show that assuming

, the above equation cannot be ever satisfied. In fact, to
fulfill the above equation for the joint -dimensional pmfs, it is
clearly required that all the joint pmfs of lower order must verify
analogous equalities. Assuming this implies, , ,

:
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By restricting to the special case of , we have

that can be easily shown to admit a solution in the pair
only for , provided that is strictly lower than 1/2.

Vectors of Infinitely Many Samples—Part iii) in Theorem 2:
For notational convenience, let us set

(22)

We start with a couple of Lemmas which will turn out to be
useful for the proof of the theorem.

Lemma 1: A positive constant exists such that
.

Proof: We rule out the cases leading to infinite divergences,
in that we are (or better the intruder is) interested in minimizing
the achievable exponent. Elaborating on the numerator of (22),
we have

where and . On the other
hand, for the denominator

(23)

because, in view of the assumption that the denominator is never
zero, . Equation (23) leads
to

where and . Putting
pieces together, the simple bound

is derived. By symmetry arguments, it is easily shown that

with , . By posing
the statement of the lemma follows.

For the special case that and , a bound indepen-
dent on can be obtained. This is contained in the following
result.

Lemma 2: For the hypothesis-reversed strategy ,
, it holds true that .

Proof: For the reversed strategy the log-likelihood be-
comes

(24)

Assuming all probability terms strictly greater than zero, the
log-sum inequality implies

(25)

On the other hand, when, for instance, (recall
that we do not allow both and to be zero), the above
inequality is in fact an equality. Equation (25) can be rephrased
as . Similarly, by simply exchanging
with , one gets . Combining the above
bounds proves the lemma.

We are ready now to prove Theorem 2. In the proof we first
separate the class of -sequences in two classes, by defining
suitable typical sets (broadly speaking). Then, the asymptotic
behavior of the relevant KL distance is investigated separately
in these subsets.

Let and a generic pair of (one-dimensional) pmfs. We
define

(26)

and
(27)

Note that, if is a random vector drawn i.i.d. according to ,
then the probability that it belongs to , say ,
tends to 1 when , as direct consequence of the law of
large numbers that makes the probability of each vanish-
ingly small, .

Now, from definition (13), we can write

(28)

Let us first focus on the first summation, which can be split as

(29)

Authorized licensed use limited to: Cornell University. Downloaded on August 16, 2009 at 23:12 from IEEE Xplore.  Restrictions apply. 



28 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 1, JANUARY 2009

Lemma 1 implies

which vanishes as goes to infinity.
As to the second sum in (29), the log-likelihood can be

rewritten as

where we assume that none of the involved divergences is infi-
nite. These singular cases can be then addressed by continuity
arguments, and, as expected, are of no interest.

In the set ,

yielding

(30)

Observe now that

(31)

and

(32)

Using (31) and (32) in the bounds of (30) yields

(33)

The second addend at RHS of (28) can be managed by similar
arguments, essentially exchanging the roles of and and
introducing the typical set

, in place of . The final result is

.
(34)

It remains to combine the results (33) and (34) to compute
, i.e.,

The value of this limit depends upon the particular combinations
of the possible cases in (33) and (34), and is summarized in
Table I (see main text).

From that table, we see that two possibilities exist for nullify
thus ensuring that .

These are i) , and ii) , . The best from
the intruder’s viewpoint is to select the one yielding a smaller
value of . We now show that the optimal choice is the
reversed emission strategy , . Indeed, the (finite )
divergence for this latter is

while, assuming gives

It is expedient to define the auxiliary function

such that one can write ,
and if is a decreasing function for

. This is in fact the case, indeed

Straightforward calculation reveals that, and
,

, thus .
Having discovered that is the lower exponent for any
, the last part of the proof amounts to compute its value in the

limit of . To this aim, we can redo basically the same
steps from (28) on, specializing to the case that the likelihood
ratio is as in (24). Furthermore, more or less obviously, the per-
tinent typical sets can be defined simply as

.
As to the first term in (24), Lemma 2 implies

when . In the set

Authorized licensed use limited to: Cornell University. Downloaded on August 16, 2009 at 23:12 from IEEE Xplore.  Restrictions apply. 



MARANO et al.: BYZANTINE ATTACKS 29

implying that

[differently from (30) we do not divide by ]. This yields
. Repeating

for the term is straightforward, and yields
,

which concludes the proof.
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