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Abstract— The problem of embedding a covert information
flow in independent renewal cover traffic is considered. Such
embedding provides maximum anonymity against traffic analysis.
The maximum embedding efficiency is characterized, and an
accurate approximation is obtained by formulating the problem
as a Riemann-Hilbert boundary value problem.

Index Terms—Anonymous networking, traffic analysis,
Riemann-Hilbert problem, Fredholm integral equation.

I. I NTRODUCTION

Traffic analysis, one of the oldest techniques in surveillance,
extracts patterns of communications from traffic measure-
ments. While contents of communications can be protected
by cryptographic techniques, patterns of communication and
networking can often be inferred from timings of transmissions
and the statistics of packet flows. For example, by correlating
timings of transmissions at two different nodes, an eaves-
dropper can draw a conclusion that the two monitored nodes
communicate with each other. Similarly, from timing records
of a set of nodes, it is possible to conclude that these set of
nodes form a route for a particular information flow.

A classical way of hiding communications from traffic
analysis is using a certain cover traffic as a carrier for
the intended information flow. If all the transmissions are
encrypted, an eavesdropper is not able to infer whether a
particular transmission is part of an information flow or it
is merely one for some dummy packet or a transmission of
some multiplexed traffic. If the cover traffic is designed in such
a way that transmission epochs at two nodes are statistically
independent, then it is impossible for an eavesdropper to make
any inference about whether the two monitored nodes are
communicating with each other or they are communicating
independently with their respective neighbors. Suppose that
the two nodes can communicate using a subset of transmission
epochs generated from independent transmission schedules,
their communication is perfectly anonymous against traffic
analysis.

We study in this paper the efficiency of embedding low
latency information flow in renewal cover traffic. Consider
the case when two nodesA and B use independent trans-
mission schedules as cover traffic. Suppose that the rate of
transmissions of both nodes are the same, sayλ packets per
second. If the information flow has no constraints on packet
delays, almost all transmission epochs can be used for relaying
packets of the information flow, and the transmission efficiency
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is 100%. On the other hand, for a low latency flow, if there is
a strict delay constraint on the transmission of all the packets,
then only some transmission epochs are eligible for relaying
packets of the anonymous flow. What, then, is the maximum
rate of information flow that can be embedded in a given
cover traffic, and what kind of cover traffic is most effectivein
hiding information flow? To this end, this paper presents some
answers and insights when the cover traffic are independent
renewal processes.

A. Summary of Results and Contributions

Due to space limitation, this paper contains a summary of
results with abbreviated exposition. Technical details can be
found in [1].

We consider the problem of embedding of an information
flow with strict delay constraint∆ in independent and identical
renewal cover traffic at two relaying nodes. In particular, given
realizations of independent renewal processes,S = (si) at the
source andR = (ri) at the relay, we are intereseted in the
optimal embedding strategy that chooses the largest subsets
of transmission epochs inS and R to carry the information
flow. For the given cover traffic, such an embedding gives
the highest efficiency—referred to asembedding capacity—of
carrying perfectly anonymous information flow.

The problem of optimal embedding, fortunately, has been
solved by Blumet al. [2] who showed that a simple greedy
strategy, referred to as the Bounded Greedy Match (BGM), is
sample path optimal. While BGM is easy to implement, the
analysis of its performance is nontrivial, and the lack of ana-
lytical characterization is a main road block to understanding
factors affecting the maximum rate of anonymous information
flow.

The main contribution of this paper lies in a simple
characterization of the optimal efficiency of BGM for the
general renewal cover traffic. In particular, we obtain a sharp
approximation of the embedding capacityC∗ as

C∗ ≈
λ∆

1 + 2
λ∆

∫ λ∆

0 m(t)dt
(1)

where∆ is the flow delay constraint,λ the rate of cover traffic,
and m(t) the renewal function of the underlying renewal
processes.

Equation (1) shows the striking fact that it is the renewal
function, not the specific distributions of the inter-arrival vari-
able, that plays the crucial role in determining the embedding
capacity in renewal cover traffic. Since the renewal function
is at the center of renewal theory, properties ofm(t) are well



studied and understood. In many cases of practical interest,
the integral involved in (1) can be computed in closed form.

The source of approximation in (1) arises from the omission
of higher order terms in the Whittaker-Shannon interpolation
formula used in exact expression ofC∗. Although additional
terms can be included for better accuracy, the simple expres-
sion in (1) that connects to a key parameter of the renewal
process makes (1) appealing. Furthermore, for Poisson cover
traffic, the approximation becomes strictly equal, and the right
hand side of (1) matches withC∗.

Fig. 1 shows the accuracy of the approximation in (1) for a
number of cover traffic models, which shows excellent match
between the analytical approximation given in the right hand
side of (1) andC∗ obtained through a Monte Carlo evaluation
of the embedding capacity. It also shows the preference of one
distribution over another. In particular, we see that covertraffic
using renewal processes generated by the Gamma distributed
interarrival with parameterξ = 3 has a meaningful gain over
the Poisson cover traffic, especially at the low latency regime
(δ < 1)
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Fig. 1. The embedding capacity for typical cover traffic models. The solid
lines are theoretic evaluation from (1) and points are MonteCarlo evaluation
of the actualC∗. δ is the delay bound for the flow normalized by the rate of
cover traffic.

Another contribution of this work is a new approach based
on powerful tools from the Riemann-Hilbert theory. By casting
the integral equation that models the dynamics of BGM
algorithm as a form of a Riemann-Hilbert problem, we are
able to reduce the problem of solving a Fredholm integral
equation to one of solving a linear system.

B. Related Work

Traffic analysis has a long storied history, and it played a
critical role in modern warfare [3]. The use of traffic analysis
in computer and communication networks is well documented
[4], [5], [6], [7], [8]. Traffic analysis has shown to expose
security weaknesses of SSH [9] and web browsing [10], [6].

Techniques inspired by information theory have also been
reported [11], [7], [12].

The idea of using cover traffic to make information flow
anonymous is well known. A fundamental concept in anony-
mous networking is the notion ofmix introduced by Chaum
[13]. The idea is to disguise the presence of information flow
by mixing encrypted packets from different users, reordering
them, add “dummy” messages, and transmitting them using a
randomized schedule. There has been extensive study of the
idea of mixing for high latency traffic such as anonymous
mailers and proxies [14], [15], [16], [6].

For traffic with low latency requirement—a scenario of
focus in this paper, the reported results are limited, although
many heuristic practical techniques exist, seee.g., [17], [18],
[19], [20], [21], [22] and references therein. It has been shown
[12], [23], both experimentally and in theoretical analysis, that
simple mixing techniques such as those summarized in [24]
are not effective.

The first formal study of the embedding information flow
in independent point processes as a way to provide perfect
anonymity was presented in [25] where Poisson processes
are used as the cover traffic. In that case, the maximum
embedding efficiency was shown to be the right hand side
of (1). Characterization of anonymous flows in a multi-flow
setting was also given [25]. The results presented in this
paper can be considered as a generalization of [25], [26]. Our
approach builds upon an earlier attempt [27], [28] where the
authors obtained an integral equation that characterizes the
maximum embedding efficiency. However, there is no attempt
in [27], [28] to obtaining analytically tractable solutions.

II. PROBLEM FORMULATION

We focus in this paper the problem of embedding a
directional information flow in independent renewal cover
traffic at two nodes. We assume that all transmitted pack-
ets are encrypted, thus no protocol information such as
source/destination addresses can be inferred. To avoid traffic
analysis, it is also common to make packet length (even the
distribution of symbols in a packet) identical across all packets.
Therefore, we model transmissions at each node as a point
process where each point corresponds to the transmission ofa
packet. Not modeling packet lengths affords us the powerful
tools from the theory of point processes with a minor loss
of generality. We follow the convention that capital letters
denote random variables, and the corresponding lowercase the
associate realizations.

We first formally define the notion of (directional) infor-
mation flow. In this paper, we consider information flows
with low latency by imposing a packet-level delay constraint.
Specifically, a relay node must forward each packet in the flow
within ∆ seconds after the packet has been received. Formally,
the notion of information flow with bounded delay constraint
is defined as follows.

Definition 1: (Information Flow) Two point processesW =
(w1, w2, . . . ) and Z = (z1, z2, . . . ) form an information
flow (in the directionW → Z) with delay bound∆ if for
every realization{wi} and{zi}, there is an one-one mapping



{wi} → {zi} that satisfies the causal bounded delay constraint
0 ≤ zi − wi ≤ ∆ for all i. ⋄

Given the cover traffic modeled by a pair of point processes
defined overt ∈ (0,∞), S = (S1, S2, . . . ) at nodeA and
T = (T1, T2, . . . ) at nodeB, we are interested in embedding
an information flow with delay bound∆ in (S, T ) by selecting
a subset of points in(S, T ) for the transmissions of packets
associated with the flow. Formally, we define an embedding
policy as follows with an illustration shown in Fig. 2.

Definition 2: (Embedding Policy) An embedding policyǫ
assigns transmission epochs (subsequences ofS and T ) for
information flow. ⋄

s1 s2 s3 s5 s6

t1 t2 t3 t5 t6

w1 w2 w3

z1 z2 z3

s4

r4

A

B

Fig. 2. An illustration of an embedding an information flow(wi) → (zi)
in cover trafficS = (si) at nodeA andT = (ti) at nodeB

Let E = {ǫ} be the set of admissible embedding strategies.
Given ǫ ∈ E , the cover trafficS andT are decomposed into

S = Wǫ ⊕ Uǫ, T = Zǫ ⊕ Vǫ,

where(Wǫ,Zǫ) forms a valid information flow. Here⊕ is the
superposition operator for point processes:{ci}= {ai} ⊕ {bi}
means that{ci} = {ai} ∪ {bi} with c1 ≤ c2 ≤ . . . .

Each particular embedding has a certain capability of se-
cretly hosting information flows. This is quantified as follows.

Definition 3: (Embedding Efficiency) The efficiency of a
given embeddingǫ ∈ E is

η(ǫ) = lim
t→∞

2 NWǫ(t)

NS(t) + NT (t)
,

where NWǫ(t) is the counting process for the embedded
information processWǫ, and NS(t), NT (t) are similarly
defined. We assume the limit exists almost surely. ⋄

It is obvious that, given a pair of cover traffic with finite
means, there is a maximum fraction of points in the cover
processes can be used for carrying the information flow.
We are interested in the highest efficiency, that we call the
embedding capacity:

Definition 4: (Embedding Capacity)C∗ = supǫ∈E η(ǫ). ⋄

Note thatC∗ is a function of∆ and the point process statistics.
We shall focus on the case thatS and T are independent

renewal processes, with interarrival random variablesX and
Y , respectively. It is assumed thatX and Y are identically
distributed, and the rate of the processes is finite and nonzero,
0 < λ = 1/E[X ] = 1/E[Y ] < ∞. When the second moment
is finite, we define the dispersion index

γ = λ2 VAR[X ] = λ2 VAR[Y ] < ∞.

The efficiency of any∆-matching rule between point pro-
cesses with rateλ is only function of the productλ∆. Indeed,

doubling the arrival rate “speeds up” the system so that the
sample paths can be redrawn on a time axis scaled by a factor
2, and halving∆ leaves unchanged the number of matches.
We accordingly introduce the following further notation.

• The normalized delayis δ = λ∆.
• The dependence upon the normalized delay is made

explicit by denoting the capacity asC∗(δ).
• Assuming that the interarrival random variablesX andY

admit Lebesgue density, we introduce the density of the
normalized (unit-rate) variables̃X = λX and Ỹ = λY ,
that is denoted byk(t):

∫
k(t)dt =

∫
t k(t)dt = 1.

• The renewal function of the unit-rate processes is denoted
by m(t) = E[N(t)], whereN(t) is the number of arrivals
in (0, t) of the normalized processes.

III. C HARACTERIZATION OF EMBEDDING CAPACITY

A. Optimal Embedding Policy

As a first step toward capacity evaluation, we need to know
whether or not an optimal policy exists that maximizes the
number of matched packets for a given kind of cover traffic
schedules, thus achieving the embedding capacity.

An optimal algorithm has been found in the literature, which
does exactly what we are interested in: the Bounded Greedy
Match (BGM) [2]. It is a simple algorithm that classifies
the events of two arbitrary point processes as matched and
unmatched, where points are sequentially marked as matched
if they comply with the causal delay constraint∆, and as
unmatched otherwise. The BGM algorithm works as follows:
Two point processes are given; all the points as initially
“unmatched.” The BGM consists in repeating the following
two steps.

1) Consider the first (in the direction of increasing time)
unmatched point occurring at the first process, sayp(1).

2) The first unmatched point on the second process at
distance not larger than∆ from p(1), if any, is denoted
by p(2); if such point exists mark bothp(1) andp(2) as
“matched.”

Matched and unmatched points are also referred to as “flow”
and “chaff”, respectively. The BGM is optimal, in the sense
that, given two realizations of arbitrary point processes and
arbitrary value of the constraint∆, the BGM algorithm results
in the minimum number of chaff points [25], [26], [2].

B. Main Results

The main contribution of this paper is contained in the
following set of Theorems. Theorem 1 gives an expression
for C∗(δ). Theorem 2 provides the analytical approximation
of C∗(δ) as shown in (1). The Corollary 3 shows the scaling
behavior of the embedding for largeδ.

Theorem 1:(Exact value ofC∗(δ)) Under the assumption
of finite second moment for the interarrivals, the embedding



capacity of two independent and identically distributed re-
newal processes, under normalized delay constraintδ, is

C∗(δ) =
2Ω(0)

1 + Ω(0)
, (2)

whereΩ(f) is the solution of

Ω(f) + 2

∫
Ω(ν)ℜ

{
K(ν)

1 − K(ν)

}
δsinc[δ(f − ν)]dν

= δsinc(δf)
1 − Ω(0)

2
, (3)

and K(f) is the Fourier transform of the normalized den-
sity k(t). ♦

The proof of Theorem 1 involves several steps. First, it is
necessary to obtain an analytical model for the optimal em-
bedding algorithm BGM. Following [26], an uncountable state
Markov chain model can be constructed, and the stationary
distributionu of that Markov chain is related toC∗(δ) by

C∗(δ) =
2

∫ δ/2

−δ/2 u(t)dt

1 +
∫ δ/2

−δ/2 u(t)dt
. (4)

The stationary distributionu is shown in [27] to satisfy
a homogeneous Fredholm integral equation of the second
kind. Next, we draw a connection of the solution of the
specific integral equation that determinesu with the celebrated
Riemann-Hilbert problem [29]. Finally, using the approaches
of Jones [30], see also [31], and an application of the analytic
continuation theorem [32], we obtain (3).

In the theory of integral equations it is common practice to
transform one equation into another, which is more amenable
to exact or approximate solution, and this is just what we make
of eq. (3). More important, starting from (3), in the following
theorem we provide a fully analytical approximation of the
embedding capacity.

Theorem 2:(Approximation ofC∗(δ)) Under the assump-
tion of finite second moment for the interarrivals, the embed-
ding capacity of two independent and identically distributed
renewal processes, with normalized renewal functionm(t) and
normalized delay constraintδ, can be approximated as

C∗(δ) ≈ C(δ) =
δ

1 +
2

δ

∫ δ

0

m(t)dt

. (5)

♦
The relevance of the above result stems from the fact that,

for the typical distributions encountered in many applications,
the accuracy of the fully analytical approximation (5) seems
to be excellent irrespective of the range ofδ and of the distri-
bution heavyness. Theorem 2 provides us with an accurate
yet mathematically tractable expression for the embedding
capacity under arbitrary renewal traffic.

We emphasize that the characterization (5) relates the sought
capacity to the renewal function of the underlying process,
averaged over an intervalδ. This highlights the role of the re-
newal functionm(t), and reveals that its average1δ

∫ δ

0 m(t)dt
is the key quantity in determiningC(δ). Thus, different traffic
models can be classified with respect to their embedding

capabilities just in terms of that average. Expression (5) also
suggests numerical approaches to the capacity computation.
For instance, an estimate ofC(δ) can be obtained even without
knowing the underlying distribution by simply counting the
number of arrivals within a time interval ofδ.

We now state a corollary characterizing the asymptotic
behavior of the capacity in the limit of largeδ. From a known
property of the renewal function,m(t) − t → (γ − 1)/2 in
the limit of t → ∞. Plugging that expression in eq. (5) would
give 1 − C(δ) ∼ γ/δ. Indeed, we have the following result.

Corollary 1: (Scaling law forC(δ)) Under the assumption
of finite second moment for the interarrivals,limδ→∞[1 −
C(δ)]δ = γ, i.e., the embedding capacity in Theorem 3 scales
as

1 − C(δ) ∼ γ/δ.

♦
The corollary reveals that, for largeδ, the key quantity in

determining the capacity is the dispersion index. The ability
of masking information flows in independent realizations only
depends on the value of the global parameterγ, and different
traffic models sharing the same dispersion behave similarlyfor
large normalized delays (namely∆ ≫ 1/λ).

Finally, to improve on the approximation in Theorem 2, we
provide the following theorem that expresses the embedding
capacity as the solution of a simple linear system. Consider,
for any integerN ≥ 1, the following system

N∑

k=−N

Ahk Ω(k/δ) =
δ

2
Ih,

whereIh = 1 for h = 0, andIh = 0 otherwise. The analytical
expressions of the entriesAhk, defining a2N + 1 by 2N + 1
matrix A, are given by

A00 = 1 −
δ

2
+

2

δ

∫ δ

0

m(t)dt, (6)

Akk = 1 +
2

δ

∫ δ

0

m(t)[cos(2πkt/δ)

+ 2πk (1 − t/δ) sin(2πkt/δ)] dt, k 6= 0, (7)

A0k = (−1)k 2

δ

∫ δ

0

m(t) cos(2πkt/δ) dt, k 6= 0, (8)

Ahk =
(−1)h−k

(h − k)

[
h(−1)hA0h − k(−1)kA0k

]
, h 6= k. (9)

Theorem 3:(Linear system approximation ofC∗(δ)) Under
the assumption of finite second moment for the interarrivals,
let C∗(δ) = 2Ω(0)

1+Ω(0) as in Theorem 2. Then, assuming that
A is invertible,Ω(0) can be approximated asδ/2 times the
(0, 0)-entry of matrix A

−1, namelyΩ(0) = δ
2 {A

−1}00. In
particular, specializing forN = 1, the capacity becomes

C∗(δ) ≈
δ

1 +
2

δ

∫ δ

0

m(t)dt + 2
A2

01

A01 − A11

. (10)

♦
First, note that, in the refined approximation corresponding

to N = 1, a correction term2
A2

01

A01−A11

appears, with respect



to the approximationC(δ) in eq. (5), which only usesA00.
Second, we note thatA is very structured and its degrees
of freedom grow only linearly withN ; in fact, A is com-
pletely specified by assigning one row and the main diagonal.
This structure is very convenient for numerical tractability.
Finally, it is expected that the solution becomes more and
more accurate as the system sizeN increases. In the section
devoted to numerical experiments, we show that thezero-
order approximationC(δ) is well satisfying in many cases
of interest. Even when this is not strictly true, a first-order
correction (10) offers very good results.

IV. CONCLUSION

We consider the problem of matching two independent
and identically distributed renewal processes, accordingto a
bounded delay criterion, with applications to communication
network scenarios. We introduce the concept ofembedding ca-
pacity, and provide fully analytical tools and approximations to
evaluate it, relying upon the Riemann-Hilbert theory. An exact
evaluation of the capacity is reduced to a manageable integral
equation, that can be solved to any degree of approximation by
solving a structured linear system. The main finding, however,
is a simple approximated formula of the embedding capacity
that involves the renewal function of the underlying processes.
The approximation is excellent for virtually all the cases of
practical interest that we have investigated, part of whichare
reported in the paper. Even when this is not strictly true, we
provide closed-form solutions for first-order correction.

The abstract concept of matching between point processes
arises in a very large number of contexts, and we feel that
our findings can represent a contribution to these fields. To
broaden further the horizon of potential applications, refine-
ments and improvements of the approach can be considered.
These include: the case of different renewal processes at the
two nodes, the extension to multi-hop flows, and the case of
multiple input/multiple output relays, see [25], [26].
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