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Abstract—A network of sensors polled by a mobile agent (the
SENMA paradigm) is used for detection purposes, with both the
remote nodes and the mobile agent implementing Wald’s sequen-
tial tests. When polled, each remote node transmits its local deci-
sion (if any) to the agent, and two network/agent communication
schemes are considered. One of these is designed with specific care
to the network’s energy consumption. In both cases, collisions over
the common communication channel are precluded by the sequen-
tiality of the sensors’ query. The system performances in terms
of average decision time, error probability, and network energy
consumption are derived in exact analytical form. A tradeoff ex-
ists between the amount and the reliability of the information that
the rover may collect: At optimality, the decentralized system over-
comes a single supernode by orders of magnitude in terms of deci-
sion time, while only 30% of the sensors encountered by the mobile
agent spend energy to reveal themselves. The remaining sensors
contribute to the detection process by their silence.

Index Terms—Cross-layer design, SENMA, Wald’s sequential
test, wireless sensor networks.

I. INTRODUCTION

THE pervasive advent of sensor networks is leading to a
strong trend toward using the aggregate of many cheap

and possibly unreliable sensors as opposed to single “supern-
odes” (see [15] and references therein). The recent literature is
rich with contributions addressing the new technical challenges
posed by this novel technology (examples are offered in, e.g.,
[3] and [29]), and in particular with detection problems in such
decentralized architectures (see, for instance, [1], [2], [17], [23],
[25], and [26]).

As to the latter issue, a recent paper by Willett and Tong [28]
considers a detection problem in a sensor network under severe
communication constraints. They propose a cross-layer design
in which the remote nodes of the network observe a common
feature and implement a likelihood ratio (LR) test. A traveling
“rover” (or mule, see [18]) polls the sensors, collects binary
output variables, and fuses these into a final decision about two
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mutually exclusive statistical hypotheses. The network archi-
tecture is known as SENMA (SEnsor Network with Mobile
Agents) [24] and is attracting considerable interest due to its
simplicity, scalability, robustness and energy efficiency.

To mitigate even SENMA’s communication burden, it was
assumed in [28] that the local decisions (binary variables) are
transmitted to the rover only if the pertinent LR exceeds some
suitably optimized thresholds. That is, as long as the local (re-
mote) LR falls in the region between two thresholds (perhaps
the dead-zone), the transmission towards the rover is inhibited
even if the node is polled for. If, instead, the LR exceeds an
upper (respectively, lower) threshold, then a symbol (re-
spectively, ) is sent. Actually, in complying with (a simple
modification of) the ALOHA protocol, the s are sent only
with a certain probability , to further reduce the occurrence of
data collisions. The tradeoff between the amount of information
(hence, detector performances) collected by the rover and the
corresponding communication burden is accounted for by opti-
mizing over the local thresholds and over the choice of . Key
features of the design in [28] are the presence of a dead-zone at
the local sensors (an approach that can be traced back to [16]),
and the choice of the sensor to remain silent, with probability

, even though data are believed informative (i.e., the LR
is out of the dead-zone). In this paper, we build on the above.

The dead-zone assigned to the local likelihood ratios is rem-
iniscent of sequential testing, first formalized by Wald in 1947
[27]. Wald’s sequential detection is known to be optimal in the
sense of achieving a given performance (detection and false
alarm probabilities) with, on the average, fewer samples than re-
quired by any other procedure, including the fixed-sample-size
(FSS) test (see, for instance, [14] and [19]). Such average op-
timality holds under nominal conditions (for instance, for com-
pletely specified signal and noise models), and does not exclude
the occurrence of occasional very long runs. However, previous
literature addressing practical cases of signals with unknown pa-
rameters, and the possibility of truncating the test to avoid exces-
sively long runs (see, e.g., [20] and [21]), do suggest that modi-
fication of the original sequential procedure may be appealing in
some practical contexts. In this paper, we refer to a rather ideal-
ized scenario in which no unknown parameters are considered,
leaving the investigations of possible generalizations for future
study.

Even though we pay no explicit attention to that portion of
the network’s energy consumption that is due to the processing
burden at the sensors, it is clear that the sequential procedure at
the remote-node level allows for energy saving, in that it avoids
data processing beyond necessity. Further, since the sequen-
tial procedure automatically terminates when an appropriate
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Fig. 1. Notional sketch of the scenario that we consider, of a traveling rover that
polls sensors inside its circular field of view. In an interval dt, an incremental
area of size dA is explored.

amount of information has been collected, implementing a
sequential test at the rover level provides us with time savings.

The above motivates us to design a decentralized detector im-
plementing sequential tests at the remote nodes, as well as at the
rover. A distinctive feature of our setup, which differs from the
approach in [28], is the rover/sensors communication protocol
(to be detailed shortly), designed to avoid any channel collision
concern and, in one case, with care to the sensors’ energy-con-
sumption. We maintain the analysis at an idealized level, with
simplifying assumptions including the following.

• All the sensors observe the same feature and all of them
start their tasks at a common time.

• The hypothesis test is of a shift-in-mean in Gaussian noise.
• The noise processes at different sensors are independent

of each other, so that remotely collected observations are
conditionally independent given the hypothesis.

• Sensors are randomly located in an unlimited area ac-
cording to a homogeneous Poisson field model.

We warn the reader that many of these could be relaxed, and in
fact they should be for modeling practical systems. But, as often
happens, this is paid in the coin of analytical tractability: We
have nice results, and we fear that not all their elegance would
be preserved to more general situations.

The next brief section introduces the basic model, to be more
deeply detailed separately in Sections III–V. Section VI deals
with the system optimization, and concluding remarks are of-
fered in Section VII. Appendix I summarizes results from the
literature that are relevant to our analysis, for self-consistency;
finally, Appendix II addresses a comparison with a fixed-length
detection scheme. A short version of this work can be found
in [10].

II. MODEL

With reference to Fig. 1, we have a large network of sen-
sors monitoring a common feature. The random sensor-loca-
tion process obeys a homogeneous Poisson field law whose in-
tensity per unit of area is denoted by . The rover inspects the
surveyed region, cumulatively a larger and larger swath. Specifi-
cally, during its “walk” across the area, a polling signal is contin-

uously emitted1 to awaken sensors lying inside its field of view,
here taken as circular. Accordingly, the total number of polled
sensors at time is a Poisson counting process with intensity
per unit of time , where is the radius of the rover’s
field of view, is the constant velocity of the mobile agent, and

the incremental area.
Assume now that the th sensor observes a realization of the

process , where is a zero-mean
Gaussian white random noise with power spectral density ,
and is a known parameter ruling the shift-in-mean. Under the
assumption that noises at different sensors are independent of
each other, it is desired to decide which of the two mutually ex-
clusive statistical hypotheses, , is in force. A more con-
venient setup is obtained by considering the equivalent problem
in which the observations at time , say , are integrated ver-
sions of the above: . Formally

where , and is a Brownian motion with variance .
The final decision about , , is requested from the

rover. As said, each remote node implements its own sequential
test; when polled, the sensor may or may not transmit a symbol,
depending on the strength of its local observations. The rover
bases its final decision upon a sequential procedure, using as ob-
servables these received symbols. The following three sections
detail in due depth the proposed design.

III. REMOTE SENSORS’ SPRTS

We simplify the notation by omitting the superscript used
above. The generic node observes and, at each
time instant, builds up the corresponding log-LR, as provided
by the Cameron–Martin formula (see, e.g., [14])

(1)

This is used to implement a (local) Sequential Probability Ratio
Test (SPRT), which can be formalized as follows:

(2)

The local (random) time at which the test termi-
nates—eventually, with probability one—is a stopping time for
the sequential test [19].

Let us denote by and the probabilities that a local test
(i.e., one running over a generic sensor of the network) termi-
nates with a choice in favor of , in the case that the true state
of the nature is and , respectively. We have

(3)

In discrete-time testing an “excess over the boundary” may
exist. In that case the above relationships hold true only ap-
proximately (whence Wald’s approximations). In our case, as

1This is in contradistinction to the “usual” SENMA concept of [24] in which
the poll is periodic over non-intersecting regions.
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the random process is time-continuous and with continuous
paths, the (3) are exact.

Let us compute some key quantities. First, let2

be the probability of having reached a local
decision by time , under hypothesis . This cumu-
lative distribution function (henceforth, CDF) of the stopping
time , can be found by resorting to the following result due
to Tartakovsky [22]: for ,

(4)

where , and

(5)

with and . In spite of its apparent
bulkiness, Tartakovsky’s formula is exact, simple to implement
numerically and converges reasonably fast: Some hundreds of
terms make the truncation error negligible for our purposes.

Consider then the probability that a generic remote
sensor has reached its decision at time , and that this deci-
sion is in favor of while is actually true; for instance,

. Along the same lines as
in the original development by Wald [27], one obtains the fol-
lowing relationships:

where obviously . As a sanity-check, note
that in the limit of , the above reduce to (3). Solving the
previous system, and accounting for (3), we obtain

(6)

( and immediately follow from these), wherein

For simplicity of analysis, in the following we confine our at-
tention to the symmetric case, that is . Ac-
cordingly, the relevant formulas reduce to

(7)

(8)

2Time dependence is indicated equivalently as a subscript or in parentheses,
for notational convenience.

where

(9)

For later use, it is convenient to have a single symbol, say , to
denote alternatively or . Thus, we define

(10)

with , denoting the true hypothesis.

IV. ROVER/SENSORS COMMUNICATION

We investigate two communication/detection strategies. In
the first, we assume that each remote sensor, when polled by
the traveling rover, transmits a symbol (respectively, ) if
it has reached a decision in favor of (respectively, ). If no
decision has been taken when polled, nothing is transmitted.

Before making its decision, a node is in fact in sleep mode
with its transceiver inactive. The energy consumption is only
due to the sensing/LR-computation processes. If a polling signal
is received, the sensor is simply turned off, thus never revealing
itself to the rover.

Conversely, once a local decision is made, the local
sensing/LR-computation tasks are inhibited and the node
persists in its sleep mode, waiting for being eventually polled.
Now, if it is polled for, the transmission toward the rover is
activated. This may happen only once because, after sending its
local decision, the sensor is turned off and it never contributes
more: There is only one chance to transmit.

In what follows we assume i) that sensing/signal processing
requires substantial less energy than communications, and ii)
that the energy cost of the sleep mode can be neglected with re-
spect to that required for communications (see also [24]). Under
these hypotheses, the main source of energy consumption arises
from revealing the local decisions to the rover, and the network
energy burden can be accordingly computed in terms of the
number of such deliveries.

The above communication/detection strategy can be regarded
as a three-level quantization of the log-LR. Alternatively, we
also consider the case in which, as before, a is transmitted if
the decision taken is in favor of . Otherwise, if the sequential
test is still running when polled, or if the decision has been taken
in favor of , the node remains silent. This scheme is referred
to as the two-level-quantization scheme, and the idea behind
it is that of exploring potential benefits arising from silencing
an additional fraction of nodes. Clearly, as before, once being
polled by the rover, the queried sensors are turned off.

As to the rover, it collects the symbols emitted by the polled
nodes. Specifically, at given time and position in a
given system reference, the mobile agent polls sensors inside
its field of view, and waits for their responses (symbols). Then,
at time , it moves to a new position , polls
again, and so on. The rover detection strategy relies upon the
collected symbols up to the current time, as detailed later. As for
the remote sensors, we find it convenient to adopt a continuous
model for the rover, in which the polling and receiving times are
ignored. This amounts to assume that the query/listening times
are substantially smaller than the time interval needed to the
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rover for moving to a new position,3 which, in turn, is much
smaller than .

It is to be emphasized that, accordingly to the Poisson as-
sumption, in a time interval of at most one new sensor falls
inside the field of view. Furthermore, as said earlier, only newly
encountered sensors are not turned off and may communicate
with the mobile agent. That is to say, for any given instant of
time in the designed system at most one sensor is allowed to
communicate: We are clearly avoiding any collision concern
pertaining to the channel random access.

Finally, we would like to emphasize that transmitting the local
decisions is only one of the many conceivable system designs.
An advantage of this scheme is the possibility of employing non-
standard analog transmission protocols, where sensors simply
emit positive/negative short pulses, or beeps, as proposed in
[11] and [12]. If standard digital communication schemes are
to be used, the proposed scheme inherently embodies savings
in terms of bandwidth and sensors/rover processing. However,
if the transmission process invokes a standard wireless commu-
nications protocol—with packets already burdened by tens of
header bits—then, presumably, more refined information (e.g.,
finer quantized version of the local LRs, amount of threshold
overshoot, local stopping times) really ought to be sent to the
rover. Taking this approach to an extreme, one could conceive
a system in which the unquantized LR is sent, or nothing (see,
e.g., [16]). These possible extensions are left for future work:
Here, we have single-bit information flow between sensor and
rover.

V. ROVER’S SPRT

A. Three-Level Quantization

1) The Test: Recall that the probability of encountering a
sensor in an infinitesimal interval of time is .
Assuming is true, the probability of receiving at the rover
is , and that of receiving amounts
to . Thus, denoting with (respectively,

) the total number of s (respectively, s) received up to
time , a little thought reveals that these are two independent
inhomogeneous Poisson processes.4 Thus, defining

(11)

and using as a shortcut to state that is a Poisson
counting processes with mean value , the statistical hypothesis
test formalizes as follows:

(12)

3In adopting a continuous-time model for the processes at the remote sensors,
we have also inherently assumed that the nodes’ sampling interval to acquire
data is conveniently small.

4Intuitively, assume that a discrete model be in force. Then, the occurrence
of the three symbols 0 (no signal), �1, would obey a multinomial distribution,
whose continuous limit is just the product of two Poisson densities (see, e.g.,
[13]).

Since and are independent of each other, the pertinent
log-LR takes the simple form

(13)

The statistical hypothesis test running at the rover is hence

(14)

where and represent the two thresholds. The above test
implicitly introduces the rover’s stopping time

.
2) Performance: Let and denote the system-level (i.e.,

at the rover) detection and false alarm probabilities. To com-
plete the design and the analysis of our system we would de-
rive now the relationships among the thresholds and ,
the relevant probabilities and , and the average stopping
times . Another key performance figure—related to the
system energy consumption—is the average number of symbols

globally emitted by the ensemble of sensors. We next com-
pute these performance figures.

The statistical test (14) involves nonstationary observations,
since the stopping times of the sensor-level SPRTs are not uni-
formly distributed in time, but instead occur according to (11).
However, Wald’s approximations such as (3) still hold true al-
lowing, as usual, for possible threshold overshoots. Better, as
the statistics in (13) take steps of size , this
latter concern can be avoided by an appropriate choice of the
thresholds and , with integers. This
constrains the achievable pairs of to a countable set,
implicitly defined through

(15)

and now the no-overshoot condition is fulfilled.
The computation of the average stopping time is more in-

volved [6], [22]. A nice approach is to introduce a suitable time
transformation such that the pertinent random processes, with
respect to the new time scale, become homogeneous. In the case
at hand, this transformation is suggested by (11). Applying the
time substitution method [22] we get a new time axis
and the associated homogeneous Poisson processes
and , with intensities

(16)

respectively. The analog of (13), with respect to the new time
scale, is

(17)
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At this point, one is allowed to invoke the classical results
by Wald for computing the expressions of the average (trans-
formed) stopping time, , where is the stopping
time in the new time scale.

To this end, let us introduce the formal derivative of
the counting process : that is the point process

, where is the time at
which the appears, and is the Dirac distribution
(impulse). We can formally rewrite (17) as an integral involving

Evaluating the above at the stopping time , and assuming
that a time-continuous version of Wald’s equation holds,5 one
gets

(18)

Recognizing that the value assumed by the log-LR at the stop-
ping time equals one of the two thresholds, and recalling the
definition of the intensities and (see (16)), (18) yields

(19)

where denotes the Kullback–Leibler distance (or di-
vergence) between the two binary probability mass functions

and (see [4]). The two denominators
above are equal, in fact and, for
later use, we accordingly denote

.
As to the stopping time (recall that we have mapped

according to (11)): It is tempting simply to invert
the relation (11), but there is the problem that we must relate
the expected value of a nonlinearly transformed variable to its
original expectation. Fortunately, we can use Jensen’s inequality
to obtain the bound [4]

(20)

since in (11) is the integral of a CDF, and is hence a convex
function. The reasonable tightness of this bound has been shown
by extensive computer simulations, an instance of which is of-
fered in Fig. 2. Left panel compares the simulation results with
the formula , showing a good fit. The tight-
ness is due to the moderate curvature of in the region of rel-
evance for the density of ; this is illustrated in the right panel
of the figure.

The last performance figure to be computed is the average
number of symbols globally emitted by the ensemble of

5With “Wald’s approximations” we refer to equations like (3) and (15). In-
stead Wald’s equation quoted here is as follows: Consider Z = W ,
where W s are independent and identically distributed random vari-
ables, and M a related stopping time. Under certain regularity conditions
E[Z ] = E[M ]E[W ]. We use an integral version of this identity, whose
formal justification relies upon limit arguments (see, for instance, [9]).

Fig. 2. Left panel: Simulated values ofE[T ] (denoted by �) compared with the
analytical bound ! (E[
]) (circles) for three sample values of p . Here it is
assumed P = 1 � P = 10 ; � = 10 ; � = 10 , and the results are
valid under both the hypotheses. Right panel: The function !(T ) computed at
the values of T resulting from computer simulations, with values exceeding two
times the standard deviation dropped (dots): We want to emphasize the region
where the density ofT is more relevant. The solid lines serve simply as reference
and stress the moderate curvature of !(t) in the range of interest. Note that the
larger p is (the same values of the left panel are considered), the tighter the
bound is expected to be. This is confirmed by the numerical values given in the
left panel.

sensors when the rover’s detection process ends—it seems rea-
sonable to assume that this is proportional to the total amount of
energy spent by the network, given that transmitting requires
the same energy. We have ,
which is found to be6

(21)

This last equation has a nice interpretation if we assume that
, meaning that the rover’s SPRT is symmetric.

In this case (21) reduces to

(22)

under both hypotheses. Given that (in practice
one has ), the smaller is with respect to , the larger
is . This is quite obvious in that, if the global perfor-
mances to be ensured by the network are much tighter than that
at the single node’s level, then the rover must collect a large
number of local decisions. For closer to a few symbols
collected by the rover allows for taking the final decision: In the
limit case of , just one symbol is necessary, as expected.

6If we were in a discrete setup the arguments would be as follows. According
to its definition, the (assumed discrete) stopping time 
 has the property that
the sequence f ~X � ~Y ; ! < 
g specifies whether f
 � !g or not. As a
consequence (being ~X and ~Y independent of each other) the event f
 � !g
is independent of the sequence f ~X ;! � 
g as well as of f~Y ; ! � 
g.
This implies that 
 is a valid stopping time for each of the sequences ~X ; ~Y
and ~X + ~Y , according to the more general stopping-time characterization, as
given for instance by Gallager [8, p. 66]. We conclude that Wald’s equation is
applicable to the sum process and (21) follows, provided that similar arguments
apply to the continuous-time case, as we assume here.
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Before ending this section, we stress that the only approxima-
tions in the whole derivation so far is assuming equality in (20);
as we have verified numerically, this is an excellent approxi-
mation. Consequently, we can state that all the relevant perfor-
mance figures of the designed system admit exact analytical ex-
pressions: System performances at any degree of confidence can
be computed exactly, and without resorting to computer simu-
lations.

B. Two-Level Quantization

Let us now assume that is emitted by a remote node if
and only if i) a local decision has been taken, and ii) such de-
cision is in favor of . The total number of received symbols
at the rover by the time is the previously defined process .
This is a Poisson counting process under both hypotheses and
is presumably more parsimonious with sensor communication
resource than is the three-level scheme. Let us see.

As before, it is appropriate to apply the time transformation
in (11) for getting homogeneity. The log-LR of the transformed

is7

(23)

At this point, one may be tempted to invoke the classical Wald’s
approximations both for computing the thresholds8 and for de-
riving the expressions of the average (transformed) stopping
time, and as before this would conclude the analysis.

Unfortunately, expression (23) involves a subtlety. Indeed, as
pointed out by DeLucia and Poor [5]

Unlike the analogous problem in sequential testing be-
tween Wiener processes, the primary indexes of perfor-
mances associated with sequential test between Poisson
processes do not admit simple expressions.

The issue may be traced back to 1953 [7] (see also [9]) and is the
reason why we cannot simply resort to Wald’s approximations
for analyzing the rover’s SPRT in the case at hand.

The basic difficulty with an SPRT of Poisson counting pro-
cesses is simply understood by inspection of the log-LR struc-
ture: The event of a lower threshold crossing is necessarily due
to the second term on the RHS of (23), which is a negative
continuous function of . Accordingly, the no-overshoot con-
dition, required for Wald’s approximation to be true exactly, is
certainly met. Conversely, an upper threshold crossing is ruled
by the first addend on RHS of (23), which increments at steps of

. As a consequence, occasional overshoots are un-
avoidable: Neglecting the excess over the upper boundary would
require extremely close to .

DeLucia and Poor in [5] addressed and solved the problem
of deriving the exact performance figures for SPRTs of Poisson
counting processes. In the following we resort to their pow-
erful results that, not to fragment the exposition, are collected
in Appendix I. Exploiting these results we can easily compute

7We use the same symbol ~L as in (17).
8As it should be clear, also (15) could be equivalently computed on the

transformed log-LR (17), rather than on the original log-likelihood (13): Time
warping (11) does not affect the values taken by the process, but only the time
instants at which specific values are attained.

and ((37) and (38)), as well as ((39) and (40)),
as functions of , and . As before, Jensen’s inequality
provides us with the bound

(24)

and numerical investigations (not shown) have ensured its tight-
ness.

Note that the computed is again intimately related to
the energy consumption (average number of symbols sent) of
the network. In fact, in this case we have

, which at the light of the arguments in footnote 6, yields
, or

(25)

It is worth noting that the comments in the last paragraph of
Section V-A apply also to the two-level scenario: Jensen’s in-
equality is tight and all the other formulas are exact, even if a
bit more involved.

Comparing (25) with (21), it seems that is now reduced
by a factor of or , as a natural consequence of the
two-level communication scheme. However, the values of
in these formulas are different, thus leading to a less trivial com-
parison which is addressed numerically in the next section.

VI. SYSTEM OPTIMIZATION

In this section we first optimize the threshold parameters, and
then derive the performances, of a sequential SENMA scheme.
Such performances, although approximate, are quite accurate
and, even better, admit dramatically simple analytical expres-
sions. Both the optimization and the performance evaluation are
easiest in the symmetric case where and

, as it is assumed henceforth—this is not
a necessity but merely a restriction that offers simplified pre-
sentation. Furthermore, we assume that the signal-to-noise ratio
(SNR) and the sensor density are given; also prescribed is a
certain value of , while the parameter to be optimized over is
the local sensors’ performance . Among the many optimiza-
tion options, we find of particular interest and practical rele-
vance the following: minimize the average time for taking
a decision.9

It is convenient to introduce two dimensionless quantities: a
normalized time and a normalized density , where

, already defined after (4), is the SNR per unit of time.10

For notational convenience we further append a’ to denote av-
eraged and/or normalized quantities. Thus, we let

• (normalized average stopping time, at the
rover);

• (normalized average stopping time,
at the sensors);

9It is perhaps worth noting that an optimization over E[N ] would lead, as we
see from (22), to the less interesting result of p = P .

10Physical relevance of the two normalized quantities follows from observing
that i) (4) is only a function of p (through the local thresholds  and  ) and
of the product �t; and ii) in terms of the normalized time �t, the density � of
encountered sensors scales just as �=�.
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• (average number of transmissions en-
ergy demand for communications);

• (normalized sensor density).
In the above, the subindex denotes the hypothesis in force and
will be omitted when inessential, while and are the pre-
viously introduced stopping time and number of symbols; this
latter, we recall, is proportional to the energy consumption.

We also introduce
• ,

that is the normalized average time that a single sensor would
require to end up with a decision at the performance level .
Thus, is the decision time for the SENMA system,
with respect to a single sensor “system” that implements an
SPRT at the same error probability. It is obvious that we want
to make this ratio as small as possible.

We are now ready for system optimization: to minimize
with respect to the design parameter , for any prescribed
global performance . As discussed earlier, in the optimization
procedure we consider the bounds (20) and (24) as attained
with equality.

A. Best Sensor-Level for Three-Level Quantization

From (11), also accounting for (4), we have that

(26)

where the functional dependence on the system parameters is
explicit. Then, assuming that (20) holds true with equality, and
in view of (26) and (21), one readily gets

(27)

which implicitly defines a curve , for prescribed and
. The above relationship allows us to perform numerically the

optimization by selecting a value of , say , as that attaining
the minimum of . The top panel of Fig. 3 illustrates the proce-
dure by depicting the curve , for several and a specific
value of . For clarity, we consider the ratio that
emphasizes the relative behavior with respect to a single sensor.
Note that, in complying with the earlier discussion about integer
threshold jumps (see comments preceding (15)), for any given

is constrained to belong to a countable set, viz.,

so that in figure we have discrete points denoted by circles.
As stated, the analytical expressions of the system perfor-

mances can be dramatically simplified by resorting to some ap-
proximation. In fact, we note the following:

i) the optimal minimizing the average global decision
time is attained at values of always near the expected
local decision time , that is ;

ii) meaningful values of the ratio (say, ),
where using the network gives larger gains, are met in the
range .

Fig. 3. Top panel: Circles represent T =T versus p , with � as param-
eter, where � = 10 ;m = 0; 1; . . . ; 6, grows as indicated by the arrow.
Here P = 10 , but similar results are obtained with other small P ’s. The
abscissa attaining the minimum is selected as p , for each prescribed � , and
the dashed line emphasizes the locus of such minima. The bold curve repre-
sents T =T : We see that a minimum of T =T is approximately at-
tained at the crossing point T = T , and the approximation improves at
large � . This motivates our analytical approximation (see main text). Bottom
panel:!(T (p ); p )=T (p ) versus p . We see that, in the range of interest
p > 0:1, an almost constant value of �0:3 arises, thus supporting the linear
approximation, see discussion yielding (30).

Approximation i) allows us to equate in (27), getting

(28)

From ii) and the bottom panel of Fig. 3, it follows that, in the
specified range for , the linear approximation

(29)

holds for some . Using this approximation, recalling
and accounting for (22), we get

(30)

It follows that

(31)

(32)

(33)

It is also noticeable that is just the average number of transmit-
ting sensors divided by the average number of encountered
sensors .
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Removing the normalization, we have

(34)

(35)

(36)

summarizing the system-level performances. Some comments
follow.

• The chosen minimizes the time to decision. At ,
with good approximation, it holds that .
This latter exposes many features of the system and em-
phasizes the role of the parameters involved.

• With reference to top panel in Fig. 3, if one chose
the system would employ high-performing local sensors
but just a few of them would finish the task when polled.
Conversely, if one chose , then the sensors would
be fast but their decisions would be less reliable. There is
an optimal local error-rate that minimizes the overall deci-
sion time, that approximately corresponds to the balanced
situation . Once decisions are made lo-
cally, the global decision quickly ensues.

• Such time balancing guarantees that, on the average, all the
network sensors end their processing tasks about when the
final decision is taken: There is little overhang of wasted
computation at the sensors after the final decision has al-
ready been made. Even though our focus is more on the
transmission energy burden, it is clear that data processing
energy is also low in the optimized scheme.11

• The average time to take the final decision is proportional
to : Each doubling of the SNR reduces the decision
time of a factor . The same holds true for the sensor
density: and play a similar role (34). Also, as expected,
better-performing systems (i.e., lower ) require larger
processing times: varies as (see again (34)).

• The behavior of the number of transmissions with
respect to and is the same as for . The density
has a different impact: The larger is the density, the larger
is (35).

• Assume that you increase the node density . From (34)
and (35), we get

revealing that the processing time, normalized with respect
to the average number of symbols really collected by the
rover, decreases as the inverse of the talking-node density

, as one might expect.

11Accordingly one should turn off all the sensors in some way, when the rover
takes the decision: In this respect, the condition E[T ] � E[T ] ensures an
automatic shutdown. Occasionally SPRTs exhibit very long runs (see, e.g., [14]),
implying that a few rare sensors will continue computing their local likelihoods
for a long time beyond E[T ]. In fact, if a network node notices that its decision
appears to be taking considerably longer than average, it can probably safely
terminate its test.

• The average value is an important metric of the
system; however, useful insight is also gained consid-
ering a properly normalized processing time, the ratio

. In fact, this ratio varies as : While
the absolute processing time decreases with increasing ,
the ratio grows. In this respect, the lower the SNR, the
greater advantage accrues to the decentralized structure.
Similarly, we find that the more demanding the error prob-
ability (i.e., lower ), the larger the gain of sequential
SENMA over a single sensor “system”; this follows from

(see (35) and (36)).
• Equation (36) tells us that in the optimal system the product

between the energy consumption and the (relative) pro-
cessing time is constant

Regardless of the desired performance , reducing the
energy can only be achieved by increasing the processing
time by an equal fraction, and vice versa.

• Another invariant of the designed system is , the ratio be-
tween the number of transmissions and the number of po-
tential transmissions (i.e., the number of sensors encoun-
tered by the rover). In a sense is the energy saving that
the designed sequential SENMA may achieve, with respect
to a system in which all polled sensors send their current
decisions. Furthermore, from the linear approximation it is
straightforward to get

which provides another interpretation of as a warping
factor ruling the time transformation (11). In our setup
is in the order of 0.3, that is 30% of the encountered
sensors actually communicate their decisions to the rover;
or, the transformed time axis is scaled by a factor of .

• Due to symmetry (which we have assumed), all the above
is true both under and under .

B. Best Sensor-Level for Two-Level Quantization

Let us now consider the two-level quantization strategy. Fig. 4
reproduces Fig. 3 for the two-level quantization scenario under
the two hypotheses, and is the starting point of our system op-
timization.12 Here we choose to optimize the system under ,
so that is selected according to the minima of the left panel.
Having fixed the only free parameter to , (24), (25), and
(37)–(40) give the sought system performances.

The general behavior of the performance figures is similar to
the three-level case, and many of the previous comments apply
to the two-level scheme as well. However, here the statistical hy-
pothesis actually in force makes a difference, due to the lack of
symmetry. Further, the system analysis for the two-level quanti-
zation yields considerably more sophisticated analytical expres-
sions than that of the three-level case, now involving DeLucia
and Poor’s formulas. As a consequence, we limit the analysis

12Note that as opposed to the three-level scheme, here the achievable pairs
(P ; p ) are not constrained to some countable set, so that the curves of Fig. 4
are continuous.



MARANO et al.: CROSS-LAYER DESIGN OF SEQUENTIAL DETECTORS IN SENSOR NETWORKS 4113

Fig. 4. T =T versus p , with � as parameter, where � = 10 ;m =

0; 1; . . . ; 6, grows as indicated by the arrow. Left panel refers to H and right
panel toH . Here P = 10 , but similar results are obtained with other P ’s.
We select p as the abscissa of the minimum in the H case, and the dashed
curve in the left panel is just the locus of such minima. The dashed curve in
H simply represents T =T corresponding to the p computed under H .
The bold curves represent T =T : We see that the optimized values are
approximately attained where T = T , under both the hypotheses.

Fig. 5. Values of p as resulting from the optimization procedure, as function of
the normalized sensor density � , in the three-level (3-lev) and two-level (2-lev)
quantization schemes. The case study is P = 10 but, qualitatively, the same
behavior is obtained with different total error probabilities.

to the numerical computation of the derived analytical relation-
ships. This is done in the next section.

C. Optimal Performance Portrait

Let us focus now on the numerical evaluation of the analyt-
ical formulas derived so far. For the three-level case, we also
compare such formulas with the approximations computed in
Section VI-A.

Fig. 5 reports the optimizing . With larger normalized node
density , sensors with lower local performance are

Fig. 6. Top panel: The ratio T =T versus � . Bottom panel: N versus
� . The global error probability is P = 10 . For the three-level quantization
strategy, the approximation (appr.) is compared to the numerical evaluation of
the exact formulas in Section V-A. In the two-level scenario, the two hypotheses
H and H are separately considered.

appropriate, and the sequential SENMA takes advantage from
the larger number of data collected, even if these data are less
reliable.

The top panel of Fig. 6 depicts the ratio
as function of . This is a measure of the

time saving that SENMA provides with respect to a single
sensor working at the same error probability. For the three-level
scheme the approximated formula is com-
pared with the exact relationships derived in Section V-A, and
the accuracy is very good. It is worth noting that the three-level
scheme always outperforms the two-level one; the difference,
however, is moderate. We see also that, for the two-level
scenario, the ratio under is always lower than
that under , with the difference becoming negligible at large

. This is natural: The rover in the two-level scheme feeds
from local decisions for , and these are denser under
than under , with the difference shrinking as local sensor
accuracy worsens.

It is particularly of interest to investigate the energy required
to the ensemble of sensors for data transmission. This is propor-
tional to the average number of local decisions sent , which
is depicted in the bottom panel of Fig. 6. An opposite behavior
with respect to is observed: Here, the larger is ,
the larger the energy consumption. The three-level scheme re-
quires more or less the same energy as the two-level quantiza-
tion working under . The two-level communication scheme
operating under is, not unexpectedly, less energy consuming
than any other scheme or regime; what is perhaps surprising
is the minor difference—recall that in the two-level scheme a
sensor does not “bother” with a report unless there is a decision
for —and this is presumably reflective of the benefits of the
system-level local-decision-quality optimization done.
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Fig. 7. Ratio T =T versus N , for P = 10 ; as before, the label
“appr.” refers to the approximation of the three-level quantization scheme. For
comparison, the curve of a fixed-length parallel scheme is also shown; in this
case the abscissa is N and the ordinate represents T =T (see also
Appendix II).

Fig. 8. Energy saving that the two-level quantization scheme may achieve over
the three-level scheme, with respect to � , for a sample value of P = 10 .
Precisely, the vertical axis reports the relative error (in percentage) between
N (3-lev) and N (2-lev), that is [N (3-lev) �N (2-lev) ]=N (3-lev).

The two plots of Fig. 6 may be combined by resolving
for . This results in Fig. 7 that depicts the achievable pairs

, evidencing an obvious tradeoff: Time saving
may be bought in the coin of energy consumption. In the plane
of Fig. 7, the two communication schemes tend to be equivalent
in the region of small computation times and large . (The
curve labeled with “fixed-length” in Fig. 7 is commented on
below.)

For very low , the differences become worth investigating,
as is stressed in Fig. 8, in which the relative difference between

(3-lev) and (2-lev), is plotted as function of . The figure
reveals that the two-level communication strategy is more en-
ergy efficient than the three-level alternative: assuming large ,

under about 20% savings, while under the percentage is
larger. At the opposite extreme of small , the gains become
dramatic under , but this effect is partially balanced by a loss
under . In practical scenarios where the system is expected
to operate more often under than under (rare presence of
targets), such asymmetry might be suitably exploited.

In Fig. 7 we also compare our sequential SENMA approach
to a simple parallel (and nonsequential, meaning fixed-length)
decentralized detection approach, in which we have sen-
sors and each observes for a time , makes a decision and
immediately transmits this to the fusion center. It must be noted
that such a scheme would be rather impractical, since there is
a sudden communication event in which all sensors communi-
cate at the same time. Sequential SENMA does not have this
disadvantage; but, nonetheless, comparison is worthwhile. The
derivation of the performance for the parallel scheme is given in
Appendix II, and the challenge here is to relate the quantities to
those that are meaningful for a sequential test. At any rate, from
Fig. 7, it can be seen that even against the idealized and imprac-
tical (in the sense of communication) parallel approach, the se-
quential SENMA approach performs well. The improvement is
reminiscent of the (approximate) factor of three reduction in av-
erage time to decision enjoyed by sequential versus fixed testing
in centralized problems [14].

VII. CONCLUSION

We consider a SENMA network architecture for detection
purposes. Elaborating on a recent paper [28], it is assumed that
the sensors belonging to the network do not communicate with
each other, and send to a common fusion center neither data
as it arrives nor decisions therefrom. Instead, they mull on the
locally available measurements, while waiting to be polled by a
mobile agent that is required to fuse the data that are recorded in
successive pollings. As opposed to [28], we avoid any collision
concern by exploiting a time-continuous polling scheme. This,
along with a Poisson random field model for the sensor locations
(which are completely unknown to the rover), ensures that at
most one sensor is allowed to access the channel at any given
time instant.

Each remote sensor employs a Wald sequential test (SPRT)
so that, when eventually polled it may have, or not, reached a
(local) decision; if it has, then there are two possibilities con-
sidered: send that decision to the rover regardless of what it is;
or send the decision only if it is for (the rover must infer the
number of “missing” decisions from that). The rover also
implements an SPRT using as observables the local decisions
(amounting to some counting processes). The idea behind is that
of reducing the time needed to end up with a final decision by
the rover, with respect to similar, but nonsequential, schemes.
A remarkable feature of our sequential SENMA is that all the
relevant performance figures can be computed in closed analyt-
ical forms. These allow us to set, for example, a simple system
optimization in which the free parameter (i.e., the error rate
of the local SPRTs) is chosen to achieve the minimum average
global decision time.

One possible system design is to use local tests with very
small error probabilities (say intelligent sensors). This ensures
that, if a decision has been reached when polled, the information
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is quite valuable for the rover. However, the average local deci-
sion time grows with decreasing , so that a few sensors will
respond to the rover polling signal. On the other extreme, we
may conceive a network made of dumb sensors—that is, very
unreliable or with large local error probabilities. In this case,
information transferred to the rover is of minor value, but the
amount of such information collected by the rover grows con-
siderably. We have found that optimality is at neither extreme:
An optimal dumbness exists and is at some intermediate value of
the local error probability , for prescribed overall error prob-
ability, sensor network and SNR.

The main features of the optimized system are the following.
The network exploits the presence of many sensors for reducing
the total error probability, not the decision time (with respect to
any single sensor of the network). Also, there is little wasted
computation, on the average, due to local sensors that continue
to gather data after the final decision has already been made.

Finally, in the three-level scheme (report any ended test to the
rover when it polls), the effective ratio of reporting sensors (the
proportion of sensors that do report to those that are polled)—we
have called this —seems to be close to 30%. Reducing the
communication (energy) load is possible with the proposed two-
level (report only if the local decision is for ) quantization
scheme. Savings in the order of 20% and more are easy to obtain.

Our analysis has relied on a Gaussian shift-in-mean model for
detection; generalization to other models is a current research
line. For instance, Tartakovsky’s formula could be adapted to
non-Gaussian scenarios, resorting to a central limit theorem ap-
proximation for the pertinent log-likelihood. However, it may be
that the simplicity and formal elegance we have obtained here
are not preserved. Another line for future work could be the ex-
tension to richer hierarchies of sequential testing.

APPENDIX I
DELUCIA AND POOR’S FORMULAS

For self-consistency, we summarize some of the results ob-
tained in [5] that are relevant to our problem.

Consider an SPRT built on the log-LR as given in (23). It
results that

(37)

(38)

In the above

and . The functions , result
from recursive equations. However, in the regime , simple
closed formulas are available

Notably, the above asymptotic expressions become extremely
accurate already for values of the parameter in the order of
few units, a condition met in all the cases addressed in this paper;
hence we use such asymptotics.

As to the related average stopping time , in [5], it is
shown that

(39)

(40)

As for before, asymptotic expressions for , quite
accurate even for moderately small , can be found

APPENDIX II
PERFORMANCE OF A PARALLEL SCHEME WITH

FIXED-LENGTH LOCAL TESTS

In Fig. 7 we compare the performance of our sequential
SENMA scheme to a simple parallel decentralized detection
architecture—recognizing that the latter is not practical from
a communication perspective—and here we show how. From
Section VI we have that , where

is the un-normalized single-sensor time to decision
via a sequential detector and is the global (fused) probability
of error. From this we can use the unit-normal exceedance
probability to write

(41)
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for the probability of error for each local fixed-length test, where
we have defined . The fused fixed-length test’s
probability of error is

(42)

for large , or

(43)

in which is given in (41).
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