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Abstract—A recent paper by Marano et al. shows that a network of
unconnected and completely direction-of-arrival (DOA)-blind sensors
(“beepers”) is able to perform DOA estimation quite effectively within the
SENMA architecture (unlabeled polling performed by a mobile agent).
The idea is that the mobile agent collects the periodic emissions of the
polled sensors, with the time origin of such emissions being the passage of
the acoustic wavefront. Depending on the relative orientation between the
acoustic wavefront and the field of view of the mobile agent, the impinging
times over different sensors are more or less clustered and so are the
recorded emissions. On this basis, the DOA may be inferred. Here, two
new estimators are proposed. One method (support-based) exploits the
maximum spread between recorded times and is simple to implement, and
its performance, measured in terms of mean square error, is improved
significantly versus that proposed in the recent paper by Marano et al. In
fact, the support-based estimator achieves performance close to that of the
maximum-likelihood (ML) estimator—also investigated here—indicating
that the support-based structure is perhaps suitable for tasks that involve
cheap robust designs, such as sea/ground surveillance and sniper location.

Index Terms—Direction-of-arrival (DOA) estimation, maximum likeli-
hood, wireless sensor networks.

I. INTRODUCTION AND BASIC MODEL

In a recent paper [1], we addressed the problem of estimating the
direction of arrival (DOA) of a remotely generated plane wave via a
wireless network of small, inexpensive, randomly located and possibly
unreliable sensors. The positions of the sensors are unknown and they
do not communicate with each other: A Poisson field of working sen-
sors was the basis. We assume that mobile agents travel across the area
and poll the sensors to collect information useful to the DOA estima-
tion. Such a network architecture, known as SENMA (sensor networks
with mobile agents) [2], has recently attracted increasing interest. One
of its features is the parsimony with energy versus alternative architec-
tures such as ad hoc multihop flat wireless networks.

Key assumptions of our model are that the sensors’ antennas are
isotropic (individually they are completely blind to the DOA) and
that, on the other hand, the mobile agents (rovers) must use directional
fields of view in their interrogations of these sensors. In their “walks”
across the surveyed area, the agents take successive uncorrelated
dwells (henceforth snapshots) of sensors inside their fields of view
that (for simplicity of analysis) are taken as elliptical. For the sake of
concreteness, let us assume that the goal is to estimate an acoustic
DOA (so that the sensors have acoustic receiving antennas), while the
communications between sensors and mobile agents is electromag-
netic. We shall discuss these assumptions further when we summarize.
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Fig. 1. Scenario: A traveling rover polls the remote sensors S lying inside
its field of view. The dotted lines represent the wavefront at successive times:
� and � are the smaller and the larger impinging times over the N polled
sensors. The bold lines are the chords that the wavefront intercepts over the
ellipse; their lengths are relevant to the impinging-time density estimation of (1)
and (2). Also shown is the system reference for the impinging times. We see that
� 2 (�
 ;
 ) and that
 depends on the relative orientation between DOA
and rovers’ field of view. In the separate box, some notation is made explicit: �
is the desired DOA and � is the rover’s orientation at snapshot s; the rover’s
field of view is an ellipse with major and minor axes r and h.

The reference scenario is depicted in Fig. 1, which reproduces, to
some extent, Fig. 1 of [1]. The unknown DOA1 is � 2 (0; �), and the
rover orientation at step s is defined by the angle �s 2 (0; 2�); this is
assumed known to the signal processing center, which may be thought
of as sited aboard the rover. The sensors’ locations are unknown, and
their number is modeled according to a Poisson field law: The proba-
bility of finding m sensors inside an arbitrarily shaped region of area
A is (�A)m expf��Ag=m!, with � being the average number of sen-
sors per unit area. The Poisson assumption is reasonable on physical
grounds: It follows from assuming that 1) no two sensors may be lo-
cated at the same point, 2) the probability of finding one sensor in an
elementary area�A is roughly proportional (through �) to�A; 3) the
probability of finding in�A more than one sensor vanishes faster than
�A; and 4) the process of sensor counting has independent and sta-
tionary increments (for a formal statement, see, e.g., [3]). Such con-
ditions uniquely imply the Poisson distribution that is critical to the
technique of [1]; however, although a Poisson law does form the basis
for performance comparison, the estimators here do not require it: All
that is needed in this paper is that the reporting sensors be uniformly
distributed within the rover’s field of view.

Let �i denote the time instant that the ith sensor, say Si, meets a
planar acoustic wave. From then on, it emits an (electromagnetic) peri-
odic waveform xi(t) = k

p(t��i�kT ), for some short basic pulse
p(t) and some prescribed time period T : Essentially, the sensor beeps,
although for reasons of battery life and confusion, these beeps ought
to be only virtual, until polled by the rover. The period T must not be
smaller than 2r=v, with v being the speed of the acoustic wavefront in
the medium and r the maximum distance at which the rover may sense
the remote devices (for us, this is the major axis of the ellipse).

1The reason why we do not define � 2 (0; 2�) is that our methods are un-
able to resolve an ambiguity of �: the two DOAs � and � + � are absolutely
undistinguishable.
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Fig. 2. Scheme of [1]: The cumulative number of “beeps” heard by the rover
as a function of time, for a source that is (top) endfire from the rover’s elliptical
field of view (i.e., the plane wave travel’s along the ellipse’s major axis) and
(bottom) broadside. The orientation, according to [1] (improved on in this
correspondence), can be estimated from the number of beeps in the indicated
“strip” of time.

The (ellipsoidal) rover’s field of view is defined as the region such
that all the sensors lying inside it are seen by the rover, while sen-
sors lying outside are invisible. Accordingly, the signal collected by the
rover is the aggregate of a certain number Ns of waveforms: rs(t) =

N

i=1
xi(t). The signal is recorded for an appropriate time interval

to allow the rover to order the received pulses so that �i � �i+1,
i = 1; 2; . . . ; Ns � 1 [1]. Now consider Fig. 2, which compares a
beep-train from a plane-wave-oriented “endfire” to the rover’s elliptical
field of view (i.e., the plane wave travels along the ellipse’s major axis)
to a “broadside” impingement: The ensemble of sensors lying in the
field of view encounter the wavefront for times that are, respectively,
comparatively long and short. Thus, there is a greater beep concentra-
tion in the latter than the former situation. A first investigation of this
problem [1] suggested measuring this concentration by counting the
number of returns (beeps) near the central region (the strip in Fig. 2).
In fact, despite this idea’s simplicity, DOA estimation is both possible
and reliable: asymptotic efficiency, as measured in terms of the Fisher
information,2 is attained in a moderate number of snapshots. However,
certainly information is sacrificed, and in this correspondence, we use
fuller information to capture not only the concentration of beeps, but
also the shape of their time distribution.

Now, note that there is no possibility of association between the times
�i and sensor position inside the rover lobe (meaning its field of view);
although for purposes of estimation, it would be convenient to know
from where each beep came, that would be incompatible with our as-
sumptions of a random (Poisson) field, broadcast polling (within the

2The Fisher information is computed using only the number of beeps, not the
actual vector of beep times, nor time differences.

rover’s field of view), broadcast beeping, and of the essential dumbness
of the sensors. Further, we shall avoid any use of the absolute time of
sensors’ beeps, and use only the relative interbeep times to help in our
estimation; as the identity and location of each sensor is not known to
the rover, the information loss incurred is minimal. That is, we observe
at snapshot s the ordered vector of times ��� s = (�1; �2; . . . ; �N ), but
in fact, our data is only theNs � 1 relative times taken with respect to
(say) �1 : ttts = (t2; t3; . . . ; tN ), with ti = �i � �1, 8i.

The aim of this correspondence is to investigate more optimal in-
ference procedures. As in the previous paper [1], it is assumed that
successive snapshots taken by the rover result in independent observa-
tions—a condition easily obtainable (at least approximately) in prac-
tice—and that there is variety in the orientation of the rover’s field of
view among these snapshots.

In Section II, we propose an easy implementable estimator based on
a “telescoping” of support intervals, while Section III deals with the
(optimal) maximum-likelihood (ML) approach. The main results are
illustrated in Section IV where, as expected, it is seen that former es-
timator suffers from comparison to the latter in terms of performance;
however, it is much simpler and faster. Further, there is apparently a
significant gain versus the scheme of [1]. Final discussions and a sum-
mary of the main findings are offered in Section V. Some mathematics
are postponed in an Appendix.

II. SUPPORT-BASED DOA ESTIMATION

To gain insight, consider again Fig. 1, but imagine that a continuum
of sensors lies within the surveyed area. Then, for given DOA � and
rover orientation �s (recall that the subscript s is the snapshot number),
it makes sense to define the density of the vector ��� s and accordingly
consider the measured times (the �i’s) as independent samples from
the implied probability density function (pdf). This latter can be easily
derived: From Fig. 1, we see that the density of sensors corresponding
to (for instance) delay �2 is proportional to the length of the chord
(bold line) formed by the intersection of the acoustic wavefront and
the elliptic field of view. Computing these lengths is a simple matter
and the final result is

f� (� ; 
s) =
2

�

1� �




2

; �
s � � � 
s

0; elsewhere
(1)

wherein the support3 is the maximum allowable spread of the measured
times. This, as made explicit in Fig. 1, amounts to


s = 
s(�) =
1

2v
r2 cos2(� � �s) + h2 sin2(�� �s) (2)

with v the velocity of sound, r and h the two main axes of the ellipse,
and �s the ellipse orientation at snapshot s. Note that for (1) to hold,
we must assume an elliptical field of view. If the field of view is not
elliptical, then another pdf results, with little effect on our mode of
analysis; we choose the ellipse for concreteness only. From (1) and (2),
we see that the support of the �i density is (�
s;
s) and depends
upon the unknown DOA �. Specifically, as seen from (2) and illustrated
in Fig. 3, the function 
s(�) is periodic in � with period � and, for
each snapshot s, 
s(�) shifts (circularly, or modulo-�) of an amount
that depends on the current value of �s. Accordingly, a possibility is to
estimate the support—
s—and from this to infer �. Let us see if, and
how, this idea works.

We want to estimate the support 
s. Perhaps the easiest estimator
is half the range of the measured times: (�N � �1)=2, which we have
denoted as tN =2. Thus, at snapshot s = 1, we have 
1 = tN =2, and
this implies that a range of values of � are selected as admissible, as

3The support is the interval (�
 ;
 ); we loosely refer to
 as the support,
as well.
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Fig. 3. Rationale of support-based DOA estimation. The four panels show
the behavior of 
 (�) versus �, at snapshots s = 1; 2; 3; 4. Consider s = 1
(top-left panel): the horizontal line represents the support estimation, say

 , computed at the first snapshot. The portion of the curve marked in bold
highlights the region such that
 � 
 that defines the range of the admissible
values of �. This range, denoted by � is marked on the horizontal axis in
bold. Consider, hence, the successive snapshot s = 2 (top-right panel): the
curve 
 (�) is shifted with respect to 
 (�) because the rover orientation �
has changed. As before, the horizontal line is drawn in correspondence of 

and defines the region such that 
 � 
 , i.e., the range of the admissible
values of � according to the observations collected at s = 2. However, not
all these values were also admissible at the previous snapshot. � , the jointly
admissible values for s = 1; 2, marked in bold on the horizontal axis of the
top-right panel, results from the intersection between the � admissible at s = 2,
and those previously admissible. The bottom panels refer to s = 3 (left) and
s = 4 (right) and similar comments apply. In this example, the true DOA is
� = �=4 while r=v = 1 (arbitrary units) and h=v = 0:1.

detailed in the caption of Fig. 3. Let us denote such a range with �?
1 .

At the next snapshot, we have 
2 = tN =2, and a new range �?
2

of admissible DOAs is found. However, only �2 = �?
2 �?

1 is ad-
missible after the second snapshot. Continuing, we eventually have
�M = M

s=1 �
?
s (see again Fig. 3). The boundary of the interval

�?
s , relevant to the computation of �M , can be simply obtained en-

forcing the equality 
s(�) = 
s, with 
s(�) given by (2). Solving
with respect to sin2(� � �s) provides us with the extremal points

[�s � arcsin 1� (2v
s=r)2=1� (h=r)2]mod�.
We have thus interval estimators of the DOA; if a point estimate, say

�supp, is desired, then we can select an average value.4 Note that tN =2
always yields a lower bound of the true support, meaning it is a biased
(from below) estimator of 
s. Thus, using tN =2 allows us to exclude
DOAs incompatible with the measured data. Note also that in defining
the estimator, we have not considered the functional form of the pdf,
only its domain of support. As to the physical parameters relevant to
our problem, it should be clear that the larger Ns, the better tN =2
estimates 
s. Accordingly, the larger the average number of sensors
inside the rover’s lobe, the better the system works: We want �r and
h as large as possible, and we encapsulate this as the expected number
of sensors in a rover’s field of view, Nlobe = ��rh=4. It can be also
shown, and is perhaps intuitive, that better performances are expected
with greater ellipse eccentricities, i.e., with smaller a = h=r. It is also
obvious that the estimate error reduces by increasing the numberM of
total (independent) snapshots taken.

4Actually, � is not necessarily a single interval; see, for instance, � in
Fig. 3; should� be multiply-connected, we select one interval at random for
our estimation task.

III. MAXIMUM-LIKELIHOOD DOA ESTIMATION

A different estimation procedure is now described that does use
the density of the observables. Recall that ��� s is made of the �i’s
arranged in increasing order, so that we have ��� s � f��� (���s; 
s) =
Ns!

N

i=1 f� (�i; 
s), in the range �
s � �1 � �2 � . . . � �N �


s, and zero otherwise. Here, f� (�i; 
s) is the pdf given in (1), and
the symbol � is used to mean that the random vector is distributed
according to that joint pdf. Recall also that the �i’s pertinent to a
single snapshot are independent and identically distributed (i.i.d.), and
we have used this property in the above. Times collected in successive
snapshots are independent, but not identically distributed, as (1)
depends on �s.

As noted earlier, we cannot observe the absolute times ��� s, but
only the time differences ttts. Now consider the Ns random variables
(�1; t2; t3; . . . ; tN ) = [�1; ttts], with joint density [4]

F (�1) = f[� ;ttt ](�1; t2; t3; . . . ; tN ; 
s)

= f��� (�1; t2 + �1; t3 + �1; . . . ; tN + �1; 
s)

=Ns!
2

�
s

N N

i=1

1�
ti + �1

s

2

(3)

provided that all ti’s are nonnegative and that�
s � �1 � 
s� tN ,
and zero otherwise (we have also set t1 = 0). Integrating out �1 yields
the density of ttts

fttt (ttts; 
s) =


 �t

�


F (�1)d�1 (4)

that we seek. The above integral, which implicitly depends upon the
DOA �, cannot be evaluated analytically, and in the Appendix, we pro-
vide an approximate solution. Once fttt (ttts; 
s) is computed, the like-
lihood pertinent to M independent snapshots is the product of the in-
dividual likelihoods. Accordingly, we have

�ML = argmax
�

M

s=1

fttt (ttts; 
s) (5)

as the ML DOA estimate, and it is probably worth noting that (4) de-
scribes the observation pdf conditioned on Ns, the number of returns
(beeps). An overall likelihood function would be a product of this with
a probability mass function on Ns—generally, we would take this as
Poisson. However, since the number of returns is a function of the area
in the rover’s field of view, and not of its orientation, we do not need
to consider that term in our DOA estimation.

IV. RESULTS

Fig. 4 shows the mean-square errors (MSEs) of the two estimators
�supp and �ML, plotted against the total snapshot number M . The
MSEs are computed according to a standard Monte Carlo counting
approach, i.e., we have run many independent computer experiments;
for each such run, the proposed estimators are implemented and the
pertinent squared errors evaluated. These data are then averaged over
the many runs, ending up with the MSEs shown in the figure.5

For comparison, the asymptotic MSE of the simple DOA estimator
proposed in [1] is also given (see the curve labeledwith “prev,”meaning
previous). As to the latter, the curve is actually the Fisher information
and represents the asymptotically achievable MSE.6

5For generality, in the computer experiments performed, different Monte
Carlo runs use different sequences f� ; s = 1; 2; . . .g of rover orientations.

6See [1] for Cramer–Rao lower bound (CRLB) details. It would be preferable
to develop and compare results with the CRLB in the new schemes, as well.
Unfortunately, the technical conditions usually required for the CRLB’s validity
[5] are violated: The parameter to be estimated determines the support of the pdf.
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Fig. 4. Comparison between the MSEs of � and � , and that of the
estimator proposed in [1] (“prev”), for which the theoretical asymptotic MSE
is shown. The four cases considered reproduce the scenarios addressed in [1].
Case 1 assumes � = 100, r = 1, and h = 0:3 (in arbitrary measure units); in
case 2, we have � = 10, r = 10, and h = 0:3; case 3 refers to � = 50, r = 1,
and h = 0:3; finally, in case 4, we set � = 500, r = 1, and h = 0:3. In the
figures, N is the expected number of samples in the rover’s field of view,
and a is the ratio of the minor to major axis lengths for this assumed-elliptical
pattern.

When compared with the previously proposed estimator, the per-
formance improvements obtained with �supp and �ML are impressive:
More than an order of magnitude may be gained after approximately
100 snapshots. Comparing �supp to �ML, it is not unexpected that the
ML method always outperforms. However, usually there is little differ-
ence, at least with M 2 (30; 100).

As to the computational burden of the three estimators, the method
presented in [1] basically counts the beeps in a given strip, inserts this
number in a proper likelihood function, and numerically finds the max-
imum over �, perhaps by computing the likelihood over a sufficiently
dense grid of values of �. The ML approach introduced in this corre-
spondence needs a numerical implementation of the maximization of
a certain likelihood function, while the support based is much simpler
because it essentially relies upon computing successive intersections
of allowable ranges, as discussed in Section II. To get an approximate
idea of the numbers involved, we have used the floating-point opera-
tions (FLOPS) counting routine built in Matlab to estimate the compu-
tational load, using as testbeds the four applicative scenarios of Fig. 4.
For any snapshot, the method presented in [1] requires� 104 FLOPS,
and this number stays essentially constant for the four cases of Fig. 4.
The ML estimator may be computed in � 106 to 107 FLOPS, with
larger burdens associated with larger values ofNlobe. Finally, the sup-
port-based requires only�50 FLOPS, in all the four cases. These num-
bers, obviously, may change with application and platform, but there is
little doubt that the support-based scheme is quite appealing in its low
numerical burden.

V. SUMMARY AND DISCUSSION

Can DOA be inferred from a field of sensors, despite no knowl-
edge of individual sensor identities, locations, or number, and despite
each sensor being completely isotropic in its sensing ability? Let us
assume the SENMA paradigm in which a mobile rover polls from the

field: DOA information is contained in periodic emanations (notion-
ally: beeps), each triggered by the passage of the wavefront of interest
through a sensor. The rover observes these emanations from interroga-
tions of multiple polled areas, and it is key to success that these fields
of view be eccentric.

The essence of a previous paper [1] was to count the number of sen-
sors within a central strip of the polling area. In this correspondence,
we use fuller information: We measure the distribution of sensors, as
observed by their (unlabeled) emanations. Two approaches have been
developed—one somewhat involved and based on maximizing the like-
lihood, and the other simple and using only a support measure of the
length of the projection of the ellipse onto the DOA vector. Results
show remarkable improvement over the scheme of [1], as much as an
order of magnitude reduction in MSE. There is some small difference
between their statistical efficiency, but the extreme triviality of the sup-
port estimator is highly appealing: The numerical load imposed by sup-
port-based estimation at the rover is almost insignificant. Further, since
the ML method exploits the analytical expression of the pdf, while the
support based does not, it is presumable that �supp might better tol-
erate model inaccuracies than �ML. Neither the ML nor support-based
schemes require an assumption (e.g., a Poisson law) on the number
of sensors available to a rover poll, since their estimates are posterior
to the number of responses; all that is necessary is that those sensors
that do report be uniformly distributed throughout the rover’s field of
view. Since the technique of [1] does require an explicit Poisson law,
this may be considered an additional advantage to the new approaches.
Put another way, the technique of [1] requires that the Poisson density
be known for each rover poll; the techniques here need only a local
Poisson assumption and do not require that the Poisson parameter be
known beforehand.

In this correspondence, we have made, implicitly or explicitly, cer-
tain simplifying assumptions:

• errors in the impinging time measurements of sensors are ne-
glected, and sensors’ internal clocks are perfectly synchronized;

• the rover has perfect control of its field of view and in particular
it knows exactly the lobe orientation;

• the field of view has a distinct boundary (meaning that a “poll”
involves all sensors inside and none outside), while in practice
a smoother behavior might be expected.

This last assumption is not particularly important to the ML approach
but is critical to the support-based scheme since if we instead assumed
that sensors were polled/seen with a certain probability p, 0 < p < 1,
then the resulting impinging time density (the equivalent of (1)) would
have unbounded support. A suitable approach could perhaps rely on
the range of the measured vector (spread between larger and smaller
order statistics), and we have ongoing work on this.

Further, issues of sure practical relevance are the presence of incon-
sistence/absence of sensormeasurements due to vanishing acoustic sig-
nals (low signal-to-noise ratios) and/or sensors failures, and the effect
of multiple impinging wavefronts. We intend also to develop means to
allow acoustic (as opposed to the current instantaneous) sensor/rover
communication, to consider the efficiency of the various schemes, to
allow for (and compute the system-level probability of) false alarms
and to localize near-field sources by removing the restriction that im-
pinging waves be planar.

APPENDIX

An approximate evaluation of the integral in (4) can be derived as
follows. With reference to (3), let us set

g(�1) = �
1

2

N

i=1

log 1�
ti + �1


s

2

:
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Considering the first terms of the Taylor’s series about the point �0, we
get g(�1) � g(�0) + g00(�0)((�1 � �0)

2=2), where �0 2 (�
s;
s �

tN ) is such that g0(�0) = 0. This approximation gives

F (�1) � Ns!
2

�
s

N

e�g(� )e�g (� )

from which integration in (4) is easily performed, yielding

fttt (ttts; 
s)=Ns!
2

�
s

N

e�g(� ) 2�

g00(�0)

� Q g00(�0)(�
s��0)

�Q g00(�0)(
s�tN ��0) : (6)

Here, Q(�) is the standard Gaussian exceedance probability function,
and

e�g(� ) =

N

i=1

1�
ti + �0

s

2

g00(�0) =

N

i=1


2
s + (ti + �0)

2

[
2
s � (ti + �0)2]

2 :

As said, �0 is implicitly defined as the solution of g0(x) = 0, viz.

N

i=1

ti + x


2
s � (ti + x)2

= 0:

Rather than trying to solve exactly this equation, we content ourselves
with a numerical approximate solution, exploiting the fact that g(�) is a

convex[ function over the open interval (�
s;
s�tN ). In fact, from
the well-known Newton–Raphson approach (see, e.g., [6]), we start
with a tentative solution �(0) = �tN =2 (that is, the middle point of the
interval) and expand g0(x) in a small neighborhood thereof: g0(x) �
g0(�(0))+g00(�(0))(x��(0)). Setting this to zero defines a new tentative
solution �(1) to be inserted in such equation in place of �(0), and so on.
We find that a few iterations are usually sufficient, and in fact often just
one single iteration may suffice. In this case

�0 � �(1) = �
tN
2

�

g0 �
t

2

g00 �
t

2

:

Substitution of such a �0 (or the value resulting from successive itera-
tions) in (6) provides us with the approximation sought.
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