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Abstract—In a wireless sensor network (WSN), the nodes collect
independent observations about a nonrandom parameter 6 to
be estimated, and deliver informations to a fusion center (FC)
by transmitting suitable waveforms through a common multiple
access channel (MAC). The FC implements some appropriate
fusion rule and outputs the final estimate of 6. In this paper,
we introduce a new access/estimation scheme, here referred to
as likelihood-based multiple access (LBMA), and prove it to be
asymptotically efficient in the limit of increasingly large number
of sensors n, when the used bandwidth is allowed to scale as
W ~ n%, 0.5 < a < 1. The proposed approach is easy to
implement, and simply relies upon the very basic property that
the log likelihood is additive for independent observations, and
upon the fact that the (noiseless) output of the MAC is just the
sum of its inputs. Thus, the optimal fusion rule is automatically
implemented by the MAC itself.

Index Terms—Decentralized estimation, likelihood-based mul-
tiple access (LBMA), multiple access channel (MAC), wireless
sensor network (WSN).

1. INTRODUCTION

N recent years, there has been a renewed interest in de-
I signing efficient transmission schemes over multiple access
channels (MACs), also driven by the growing interest in ef-
fective communications in wireless sensor networks (WSNs).
Clearly, earlier schemes aimed at allocating multiple transmis-
sions over the same channel date back many decades and are
well known. This is the case, for instance, of time-division
multiple access (TDMA), frequency-division multiple access
(FDMA), and code-division multiple access (CDMA), where
the multiple access is realized by separating different users in
time, frequency, and code, respectively [1].

In decentralized inference problems in WSNs, the focus is not
to recover with fidelity all the messages from many users, but
rather to make inference about a phenomenon commonly ob-
served by different “users,” whose role in this context is taken
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by the sensors (or nodes) of the network. The nodes of the net-
work deliver messages through a common MAC to a fusion
center (FC) whose aim is to perform the inference task. Clearly,
a central issue is the design of the messages to be sent over
the channel in such a way that the eventual inference task can
be successful, while complying with the finite resources of the
channel, e.g., limitations in input energy, time, and bandwidth.
The latter grows with the number of sensors, with an appropriate
scaling law. Therefore, the model may be relevant to the dy-
namic spectrum allocation (see, e.g., [2]) because, as more and
more nodes join the network, the overall bandwidth occupancy
is judiciously scaled.

Should the system constraints be immaterial, the problem
would reduce to the scenario of single-terminal inference and no
new issues would arise: If the commonly observed phenomenon
is modeled as a nonrandom parameter 6 (as assumed hereafter)
we are simply faced with a very classical setup in estimation
theory [3]. In the presence of limited resources and in the case
that the final aim of the system is not data recovery but infer-
ence, the appropriate mathematical tools, practical recipes, and
design philosophies may drastically change with respect to both
the standard estimation theory (see, e.g., [4]) and the standard
multiple access approaches quoted earlier.

Accordingly, it comes as no surprise that the decentralized in-
ference over an MAC is a less mature topic with respect to the
classical (meaning not inference oriented) multiple access tech-
niques. This notwithstanding, the literature of the last years is
rich with valuable contributions about the general decentralized
inference problem. A complete survey is out of our scope and
we limit ourselves to refer the interested reader to [5]-[7] (see,
in particular, [8], [9]) and [10], which also contain many bibli-
ographic references.

A. Summary of Results

In this paper, we propose a new communication/estima-
tion strategy which we call likelihood-based multiple access
(LBMA). Our system is constrained in terms of the average en-
ergy per sensor &, the time for transmission 7', and the available
bandwidth W. This latter is allowed to scale with the number
of sensors, as not uncommon in multiuser communication
systems [11].

We devise two different LBMA schemes, which will be re-
ferred to as analog and discrete LBMA, respectively. Imple-
menting the transmission stage of the analog one is straightfor-
ward, while the computation of the estimator requires a search
inside the parameter space of interest; on the other hand, the
discrete one is more complex in terms of transmission, while
being easier as to the evaluation of the estimator. The choice
seems thus a matter of implementation.
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The main result of this paper is that, if the bandwidth scales
as W ~ n®, where n is the number of sensors, 0.5 < a < 1,
both the analog and discrete LBMA provide an asymptotically
efficient estimator 6, that is, as n — oo

N Y <07 ﬁ) 1)

where —& denotes convergence in distribution and () is the
Fisher information per sample of the original (unquantized)
observations.

We thus obtain an interesting tradeoff about how fast the
bandwidth must scale with n, for the simple protocols consid-
ered in this paper to be efficient. An exponent sufficiently large
« > 0.5 ensures that the effect of bandwidth limitation can be
controlled. However, if the bandwidth grows too fast, the per-
formances worsen for the excessive amount of noise that en-
ters the system; thus, in order to control the effect of noise, we
need @ < 1. Clearly, any available bandwidth scaling faster
than ~ n'/2 guarantees asymptotic efficiency; the upper bound
o < 1 simply means that one should not exploit the bandwidth
in excess because the benefit (more degrees of freedom) is over-
come by the drawback (more noise).

It is also relevant that asymptotic efficiency is not paid in the
coin of bandwidth requirements: The degrees of freedom per
single user converge to zero.

As a by-product of the discrete LBMA scheme, we get a third
strategy which is appropriate when a noiseless feedback channel
connecting the fusion center to the remote nodes is available.
For this scenario, we show that asymptotic efficiency can be
obtained even for a number of degrees of freedom which does
not increase with the number of sensors.

B. Related Work and Paper Organization

In [12] and [13], the estimation of a random parameter in the
presence of a Gaussian MAC is considered, in the context of the
so-called Gaussian chief executive officer (CEO) problem. It is
shown that an uncoded transmission dramatically outperforms a
coded scheme. This is due to the fact that the optimal estimator
is additive with respect to the remote nodes’ measurements, and
the channel is additive, as well. There is a perfect matching
between the observations’ fusion rule to be implemented, and
channel input—output characteristic. Thus, the additive nature
of the MAC is profitably exploited if the pertinent estimator (or,
more in general, a sufficient statistic) depends upon the sum of
functions of individual observations, e.g., § = h(}_;_, g(z;)).

In general, the estimators one is interested in do not meet this
requirement. In these cases, an option is first to quantize the
continuous observations (note that no optimal recipe is known
for this) and then transmit the type (empirical distribution)
of the resulting discrete observables. Once the problem is
discretized (that is, we are dealing with random variables with
a finite number of possible outcomes) the type-based multiple
access (TBMA) approach can be exploited. The TBMA is
introduced and studied in [14]-[16]; a relevant feature is that
TBMA asymptotically reaches the Cramér—Rao bound for
quantized observations. In our paper, we will find conditions
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that allow achieving the Cramér—Rao pertaining to the original,
unquantized data. In all the aforementioned papers, the band-
width is held fixed, while in our setup, we let it grow with the
number of sensors.

Cooperative strategies for designing optimal quantizers for
distributed estimation are presented in [17] and [18]. A review
on decentralized detection with multiple sensors is offered in
[19] and [20]. In [21], distributed detection under a sum-rate
constraint is considered, while in [22], quantization for detec-
tion in the presence of a MAC is addressed.

This paper is organized as follows. Section II states the decen-
tralized estimation problem. Sections III and IV deal in depth
with the analog and discrete LBMA schemes, respectively, in-
cluding the favorable case that a feedback channel is available.
In Section V, some practical issues are discussed, together with
the results of numerical simulations. Section VI summarizes the
main findings of the paper. Some lemmas exploited in proving
the theorems are collected in the Appendix.

II. MODEL

We are faced with the estimation of a nonrandom parameter
6, by a network of n sensors that deliver some function of their
observations to an FC through an MAC. The unknown param-
eter lies in an open finite interval ©® : # € ©, and sensors’
observations x;, ¢ = 1,2, ..., n, are assumed independent and
identically distributed (i.i.d.), according to a probability density
function (pdf) parametrized in 6

i ~ p(x; ).

It is also assumed that no fading affects the transmission system
and that perfect synchronization is maintained among sensors.

The estimation task is accomplished by allowing the #th
sensor to send over the MAC a certain waveform, say s(z;;1),
that obviously depends upon the local observation z;. As said,
without posing any restriction on the network resources, the
problem would be that of a classical inference task, to be solved
with well-known statistical tools. Clearly, a sensor network is
usually severely limited in many ways. Here, we work with two
main constraints.

The first is on the average energy £ spent by each node for
transmitting s(z;;t): We enforce the condition

E Us?(xi;t)dt] <E. 2)

Equation (2) is a weak energy constraint: Indeed, in keeping
the average energy bounded, we do not rule out those situa-
tions where arbitrarily large amounts of energy are requested
to a sensor. While this approach turns out to be mathematically
clean, in practice, some clever strategy (e.g., a clipping of the
waveforms) must be conceived to face the problem.

The second constraint is on the number of degrees of freedom
of the waveform set. Such a number can be approximated by
2WT, where W is the available bandwidth and 7" represents
the time window where s(z;;t) must lie.

A convenient model to account for these relevant practical as-
pects is schematically illustrated in Fig. 1 (see, also, [23]). Ac-
cordingly, the transmission of the waveforms involves the fol-
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Fig. 1. Block scheme of the communication model adopted in this paper. The notation (0, T') denotes time windowing of the corresponding signal to that time
interval. The filter /H (f) is an ideal band-limiting filter aimed to truncate the spectral content to the reference band (—W, ). The waveform w(t) represents

a noise term.

lowing basic steps: 1) build up a (0, T") time-limited waveform
with (average, in our case) finite energy &, 2) let the aforemen-
tioned waveform go through an ideal low-pass filter,! chopping
the input outside the available bandwidth W, and 3) consider
the output of the receiver filter within the original observation
interval (0, 7).

At the output of the MAC, the white Gaussian noise w(t) is
added to the signal, and the resulting waveform is filtered and
truncated as in Fig. 1, yielding

r(z;t) = §(z;t) + wpL(t), 0<t<T 3)

where s represents the signal s processed by the ideal low-pass
filter and wgy, is the band-limited noise process. Based on the
received signal, the fusion center must produce the best esti-
mate of the parameter # and the waveforms to be sent by the
individual nodes must be accordingly designed. The optimality
criterion we elect for judging the goodness of the estimator is
asymptotic efficiency [24], as previously detailed in (1).

III. ANALOG LBMA

A good starting point is to look for analog waveforms to be
sent by individual sensors such that the resulting output of the
MAC is suitable for the estimation purposes. As the (noiseless)
MAC output is simply the sum of the inputs, we can make an
obvious, but key, observation: The log likelihood, as well as any
linear function thereof, is additive by its own nature.

To grasp the basic idea, let the parameter space © be mapped
into a suitable time interval (0, T'); specifically, without losing
generality, let us restrict? © to (0, T"). Suppose now that sensor
1 sends over the common channel the waveform

o Olnp(wst)
s(zit) = A 5t ,
which is usually referred to (but for the amplitude factor) as the
score function, and plays a prominent role in the theory of esti-
mation. The amplitude A is suitably tuned to fulfill the energy
constraint, as prescribed by (2).

0<t<T

'In our setup of ideal low-pass filters, the difference between H(f) and
H(f) in Fig. 1 becomes immaterial
2Whenever needed, we will assume that all the regularity conditions of our

waveforms can be safely extended to the boundaries of the interval (0, T'), thus
ruling out mathematical pathologies unlikely to occur in practice.

In what follows, we always assume that the pdf of the obser-
vations p(z;;t) meets the (mild) standard regularity conditions
required for maximum-likelihood (ML) estimation to be asymp-
totically efficient (see the Appendix). In addition, we make a
further assumption, basically needed for managing the energy
constraint

LN 2
<m%ff’t)> <G(z) Vie(0,T) “)
with
/ G(z)p(z;t)de < M, < 0o 5)

and with M, independent of ¢, V¢ € (0,7T).

Let now x be the vector whose entries are the x;s. In the
absence of noise, the output of the MAC is simply the sum of
the previous contributions, yielding

0<t<T

(6)
thus amounting to the score computed on the whole set of data.
Instances of the waveforms involved are shown in Fig. 2. This
waveform is sufficient to get all the relevant information about
the parameter 6, so that the FC may implement an optimal es-
timator.3 We would like to emphasize here that the previous
scheme essentially relies upon the additive nature of the log-
likelihood function, which is ensured by the assumed indepen-
dence among sensors. Thus, the scheme is expected to work
also with different distributions across sensors, with multiple
observations per single node (even locally dependent), and when
the number of sensors is random or unknown, provided that in-
dependence among sensors is preserved, and that all the (en-
ergy, bandwidth) local constraints are simultaneously satisfied.

" Olnp(zt) Olnp(z;t)
it)=A =A ,
s(@mi)=4) —5 at

i=1

3In the work by Liu and Sayeed [15], it is shown that, in a decentralized de-
tection problem with MAC, an optimal strategy consists in sending the local
log-likelihood values. It is worth noting that the problem is quite different, due
to the detection task as opposed to the estimation one we are dealing with. In
fact, in the scheme of [15], only values of the log likelihood (i.e., numbers) are
to be sent, and this gives no help in an estimation problem. The novelty of the
approach we propose, instead, is in transmitting the log-likelihood analog wave-

forms (i.e., functions).
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Fig. 2. Big panel depicts a typical waveform at the receiver stage, made of a
noisy superposition of local score functions. In the small panels, examples of the
constituent (noiseless) score functions are shown as function of time ¢. These
are the waveforms sent over the MAC by individual sensors of the network; note
how the specific shape of the scores depend upon the node’s observation.

However, all the theorems in this paper are proved under the
i.i.d. assumption, with a single observation per sensor, and with
know n.

From (3) it is apparent that there are two basic obstacles to be
dealt with, namely, the effect of the noise and that of the low-
pass filter. Thus, the transmission scheme whose idealization is
represented by the signal in (6) would be actually feasible for
our estimation purpose provided that the following is true:

1) the noise component can be neglected for large n, due to
the increasingly large number of waveforms which are co-
herently added;

2) the relevant (random) waveform is (on average) time
limited and band limited (as any practical signal approxi-
mately is [25]) so that filtering has negligible effect.

While the first point can be expected to be rigorously proved
with arguments similar to those used in [14] for the TBMA, the
second issue unavoidably embodies an approximation, whose
impact on estimation precision deserves investigation. To this
end, let us fix the transmission time 77; as the bandwidth W
grows, the filtering error vanishes and so does its impact on the
asymptotic (n — oo) performance of the estimator. Thus, an
appealing approach is that of precisely defining the asymptotic
setting in which the error arising from filtering vanishes, leading
to asymptotically efficient estimators. We hence focus on the
scaling law ruling the bandwidth growth with the number n of
sensors in the network.

In its genuinely analog version, the LBMA scheme prescribes
sending over the channel waveform (6). Note that condition (5)
guarantees that the amplitude factor can be tuned so as to fulfill
the energy constraint. According to (3) and assuming A = 1,
the received signal can be written as

r(z;t) = s(@;t) + e(;t) + waL(t) @)
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where we have defined the error due to the low-pass filtering

e(z;t) = §(z;t) — s(z;t). (8)

In the absence of noise and filtering, the received signal would
be nothing but the score function and to compute the ML esti-
mator it would suffice to integrate the score function, obtaining
the log likelihood to be maximized. Accordingly, it makes sense
to define the estimator of ¢ as follows.
* Compute a noisy and distorted (as a consequence of fil-
tering) log likelihood by integrating the received waveform

t

l@wﬁ:/rwfﬂf

0
t t
— Inplait) ~ Inp(ai0) + [ elmi)de + [ war (i
0 0
)
e Define the (analog) LBMA estimator as
§ = arg max l(z;t). (10)

t€[0,T]

The naively introduced quasi-ML estimator ) given by (10)
is in fact an optimal one, as claimed in the following result
showing that the variance of such # asymptotically achieves the
Cramér—Rao limit of the inverse of Fisher information [26]. N
Theorem 1 (Asymptotic Efficiency of Analog LBMA): Let 6
be the analog LBMA estimator. If the bandwidth scales as W' ~
n%, 0.5 < a < 1, then § is asymptotically efficient
~ d 1
Vn(f 0)—>./\/<07I(9)>. (11)
A
Proof: As standard in ML estimation literature, the proof
is split in two. First, we prove the consistency of the estimator,
and then the asymptotic efficiency is demonstrated.
1) Consistency. We show that # converges in probability to 6,
in symbols § —— 6. By definition of the ML estimator @1,

In p(z; @\ML) S In p(z; A)

n n

On the other hand, definitions (9) and (10) imply

12)

o~
~ 61\’[ L

npz;6) In p(; L)
n - n

e(x; )

n

wpL(§)

n

+ de + de.

%)\?)
Cb)\

(13)
In view of Lemma 2 (see the Appendix), it is immediate to
write

ELIL
By /—e(‘:@df <2
0
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where 8 > 0 is an arbitrary constant. The fact that the pre-
vious expectation vanishes as W goes to infinity with n, to-
gether with a trivial application of Markov inequality, guar-
antees that the filtering error term vanishes in probability.

As to the noise term, Lemma 3 immediately implies that
the noise term in (13) vanishes in probability as n goes
to infinity. Thus, (12) and (13), together with the asserted
convergences, yield

1 ~

— |Inp(z; 6) — In p(z; é\ML) Z50. (14)
n

Strictly speaking, convergence of 8 toward 6 cannot be di-
rectly inferred from (14). This problem is commonly en-
countered when one tries to prove the consistency of the
ML estimator, instead of that of a root of the likelihood
equation; see, e.g., [27] and [28]. On the other hand, in the
standard situation that the parameter is identifiable (i.e.,
61 # 02 & p(x;61) # p(x;62)) and assuming veri-
fied some technical conditions (see again [27] and [28]),
the ML consistency can be in fact proven. Checking all
the technical conditions may be cumbersome [29]. In par-
allel to these arguments, we assume that (14) is enough for
concluding
16— By 0 (15)

whence consistency of § follows from that of the ML

estimator. R
2) Asymptotic efficiency. By definition, 6 satisfies*

~ ~

ol(z;t ~
MEDY _ 0 & s(w:8) = —e(w:B) — wpn(B)
ot )

where the subscript 9 stands for evaluating the function at

t = . On the other hand, the score can be expanded as

~

o(2:0) = s(a:0) + o (w3 0)(F — 0) + 5" (z:6) L =0 _29)

with some ¢ lying between g and 6. This immediately
yields

7 s(z;0)/v/n
n(f —0)=— =
VO st a0y

C IR QY
/(@3 0)/n + 5" (:)(0 - 6)/(20)

(16)

The following list of convergences is true:

o §'(x;0)/n > —I(6) by the law of large numbers;

o (=€) (1/9\ —8)/(2n) - 0 by virtue of the proved con-
sistency of @, and the fact that s”(z;¢)/n is bounded in
probability in view of (31) and (32) in the Appendix;

e s(x;6)/\/n R N(0,1(6)) thanks to the central limit
theorem (CLT) [4];

“It is implicitly assumed that 6 does not lie on the boundary of the parameter
space.
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e in view of Lemma 2
je(a; )|
P [l

NG

which can be made arbitrarily small provided that W ~
n®, for any a > 0.5; R

¢ finally, we know by Lemma 3 that the term |wpy(6)|/+/n
converges to zero in probability, provided that W ~ n®

with a < 1.
It suffices now to invoke Slutsky’s theorem (see, e.g., [24]) in
(16) to complete the proof. °

We would like to stress here the role of the exponent «, as
already discussed in the introduction. A coefficient « > 0.5
ensures that the error due to filtering can be asymptotically won,
while the condition o < 1 serves to avoid that too much noise
affects the system.

IV. DISCRETE LBMA

In this section, we will devise a discrete counterpart to the
LBMA proposed in Section III, which reaches asymptotic effi-
ciency the same as analog LBMA does. Key to the development
of our method is the following classic estimation procedure.

Fisher-Scoring [24, Th. 4.19]: Let 6y be a /n-consistent
estimator of the parameter 6 (“starting” estimator). Then, the

estimator
~ ~ 1 dlnp(z;t) )
Ops =0y + —= ( (I7)
FS 0 nI(B) ot 5
is asymptotically efficient
~ 1
Vn(lrs —0) LN <07 m) . (18)

In order to employ the Fisher-scoring method, we need an
initial guess Ay which is /n-consistent. This is a stronger
condition than consistency; see [24]. Obviously, this estimate
cannot be computed at the remote sensors, in that each node
only observes its own data. On the other hand, in general, there
exist many different /n-consistent estimators to be plugged
into (17), which can be computed by the FC when supported
with appropriate data from the sensors. One of these estimators,
which is available in the literature, is based upon the already
mentioned TBMA.

TBMA assumes that the variables at the sensors are initially
quantized. No matter what the quantization scheme is, the
TBMA-estimator is asymptotically efficient, but with asymp-
totic variance given by the Fisher information of the quantized
data. Notwithstanding this loss with respect to the optimal (no
quantization) Fisher information, the efficiency property of
TBMA is useful to our purposes in that, as one can easily verify
(see, e.g., [24]), this implies its \/n-consistency. Clearly, using
TBMA is not necessary for our scheme to work, and any other
possible \/n-consistent estimator is good as well.

To compute the TBMA at the FC, it is only required that indi-
vidual nodes transmit the observed outcomes (of the quantized
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Fig. 3. Score function, regarded as a time signal, here projected onto rectan-
gular pulses.

observations) by exploiting a signal constellation made of an or-
thonormal set of functions. The number of these functions scales
with the number of quantization levels, but not with the number
of sensors [14]. Thus, the communication load associated with
the TBMA estimator is actually very cheap. As to the energy
constraint, it is also easily managed by suitably setting the am-
plitudes of the signalling waveforms, as shown in [14].

Once the FC is able to compute the initial guess 6y, we must
provide the refinement represented by the second term of the
right-hand side of (17). The whole message delivered by each
sensor of the network is then n}\ade of two parts, with the former
conveying information about 6y and the latter aimed at recov-
ering the correction term at the FC. In order to compute this re-
finement, we employ K orthonormal functions {4 (t)}f=1 to
convey the samples of the local score function. Otherwise stated,
these samples are simply understood as the coefficients of these
K waveforms.5 The resulting aggregate (sum over all the sen-
sors) signal is®

19)

AZ <alnp z;1) >tk ()

1\ T
tk:(’“‘i)?’

is a set of equally spaced points between 0 and 7'. For illustra-
tion purposes, a typical such waveform is depicted in Fig. 3, in
the case that the functions 1)y (¢) are nonoverlapping rectangular
pulses.

In addition, let us denote by so(z;t) the waveform con-
structed for getting the plug-in estimator at the FC, e.g., the

where

k=1,2,....K (20)

5The name “discrete LBMA” can be misleading; we warn the reader that the
adjective discrete is here used because the score is sampled but these samples
are not quantized.

6With abuse of notation, we still use the symbol s(;t) but the signal obvi-
ously is different from that in (6); similarly, later, we loosely use the symbol
r(w;t).
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kind of waveform employed in [14] for TBMA. Suppose that
this signal is obtained as combination of (additional) x or-
thonormal functions, i.e., ¥ (t), k = K+ 1, K+2,..., K+ k.
The whole waveform travelling over the MAC is the aggregate
that includes so(z;t) and s(z;t). A conceptual block scheme
of discrete LBMA is depicted in Fig. 4.

Let us consider now the receiver side and suppose for the mo-
ment that the transmitted waveform is perfectly recovered. Ac-
tually, this is not the case, but we promptly show that the impact
of noise and filtering can be made vanishing with increasingly
large n.

It is evident that the Fisher-scoring methoci in (17) could be
directly implemented if the plug-in estimator 6y would coincide
with some of the ;s in (20). Obviously, this cannot be guaran-
teed. But the scoring method can still be realized by using as
initial guess (plug-in) the ¢, that is closest to 6, in place of this
latter. We only need to ensure that the set of the ¢s is suffi-
ciently dense.

To formalize, let us define a 0’ as

by = arg min 180 — tel. (21)
k

Then

i Vi

g - 0‘<\/_|90—

—90‘<\/—|90—9|+

Accordingly, the \/n-consistency of 90 implies that of bl , as
long as

K ~n” (22)
for arbitrary o > 0.5. Basically, we have replaced /0\0 with an
approximation 6{, chosen in a sufficiently small neighborhood
thereof, as compared to the asymptotic \/n-decay. R

Summarizing, the discrete LBMA consists of using 6 as
starting point, and exploiting a slight modification of the Fisher-
scoring method. This yields the following definition of the dis-
crete LBMA estimator. Let m be the index in (21) that defines
6. Let r be the projection of the waveform at the output of the
MAC over the mth orthonormal function. We define

~ o~ r

M.K
=0+ .

nl (9\6) €
In the following, we demonstrate that the estimation of 6
can be implemented by complying with the required constraints
(waveform energy &£, number of degrees of freedom), and the
presence of noise can be circumvented for high n. As a conse-
quence, the optimality (i.e., asymptotic efficiency) of the dis-
crete LBMA is proved. The basic result of this section, which
exactly mirrors Theorem 1 in Section III, is now given.
Theorem 2 (Asymptotic Efficiency of Discrete LBMA): Let

9 be the discrete LBMA estilgator. If the bandwidth scales as
W ~n® 0.5 < a < 1, then 4 is asymptotically efficient

JaB—6) L N @ﬁ) .

(23)

(24)

A
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X, — So(Xp0)+5(x;1)

noisy sy(x;t) | Plug-in A,
»| estimator {
Fisher A
. — 0
noisy s(x;t) scoring

9 KXo sy(Xp51)+5(xp51)

X, So( X, ) +5(x,,51)

Fig. 4. Conceptual block diagram for discrete LBMA. Sensors observe the x;s and build two waveforms so(x;;t) and s(x;;t) carrying information about the
plug-in estimator 0’ and about the refinement, respectively. These contributions are recovered at the receiver, allowing the FC to make the final estimation &

according to the Flsher scoring approach.

Proof: Waveform (19) is time limited to the interval (0, T'),
provided that so are the functions )y (¢). We will prove the the-
orem for the case that vy (¢) are the so-called prolate-spheroidal
wavefunctions (PSWFs) defined in the interval (0, 17), and with
baseband scale parameter W [23]. In order to fulfill the energy
constraint, the amplitude A must be chosen in such a way that
the single-sensor energy

E Azé [<alnzg::i;t)>tkr

does not exceed £. Taking into account (4) and (5), we imme-
diately get

&
A< .
-V MK

Using the PSWFs and assuming A = /&/(M.K), the
(single sensor) output of the band-limiting filter, further trun-
cated again to the interval (0, T), can be written as [23]

s(aist FZ <alnp i )>/ Metp(t)  (25)

where A\, = A\, (WT) represents the fraction of energy of wave-
form 1) (¢) lying in the available bandwidth, and is a function
of the product WT.

The quantities A\, have the following relevant properties [25]:

1> X > A1 >0

wi 112 Aowr(1-s) = 1
- ql}m Aowr(145) =0 (26)

where § > 0 is arbitrary. This suggests setting K = 2WT(1 —
8) as the appropriate number of degrees of freedom for the
LBMA scheme. Then, the requirement expressed by (22) trans-
lates? in a scaling law for the bandwidth W ~ n®.

The output of the MAC (but for the first-stage signal so(z;t))

K .
’I‘(.’E,t) = 1/ MfK ; (al%ix’t))m /\kwk(t) + wBL(t).

7Actually, the number of orthonormal functions used by the LBMA should
take into account the transmission burdens for building the plug-in estimator at
the FC. However, as already stated, it is possible (e.g., via TBMA) to derive this
latter estimator by using a fixed number of orthonormal functions «, which is
not increasing with re. This would amount to considering K +x = 2W T (1—6)
waveforms; the constant « is immaterial for » (hence, W T') large enough.

As previously shown, the estimator in (21) can be retrieved as
one out of K admissible values. Suppose that such an estimator
corresponds to the mth index. Projecting the received signal
onto the mth function, we obtain

B & Olnp(z;t)
r= K/\m < >/0\/ + Wi

M, ot @7)

If the subscript m was not random, w,,, would be easily recog-
nized to be Gaussian. On the other hand, m is random, so that
we have to elaborate a little more on the noise term.

Given any two projections w; and wy,, their statistical corre-
lation is given by

Elwjwy] = /T/T E [wpr(t)wsL(T)] ¥;(¢)¢r(T)dtdr

which, recalling that the correlation function of the band-limited
noise is NoW sin(2r W) /(2rW ), can be also written as

2 [wwiuo

where 1)y (t) denotes the waveform 1)y (t) at the output of the
ideal low-pass filter. The properties of the PSWFs [23] allow to
conclude that the normalized noise projections wg, / 1/ AxNo/2
are all independent, standard Gaussian random variables. In
view of this property, the random index 7 is statistically inde-
pendent of the first K noise components, because it is obtained
(at the first stage) by looking to the subsequent x components.
This implies that, notwithstanding the randomness of m, the
normalized projection w,,/\/AmNo/2 is still a (standard)
Gaussian.

We are now in a position to prove the asymptotic efficiency
of discrete LBMA. In view of (27), the definition of the discrete
LBMA estimator in (23) corresponds to

é\ 56 )\ni <81np(x;t) >A n ’w,i M. K
nl (B) o Ja ar(e)V €
Using the definition of @\F s in the previous equation, we get

V(0 = 0) = Anv/n(Ors — 0) + (1= Am)V/n (0 — 0)
Win, M. K

(28)

We have the following.
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¢ From properties (26), we know that 1 > X,, > Ax and
A — 1 as W increases in view of the assumed condition
K = 2WT(1 — 6). This implies that \,,, converges to 1 in
probability.

* In view of Slutsky’s theorem, the previous item and the
asymptotic efficiency of s make the first term on the
right-hand side of (28) asymptotically Gaussian with zero-
mean and variance 1/1(6).

* Having the \/n-consistency of 6}, combined with the fact
that \,, 2, 1, the second term in the right-hand side of
(28) goes to zero in probability as n — oo.

« I(6}) % I(8) by the continuity of Fisher information
(usually ensured by the regularity conditions for ML es-
timation) and the /n-consistency of 6. Recalling that
K ~ n% any 0.5 < a < 1 ensures now that the last
term in (28) converges in probability to zero in the limit
n — OoQ.

An immediate application of Slutsky’s theorem [24] allows us
now to conclude that

N LN(o,ﬁ).

We have thus shown that the LBMA estimator # defined in 23)
is asymptotically efficient, provided that W ~ n® with 0.5 <
a<l °

As with the analog LBMA, a tradeoff is worth noting. An
exponent « > 0.5 ensures that the ¢;s sample accurately the
interval (0,7), vg\hich yields a “good” (i.e., y/n-consistent)
plug-in estimator 6;; see (20) and (22). Conversely, an exponent
a < 1 provides that the number of degrees of freedom used by
the system is not too large, because otherwise, too much noise
impairs the estimator, as quantified by (28).

As alast remark, note that aside from purely theoretical issues
such as scaling laws and convergences, there might be practical
situations where the first stage estimator is constrained to be
relatively rough, and the improvement provided by the second
stage becomes particularly desirable.

A. LBMA With Feedback

In this section, we consider the more favorable situation that a
feedback channel is available for communication from the FC to
the remote sensors. According to an ideal assumption of unlim-
ited resources at the FC, the feedback channel is modeled as per-
fectly noiseless. We will soon prove that, under these conditions,
asymptotic efficiency can be reached by substantially lightening
the communication burden from the sensors’ perspective.

Let us illustrate how it is possible to capitalize on the Fisher
scoring procedure when a feedback channel is available. Once
the FC builds a plug-in estimate 6y exploiting, for instance,
the TBMA approach, the remote nodes can be made aware of
this estimate via the feedback channel. Consequently, the sen-
sors have to only transmit the correction (second term on the
right-hand siq? of (17)). This correction is the score function
computed at 6. Thus, after feedback, sensors do not have to
send the whole score functions and there is no longer need of a
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bandwidth that grows with n. In addition, the presence of noise
is asymptotically irrelevant, as can be shown with arguments
similar to those used in Section I'V. Thanks to the noiseless feed-
back channel, a finite number of degrees of freedom turns out to
be enough for ensuring asymptotic efficiency. We have in fact
(informally) proved the following result.

Theorem 3 (Asymptotic Efficiency of LBMA With Feedback):
Let 6 be the estimator obtained by LBMA with feedback. Even
when the degrees of freedom are finite, 6 is asymptotically
efficient

(29)

A

V. PRACTICAL ISSUES AND NUMERICAL SIMULATIONS

The proposed schemes rely upon the assumption of perfect
synchronization among sensors, as it is the case of other mul-
tiple access strategies; see, e.g., [12] and [14]. However, wire-
less bandpass channels usually suffer phase uncertainty due to
the timing difference between the transmitters’ and receiver’s
clocks and/or the propagation delays. In addition, in wireless
environments, the individual links may have different gains and,
in the absence of an accurate power control, the received signals
may have different amplitudes.

Investigating these issues in due detail is beyond the scope of
this paper, and we limit ourselves to provide some insights and
some preliminary numerical results. First, note that the two pre-
vious issues can be addressed in strict analogy with [14]. Indeed,
for the LBMA scheme to be effective in practice, some kind of
transmitter channel side information (CSI) may be needed to
compensate for both the channel gains and the phase offsets.
Such a CSI can be also obtained in a decentralized fashion,
as already proposed in [14], capitalizing on a pilot tone; see,
also, [30]. Furthermore, it is expected that the strict requirement
of equal channel gains can be somewhat relaxed, as precisely
shown in [14] for the TBMA.

Second, in absence of CSI countermeasures, the performance
degradation suffered by the proposed multiple access schemes,
due to the presence of unequal gains and/or to the lack of
synchronization, can be investigated numerically. Accordingly,
we have performed extensive simulations via Monte Carlo
counting approach and the following general trend emerges:
Asynchronous transmissions may strongly degrade the system
performance, while different gains for different links may be
better tolerable.

Just as an example corroborating the previous claim, let us
consider a scenario in which the sensors’ observations come
from a mixture of two Gaussian random variables with the same
mean # = 1 (unknown) and standard deviations 1 and 3, respec-
tively. Let us assume that £/(NoWT) = 0dB, and let n = 250
be the number of sensors. In this setting, the asymptotic mean
square error (MSE) is [n(#)] =" &~ 1.15x 10~2. The MSEs cor-
responding to the LBMA schemes in the presence of random
gains [uniformly distributed in (0.5,1)] and/or of random time
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TABLE I
EXAMPLE OF LBMA’S PERFORMANCE DEGRADATION DUE TO RANDOM
DELAYS AND GAINS. THE NUMBERS ARE THE MSES OBTAINED
WITH 10% MONTE CARLO TRIALS

analog LBMA discrete LBMA
nominal 1.3 x 1072 1.4 x 1072
gain 1.5 x 102 1.8 x 102
delay 4.0 1.0
gain & delay 4.0 1.0

delays [modeled by multiplying the synchronous signal by cos ¢
with ¢ uniform in (0, 27)] are given in Table 1.

VI. CONCLUSION

A WSN is engaged in a nonrandom parameter estimation
task. Many nodes observe independent random quantities drawn
from a pdf parametrized in the unknown  and deliver messages
to the FC in order to make the final estimate f. The communi-
cation medium between nodes and FC is an MAC impaired by
additive white Gaussian noise (AWGN), and focus is made on
the asymptotic setting of increasingly large number of sensors.

As in many such distributed inference issues, one cannot in-
voke Shannon’s separation theorem as a guideline, in that this
usually does not hold true. In fact, we have two peculiar facts
to be accounted for. The first is that the network is designed
for inference and not for reconstructing at the FC the individual
observations made by the remote nodes. The second is the de-
centralized architecture of the system. As a consequence, the bit
fails (or may fail) in being the universal building block to which
the designer refers and the landscape becomes less certain.

In this paper, a transmission/estimation strategy that we call
LBMA is proposed. Both an analog and a discrete version
of the LBMA are considered. In the former case, the nodes
simply transmit the score (derivative of the log likelihood)
of their local observation; in the latter, a finite number of the
samples of the score are sent over the MAC as coefficients of
certain orthonormal functions. In both cases, we prove that
asymptotic efficiency can be achieved provided that the number
K of degrees of freedom assigned to the system (say, e.g., the
used bandwidth) scales with the sensor number n faster than
K ~ n'/2, In addition, we study an architecture, in which the
WSN is equipped with an (ideal) feedback channel from the FC
to the nodes. In this case, we prove that asymptotic efficiency
can be obtained even when the number of degrees of freedom
stays constant while n diverges. The proposed methods are
easy to implement and exploit a very simple intuition. As the
overall log likelihood is the sum of those pertaining to the single
observations at the sensors, an optimal estimate can be built
by adding these latter at the FC. On the other hand, the output
of the MAC is the sum of its inputs. Therefore, the optimum
fusion rule is automatically provided at the FC by the output of
the MAC.

All the theorems are proved assuming identical distributions
across sensors. On the other hand, the log likelihood still is addi-
tive for independent but nonidentically distributed observations,
so that extensions to this case seem to be possible. For the same
reason, the scheme is very appealing for the case that multiple
observations are available at each sensor, even if locally depen-
dent. Another assumption has been the Gaussian channel noise,
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but we believe that a broader class of stochastic processes will
lead to the same asymptotic results, at the price of some addi-
tional mathematical burden.

APPENDIX

Here, we collect a number of lemmas exploited in proving the
theorems in the main text. Whenever needed, we assume that the
regularity conditions usually required for the asymptotic opti-
mality of the ML estimator (see, e.g., [31]) are verified. These
include [31]

Op(x;t) 0%p(x;t)
where F (z) and Fy(z) are integrable over (—oo, 00) and
O Inp(x;t
with
/ H(z)p(xz;t)de = M < oo (32)

where M is independent of ¢. In addition, we require that the
Fisher information per sample

oo . 2
1(6) = / (M) p(w:0)dz
ot 0
is bounded inside the observation interval (0,7), i.e.,
sup I(6) < oc. (33)
6€(0,T)

Using the previous conditions, it is possible to explore the
properties of the score function regarded as a signal in the time
domain. We prove the following.

Lemma 1 (Properties of the Score Waveform): The expecta-
tions of the score function s(z;t) and its first two derivatives,
computed under the true distribution p(z;6), are uniformly
bounded with respect to both ¢ and 6

) s(z;t
Ey | sup w‘ <¢<oo, m=0,1,2 (34)
teo,ry| Ot
where ( is a positive constant. A

Proof: The score function can be expanded as

Pnplrit) _ <8lngiﬂﬂ;t>)6 + (%)eu_a)

3 . — f)2
+(8 lnp(x,t)> (t 29) (35)
3

ot3

where 6 is the true value of the parameter, and £ is a point lying
between ¢ and 6. Computing the derivatives of the logarithms
and using (30) and (31), we get
Olnp(z;t) < Fi(z) = Fy(x)

ot = pla;0) - pla;b)

dlnp(z;t)\’ T2
——— | T+ H(x)—.
+< ot )e ()5

(36)
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This implies that the score function can be regarded as a
bounded signal in the time domain, once the values x and 6
have been fixed. In addition, on average, the score is uniformly
bounded with respect to ¢ and 6. Indeed, we can write

1 1
EgHBnpxtH /‘anpxt‘ (z:0)dz.  (37)

Putting (36) into (37), and further using (32), (33), and the in-
tegrability of F';(x) and F5(z), we can easily conclude that the
score is, on average, uniformly bounded with respect to ¢ and
6. As a by-product of the previous derivation, one can easily
recognize that the first and second derivatives of the score are,
in turn, bounded functions for every fixed # and 6, and are, in
addition, uniformly bounded on average, so that the whole (34)
follows. °

Lemma 2 (Asymptotic Decay of the Filtering Error): The fil-
tering error e(&; t) is on average uniformly upper bounded with
respect to both time ¢ and true parameter 6 as

Ey

sup M] < % Vi >0 (38)

te(p/2,T—p/2) T

where (3 is a suitable positive constant. A
Proof: Consider the filtering error (8). We have

t

e(z;t) = / s(z;t — T)—sm(27rW7')dT
T
t-T
oo . 2
(@) / sin( 7rWT)dT
. T

which can be further split into the form
t

t—7) — it
e(z;t) = / s@it =) = 8(; )Sin(27TW’T)dT
T
t=T
in2rW
—s(z; 1) SIMemwvT . (39)
T
T>t,7<t—T

Let us now define the function

s(z;t — 1) — s(2;t)

g(r) =

whose first derivative V7 # 0 can be evaluated as

§(r) = —s'(z;t — 7)) + s(z;t) — s(x; 6 — 1) .

72
The regularity properties of the score function and its deriva-
tives imply that ¢’(7) is continuous for all 7 # 0. Continuity
can be, more or less obviously, extended to 7 = 0 by observing
that lim,__,¢ ¢’(7) = s”(x;t)/2. Moreover, using Taylor ex-
pansions for the functions s’ and s at the numerator of previous
equation yields

s"(z;t — )12 — 8" (w5t — o) T2/2
g'(r) =— o
s (x5t — 12)

2

=s"(z;t — 1) —
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where 71 and 7> belong to [0, 7], implying that a simple upper
bound on ¢’(7) can be worked out in terms of the supremum
st of |s”(x;t)|, whose behavior has been already checked in
Lemma 1.

The remarked good properties of ¢'(7) allow now invoking
the Riemann lemma [32], ensuring that the first error term in
(39) is upper bounded by (31 s/, /W, with 31 > 0. On the other
hand, standard integration by parts allows bounding the second
term in (39) as

sin 27 Wr Bo8m (1 1
A Ll < 4=
T = w (t + T — t)

with 82 > 0 and sy, being the supremum of |s(z; t)|. If we pose
two guard bands of width 11/2 such that the true value of the
parameter is known to lie in (p1/2, T — 11/2), we can uniformly
upper bound the latter integral in the region of interest as

|s(2: 1)

>t <t—T

sin 27 Wt B28m
; < .
swol| [ T < P

r>tr<t—T

By application of the triangle inequality and Lemma 1, we con-
clude that

Fy sup

te(n/2,T—p/2)

|e(z;t)|] < ”Wc(ﬂl + B2/ 1)

and the proof is now complete. °

Lemma 3 (Noise Supremum Convergence): Let w(t) be a
zero-mean, stationary, and white Gaussian noise having spectral
density Ny /2, and consider its band-limited version wpy,(¢), ob-
tained by passing w(t) through an ideal low-pass filter of band-
width W. Assume the following scaling law for the bandwidth:
W ~ n®, a < 1. It holds true that

lweL(t)| »

0.
N

te(0,T)

A

Proof: The proof is a corollary of the following result due

to Rice [33], which holds for every stationary Gaussian process
y(t) with almost surely continuous sample functions:

g T —C"(O) a2 2
< I B ) v /(207)
]_<7\/27r+27r o2 )e
(40)

where o2 is the noise variance and ¢(7) is the covariance func-
tion of the noise process. In our setup, the relevant noise process
is wpL(t)/v/n, and it is straightforward to compute ¢(7) =
(NoW/n)sin(2rW)/(2nW'T), yielding

2 NoW AT NoW3

o° = lim (1) = —
n T—0 3n

I

Pr [ sup y(t)>~
te(0,T)

whence (40) becomes

wBL(t) >

Jn

NW 1, W1
V3

2mn v

12

— ). 41
XeXp<2N0W> “D

Pr| sup
te(0,T)
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Now, the event {sup,¢ o,7) |wpL(t)|/v/n > 7} is equivalent to
the following:

wBL(t)

NG

sup
te(0,T)

. wgrL(1)
f ——< -
K U tel(Itl),T) Vn 7
By the union bound and invoking symmetry arguments, we fur-
ther have

w t
sup L)

te(0,T) \/ﬁ

lwsL(?)]

P
r T

te(0,T)

>y <2Pr

which, combined with (41), and further taking into account the
scaling law for W, makes the proof complete. )
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