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Abstract—The modeling of power system loads is a very
important problem since loads are ultimately the driving force
behind the entire system. In this report, we consider the problem
of thermal dynamics air conditioner load models for residential
homes. In particular, we investigate a physical-based load mod-
eling methodology. We propose a method using minimization
of the least square error to obtain the essential parameters α,
G, and c from the linear differential equation in which the
indoor temperature represents the state of energy storage in the
house. The essential parameters describe the energy balance for
a single house.The data used for this study corresponds to real
measurements taken from a house and it was provided by Intel.
The data consists of indoor and outdoor temperatures as well as
HVAC power consumption for the different compartments of the
house. Upon experiments that includes computational simulation,
extensive data analysis, it is concluded that 1 day of training
samples for parameter prediction performs reasonable well in
comparison of 7 and 14 days. The validation of the model is
performed using data in two different months. The modeling and
prediction mean squared error obtained are below 0.1 degree.
These results open the possibility to investigate techniques to
incorporate adaptive temperature learning.

I. INTRODUCTION

We consider the problem of thermal dynamic models
for home energy management systems. We analyze a single
home energy case. The data used for this study corresponds
to real measurements of indoor and outdoor temperatures as
well as power consumed of the different compartments of the
house. The data was taken every 15 minutes. Our purpose
is to study the feasibility of a linear thermal model that
describes the physical conditions of a house, i.e. the heat and
air flow exchange, change in temperature, human presence,
climate conditions, etc. We aim to find the optimal method to
extract the essential parameters that characterize those physical
conditions and use them as inputs for other important Hem
systems applications such as control and optimization for
price and comfort. Energy consumption has been increasing
over the past half century. Even though ultra-low power
consuming appliances are being developed, the amount of
energy consumption in homes is increasing because of the use
of various appliances at peak times. The relationship demand
response that leads to the increment of electricity prices lead
to investigate methods in order to find the best way to save
energy as well as keep the energy prices reasonable. This
benefit both the consumer and power generation companies.
Demand response manages customer consumption of electric-
ity in response to supply conditions. Demand response is also
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associated with changes in electric usage by end-use customers
from their normal consumption patterns in response to changes
in the price of electricity over time. It deals with incentive
payments designed to induce lower electricity use at time of
high wholesale market prices or when system reliability is
jeopardized [1]. Consider the case, for instance, during the
course of the day, the load that power grids serve varies
widely. The consumption at peak demand around 4:00PM
is about one and a half times the demand during the night.
Consequently, utilities must build enough generation capacity
to serve demand during peak periods. Additionally peak power
constrains impose large burden on the grid which also increase
the demand response. But, if consumers adjust their energy
usage in response to conditions on the grid, the result has the
potential to create power savings. This process can be achieved
using of a home energy management system(HEM) integrated
with the grid. A HEM system regulates energy usage within
the home. A comprehensive HEM system requires a network-
ing capability to transmit information from the nodes(sensors)
to the central control unit. It has the potential to reduce
peak energy consumption and has the potential to reduce
peak energy consumption and eliminate the need for costly
resources to meet peak demand. Ultimately, it can benefit
both consumers and utility companies by reducing costs on
monthly energy usage and costs. The difficulty in demand
response is the challenge of alerting customers of change
prices and the transaction costs that results. Thus, home energy
management systems combined with a smart grid can provide
pricing signals to reap the benefits of demand response. Instead
of home owner following the prices, the energy management
system follows them and can make adjustment to electricity
consumption based on user preference.
The architecture of a HEM system takes into account relevant
sensor information such as temperature from the home as
well as user preferences in the decision making model[2]. A
basic control model would then be able to schedule appliance
operations at off peak times to save consumers money based on
a real time pricing scheme. Particularly, our study focus on ap-
pliances that can be controlled without significantly affecting
consumers such as offsetting the timing of an air conditioning
system that would maintain an acceptable temperature level,
or scheduling the washer/dryer times. In order to construct
an accurate physically-based model for a single house, the
thermal characteristics of the house are required[3]. This
model relates the energy consumed by the air-conditioner, the
outside temperature, and the inside temperature. Additionally,
The literature also indicates that the model works accurately
when it incorporates the effects of weather such as temper-
ature, humidity, solar radiation, wind speed, and the effects
of lifestyle and possibly the effects of voltage and frequency



fluctuations. This paper addresses the following issues: I) A
survey of a detailed model for a single house, II) House
physical parameters extraction from the physical model based
on multiple linear regression III) Possible unmodeled effects
that contribute to errors to the model. III) The feasibility to
make the model more adaptive to learn the different physical
conditions in the environment for an optimal temperature
prediciton

A. Summary of results
The main contribution of this paper is the careful analysis

of a linear model to extract the essential parameters that
characterize the physical model of a house. We propose the use
of a discrete form of the physical model stochastic equation.
The essential parameters are extracted using the minimization
of the least square errors. We also explore the different
possibilities of training data to obtain the optimal parameters
since we are unaware of the presence of outliers and the nature
of noise. This study shows that using one day of data for
training gives better results than using 7 of 14 days of data.
The validation is done predicting the temperature for the future
next day using real time temperatures in the recursive linear
model. The results yields mean square error for modeling and
prediction error below 0.1 degree.

B. Related work
The literature on thermal dynamics models dates from 1978.

work done on [4] provides an study of the determination
of thermal parameters of buildings through two different
approaches, deterministic models and methods based on equiv-
alent thermal parameters(ETP) of a building extracted from a
physical air conditioner or heater model. While the former
are computer applications of heat transfer theory, the latter
consist of statistical techniques in order to extract the thermal
parameters from a thermal model. In [4], a convenient set of
equivalent thermal parameters for residential townhouse is pro-
vided by means of a single thermal model. Authors in [5] have
proposed an statistical approach to model the dynamics of the
electric demand of air conditioners and heaters. This approach
requires a diffusion approximation of a high-order hybrid state
stochastic system. In [3], a dynamic model of the response of
a single residential air conditioner load to weather conditions
is developed. This approach uses estimation techniques and a
air conditioner load model based upon equations for energy
balance and mass balance for the air inside a customer’s
residence. In [6], an identification algorithm for load models
have been proposed exploiting the alternating renewal nature
of the thermostat switching process. The author in [7] propose
a method for estimation of continuos-time models using the
maximum likelihood method and a kalman filter to calculate
the likelihood function.
The model adopted in this paper goes back to [3] and the house
parameters are obtained using multiple linear regression.

II. THERMAL DYNAMIC MODELS

A. Physical model
Because of both: the global energy crisis and the necessary

improvement of energy efficiency in houses and buildings,

simplified models that can represent the physical properties
of a house and buildings are desired for diagnosis, control
strategy analysis. Our thermal dynamic model is based upon
an energy balance. Accurate single customer models are vital
to the development of aggregate dynamic load models which
can predict response to direct load control actions [3].The total
energy content of the air within the house is decomposed into
the energy content of the dry air, and the energy content of
the water vapor. Conservation of energy requires the energy
which contributes to changes in indoor temperature to satisfy

Ė = e1(Eout − Ein)− swEsen (1)

Where Ė is the rate of energy gain by the air volume inside
the house, Ein is the total energy of the house at the current
input temperature, Eout is the total energy of the house if
it were at the outdoor temperature , e1 is the percent of
indoor air exchanged every hour with the environment, sw is
a binary switch determining whether the air conditioner is on
and off, and Esen is the rate of energy transfer from indoors
to outdoors caused by the air conditioning unit. According to
[3], the term e1(Eout−Ein) represents the energy transferred
from outdoors to indoors due to the term term difference, and
it can be represented by:

k1(x
out
t −xint )+e1V Svap(x

out
t HoutWsat−out−xint HinWsat−in)

(2)
Where k1 is the thermal house coefficient for dry effects, xoutt

and xint are outside and inside temperatures respectively. V is
the volume of the house. Svap is the specific heat of water
vapor, Hout and Hin are relative humidities, and Wsat are the
density of saturated water vapor as a function of temperature.
The thermal house coefficient of a house represents the rate of
energy gain of the house per hour and degree of temperature
difference between outdoors and indoors[3]. The quantity
V Svap(x

out
t HoutWsat−out−xint HinWsat−in) in equation (2)

represents the change in the energy between indoors and
outdoors. The term swEsenin equation (1) represents the
rate at which the unit removes energy from the house, and
corresponds to the sensible capacity of the air conditioning of
the unit. Using equation (2) to re-write equation (1)

Ė = k1(x
out
t − xint ) + e1V Svap(x

out
t HoutWsat−out−

xint HinWsat−in)− swEsen
(3)

Which represent the rate of energy exchange due to the air
exchange as a function of the indoor and outdoor temperature,
and which is used toward the temperature changes inside the
house. In [3] equation (3) is transformed in order to obtain
the rate of indoor temperature change as a function of xoutt

and xint , Hout and Hin. This was done using:

E = xint V DairSair + xint V HinWsat−inSvap (4)

Where Dair is the density of the air at a given temperature,
Sair is the specific heat of the dry air. Equation4 is differen-
tiating respect to time to obtain

Ė = ẋint V (DairSair +HairWsat−inSvap) (5)



Inserting the equation above in equation (3) and rearranging
to solve for ẋint , it is obtained

ẋint =
k1(xoutt −xint )+e1V Svap(xoutt HoutWsat−out−x

in
t HinWsat−in−swEsen)

V (DairSair+HinWsat−inSvap
(6)

This is the final equation of the model, which tracks the
temperature inside the house as a function of constants and
either measurable or estimated variables. Equation 6 can be
simplified to

d(xint ) = a(xoutt − xint )dt+Rptdt+ σdvt (7)

Where a is the average thermal resistance per thermal capacity
of the dwelling in watts/joules, R is the power rating per
thermal capacity of the dwelling in watts, and σv′t is a wiener
process with intensity σ. The wiener process accounts for heat
gain or heat loss(fluctuating number of people in the residence,
and doors and windows being opened and closed, refrigerators
and cooking, etc

B. Discrete-time mathematical model

The discrete-time equivalent equation for the continuous
physical model in equation 7 is represented:

xint+1 = xint + α(xt
out − xint ) +Gpt + c+ wt (8)

where
xint+1 is the temperature at time (t+ 1)
xint is the indoor temperature at time t
xt
out is the outdoor temperature at time t

α,G, c are the essential parameters to estimate
pt is power consumed from (t− 1) to time t
wt is the noise modeling

III. REAL DATA ANALYSIS: MODELING AND VALIDATION

Fig. 1. Layout of a residential home

A. Physical parameters

Given a data set that consists of inside and outside tempera-
tures as well as consumed power from a house, the parameters
α,G andc are extracted from the model. These parameters
represent the physical properties of a house as explained in

section 2. In order to extract an optimally these parameters,
we use the minimization of the least square error. Our linear
model, however, does not consider the nature of the noise
present. Instead, we assume a constant in the equation which
represents systematic errors. Once the parameters have been
extracted, we use the recursive equation in (8) to validate the
model. This task is done using multiple linear regression. In
this work, we are not considering the effects of modeling noise
wt.

B. Data characteristics

The data used for simulation in this work has been facili-
tated by Intel. Intel has equipped a house with environmental
and power sensors. The data provided was measured every
15 minutes. The measurements include indoor, outdoor tem-
perature, and HVAC power usage, and corresponds to months
from August to November. Figure 1 represents a blueprint of
the house where the data was obtained. The house has 2 floors
and uses 3 HVACS. HVAC 1 is connected to the main portion
of downstairs. This includes .HVAC 2 for the second floor, and
HVAC 3 for the extra room, which is a recent addition to the
house. The sensor that takes readings for HVAC 1 is located
in the hall on the first floor. The one that takes readings for
HVAC 2 is located on the second floor, and the one that reads
HVAC 3 is located in the extra room as shown in the figure
below.

Fig. 2. Sensor position for HVACs

The data facilitates temperatures and HVAC power con-
sumption readings from 7 different compartments of the house.
This includes the living room, dining room, kitchen, family
room, extra room and 1st floor bedroom. On the second floor,
we have data available for the bedroom located on the left side
and master bathroom.

C. Regression analysis and parameter estimation

We base our parameters extraction by minimization of the
mean square error. Our recursive model equation in 8 can be
represented as

xint+1 − xint = α(xt
out − xint ) +Gpt + c+ wt (9)

Our object is to minimize the objective function:

(ĉ, α̂, Ĝ) = argmin
c,α,G

n∑
t=1

||(xint+1−xint )−(c+α(xoutt −xint )+Gpt)||2

(10)



Where n is the number of observations. To obtain (ĉ, α̂, Ĝ)
To solve the equation above, we use the matrix formulation

y = xint+1 − xint (11)

y = Xθ + ε (12)

Where

X =


1 (xout1 − xin1 ) p1
1 (xout2 − xin2 ) p2
: : :
1 (xoutn − xinn ) pn


and

θ =

 c
α
G


And ε is of the form

ε =


ε0
ε1
ε2
...
εn


The matrix X is a known n x p matrix (n > p) of full rank

p. It is also referred as the observation matrix. The objective
function in 10 can be represented as

J(θ) = (y −Xθ)T(y −Xθ) (13)

We notice that J is a quadratic function of θ.The the mini-
mization respect to θ is easily accomplished since

J(θ) = yTX− 2yTXθ − θTXTXθ (14)

Also note that yTXθ is a scalar. The gradient of (14)

∂J(θ)

∂θ
= −2XTy + 2XTXθ (15)

Setting the gradient to zero yields

θ̂ = (XTX)−1y (16)

Where

θ̂ =

 ĉ
α̂

Ĝ


Equation (16) is used to obtain the parameters from the
available data set. We considered several cases when training
data to extract these parameters. In our experiments, data sets
corresponding to 1 day, 7 days and 14 days are used for
training. We use the mean square error in the fitting model
to compare the performance using the the different window
lengths. The validation of the model Important emphasis is
placed in the start point to start the extraction of parameter.
This is mainly because we are unaware of the presence of
outliers and the nature of the noise. It is important to address

the fact that we are not considering the noise in our model.
We don’t know its nature, but we analyze the error using
autocorrelation, power spectral density, Q-Q plot, and the
Kolgomorov-smirnov test to determine if our error has a
gaussian nature.

D. Model validation

After training data using window data length of 1, 7, and 14
days, and parameter extraction is performed, we validate our
model predicting the temperature for the following day and
comparing the results against actual data. We use the equation
below to obtain the predicted temperature.

x̂int+1 = xint + α̂(xoutt − xint ) + Ĝpt + ĉ (17)

Once the set of predicted temperature is obtained, we obtain
the mean square error between the actual temperature from the
predicted ones, Ultimately, we compare the modeling errors
from the training part with the prediction error obtaining in
the validation part. After an exhaustive manipulation of the
available data, it was concluded that using one day data (1
day window length) for parameter extraction had better perfor-
mance than using 7 and 14 days of data for training. We found
that using one day data for parameter extraction performs
reasonable well that using 7 or 14 days. The validation of
the model is performed using data in two different months.
The modeling and prediction mean squared error obtained are
below 0.1 degree.Our results also include the mean of the
parameters and their respective standard deviation. In order
to attempt to determine the nature of error, we also plot the
autocorrelation and power spectral density of modeling an
prediction error. We compare the CDF of our errors against
a normal distribution CDF. Finally, we use the kolgomorov-
smirnov test.

Room εm εp ᾱ ± σα Ḡ ± σG c̄ ± σc

Living Room 0.0103 0.0116 0.0083 ± 0.0046 −0.2076 ± 0.1211 0.0216 ± 0.0552

Family Room 0.0249 0.0282 0.0127 ± 0.0046 −0.1798 ± 0.1608 0.0062 ± 0.0908

Kitchen 0.0247 0.0281 0.0121 ± 0.0048 −0.1997 ± 0.1901 0.0324 ± 0.0894

Dining Room 0.1355 0.1480 0.0209 ± 0.0127 −0.5438 ± 0.1768 −0.0047 ± 0.1201

Office Room 0.0879 0.0956 0.0168 ± 0.0120 −0.5095 ± 0.2337 0.0176 ± 0.0802

Hall 0.0182 0.0212 0.0101 ± 0.0051 −0.3314 ± 0.1787 0.0264 ± 0.0669

Extra Room 0.4122 29.8200 0.0474 ± 0.0388 −5.8284 ± 24.6484 0.0709 ± 0.3141

Ups. Office 0.0184 0.0199 0.0107 ± 0.0048 −0.2990 ± 0.1214 0.0631 ± 0.0521

Ups. bath 0.0372 0.0412 0.0152 ± 0.0070 −0.4435 ± 0.6012 0.0417 ± 0.0820

TABLE I
OVERALL RESULTS USING 1 DAY-WINDOW LENGTH FOR TRAINING.

VALIDATION IS DONE FOR 75 DAYS STARTING AT DAY AUGUST 15TH

In the table above, εm and εp represent the modeling and
prediction mean squared error respectively. We also present
results for the mean of the parameters for every room. As
observed the results for modeling and prediction mean squared
error are small for the living room. On the other hand, the
results for the extra room is unrealistic, meaning that our
model does not work well in this case. One of the reasons
could be that this room is not controlled by the thermostat. The
owners adjust the temperature mainly at night time. Another
important fact we have not consider in our model is the impact
of air flow. The living room and the second floor are connected



by a cathedral ceiling, and thus this room is coupled with the
upstairs. However, a second order model have been consider
to address this situation.

Room T̄ σT εm εp

Living Room 79.1244 1.8073 0.0103 0.0116

Family Room 80.5193 2.5919 0.0249 0.0282

Kitchen 81.8173 2.1409 0.0247 0.0281

Dining Room 79.0615 14.0744 0.1355 0.1480

Office Room 79.8312 9.6645 0.0879 0.0956

Hall 79.2099 1.1447 0.0182 0.0212

Extra Room 83.0398 48.2190 0.4122 29.8200

Ups. Office 78.2068 1.1281 0.0184 0.0199

Ups. bath 77.8422 2.6523 0.0372 0.0412

TABLE II
OVERALL RESULTS USING 1 DAY-WINDOW LENGTH FOR TRAINING.

VALIDATION IS DONE FOR 75 DAYS STARTING AT DAY AUGUST 15TH
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Fig. 3. Parameter evolution, validation error and temperature evolution for
living room

In figure (3), we present the parameter evolution for 75
days. We decided to extract parameters starting at day 15 due
to some defective data present on the first two weeks(first 15
days of available data). The evolution of parameters seems to
vary as time evolve. The middle and bottom part of figure (3)
indicate validation error plot as well as predicted temperature
and actual temperature.

Figure (4) show the mean square error for modeling and
prediction error comparison. This is a way to show the
effectiveness of the model. As observed, the MSE of modeling
error is smaller that the MSE of prediction error.

Because, we don’t know the nature of the noises present in
our data, we have used some signal processing techniques to
observe modeling and prediction error behavior. In figure 5, we
show the autocorrelation of the modeling and prediction error.
As observed, neither of them present a flat outline, indicating
that we are not dealing with noise of gaussian nature.

To go further, the power spectral density of modeling and
prediction error is also presented in figure (6). Clearly, it is
observed thew presence of spikes indicating the presence of
harmonics in our data.

In the same fashion, figure (7) presents Q-Q plots, in
which quantiles of modeling and prediction error are compared

against standard normal quantiles. The more our samples
follow the reference line would indicate the gaussian nature
of the errors. However, the modeling and prediction errors do
not follow the reference line fully, giving an indication that
they are not of standard gaussian nature.

Figure (8) shows a plot of the CDFs of modeling and
prediction error against a CDF of a gaussian distribution.
Figure (9) represent 1 day realization, i.e. predicted and actual
temperature comparison temperature for day 16 in August.
As observed the the predicted temperature follows closely
the actual temperature. Ultimately, the Kolgomorov-smirnov
is used on both modeling and prediction error. The results
rejects the null hypothesis that says both errors belong to a
gaussian family distribution.

IV. CONCLUSION

In this paper, we have presented the performance of a linear
model to extract the essential parameters that represent the
physical characteristics of a single house. Upon exhaustive
data manipulation, it has been determined that using one day
of data samples gives better results than using 7 and 14 days of
data for training. The validation is done using approximately
2 months of data. Our results show that the obtained modeling
and prediction mean squared errors are below 0.1 degree.
However, more study to address the nature of noise present
in the data needs to be done. The model is sensitive to bad
sensor data, and depends upon reliable smart sensors and
controlled temperature by thermostaht. Further study needs to
be done using the model for other data sets from different
houses and buildings. Unfortunately, this kind of information
is unavailable at this moment. Further, given that MSE of
modeling and prediction errors are small, more research on
techniques to achieve adaptive temperature learning needs to
be done for completeness.
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