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ABSTRACT

In this paper, we introduce a novel random schedul-
ing strategy for distributed medium access in spread-
spectrum (SS) and multipacket reception networks. The
proposed random scheduling (RASC) protocol uses a
special method of seed exchange in which the seeds are
used for pseudo-random generation. The RASC uti-
lizes the seeds for randomly decomposing the network
into independent clusters containing a single receiver.
After the decomposition, the network resembles to the
up-link of cellular networks whose medium access tech-
niques are well developed. The application of RASC in
spread-spectrum networks avoids collisions and provides
Quality-of-Service guarantee at the MAC layer. The
throughput performance of the protocol is analyzed in
fully connected and Manhattan networks using analysis
and simulations. While still being a distributed random
access protocol, the RASC offers throughput which is
much closer to the network capacity compared to the
pure random access protocols like slotted ALOHA.

1. INTRODUCTION

The possibility of simultaneously receiving multiple pack-
ets is a natural concept in advanced communication sys-
tems. The diversity provided by the use of multiple an-
tennas or spread-spectrum codes makes it possible to
separate signals coming from different transmitters and
allows multipacket reception (MPR) [2].

In cellular networks, the MPR capability is the key
for providing high network capacity. Recently, there has
been numerous developments about efficiently utilizing
MPR in both the physical and medium access layers.
Both the information theoretic limits of the cellular sys-
tems were investigated, and medium access (MAC) pro-
tocols for spread spectrum networks or multiple antenna
systems were developed. Although these developments
provided a fair understanding of the effects of MPR in
cellular networks, the effects of MPR in an ad hoc net-
works is not yet well understood. Moreover, the problem

of efficient medium access for MPR ad hoc networks is
yet unsolved.

Recent analyses about the capacity of wireless net-
works [3, 4] clearly demonstrated that perfect schedul-
ing is the ultimate way to achieve capacity in the MAC
layer. However, in a distributed ad hoc network it is im-
possible to apply perfect packet scheduling, and random
access should be used to some extent.

In this paper, we look at the MAC problem for MPR
networks, and consider a novel random scheduling strat-
egy that benefits from advantages of both random ac-
cess and scheduling. In each slot, the RASC protocol
pseudo-randomly decomposes the network into indepen-
dent clusters each of which contain a single receiver and
its associated transmitters. The decomposition process
provides a connection with the cellular MPR systems,
and makes it possible to use the medium access princi-
ples developed for the up-link of cellular networks in an
ad hoc network. The RASC avoids collisions encoun-
tered in spread-spectrum networks [6], and guarantees
a certain throughput (i.e., Quality-of-Service) over any
link regardless of the network load from other nodes.
Furthermore, as a result of the pseudo-random schedul-
ing, the nodes can estimate what will happen in the
future time slots, and intelligently schedule the packets
generated by delay-sensitive applications.

In Section 2 the MPR model is introduced. In Sec-
tion 3 the RASC protocol is specified. In Section 4 upper
and lower bounds on throughput in an arbitrary topol-
ogy are derived, and in Section 5 performance of the
RASC in fully connected and Manhattan topologies is
analyzed.

2. THE RECEPTION MODEL

It is assumed that the time is divided into fixed length
slots, and transmission of one packet takes a single slot.
The nodes can not transmit and receive at the same
time. In each slot, a node can correctly receive and
decode a fraction of the number of transmissions in its
neighborhood. The reception probabilities are given by



the Receiver MPR Matrix C. The entries of the MPR
matrix C are given as

Cn,k = P [k packets are received | n packets are
transmitted in the neighborhood].

The receiver MPR matrix is defined and given as

C =




C1,0 C1,1

C2,0 C2,1 C2,2

...
...

...
. . .


 . (1)

In fact, in an ad hoc network two kinds of MPR ma-
trices can be defined depending on the channel signaling
method. If nodes are listening to every transmission in
their neighborhood (like in a common code scheme [6]
or in the collision channel) then n in Cn,k denotes the
number of packets transmitted in the neighborhood of
the receiver. In the other case, n in Cn,k denotes the
number of packets transmitted in the neighborhood of
the receiver which are intended for the receiver (like in
a receiver or transmitter based code selection [6]). We
will use the second MPR model since it is better suited
for providing higher throughput. It basically assumes
that nodes do not try to decode packets which are not
intended for them and they know the transmissions they
should listen to.

The transmitting nodes adjust their transmission power
such that their intended receiver receives the packet
with an appropriate power level. Preferably a node re-
ceives all packets intended for him with the same power.
Note that the interfering packets may have different
power levels and the near-far effect is unavoidable in
an ad hoc environment, since a transmitter can adjust
its power only for one receiver.

Since the MPR matrix C is a function of a number of
parameters, the nodes in a network may have different
MPR matrices. The MPR matrix depends on the am-
bient noise, the type of modulation used, and the mul-
tiuser detection/equalization method receivers apply. It
also includes the interference coming from transmissions
which is not of interest to the receiver.

This channel model is general enough to model the
conventional channel and the capture channel as spe-
cial cases. Also we define a special matrix called Per-
fect MPR which is the case where receivers are strong
enough to correctly receive every packet they hear. The
corresponding MPR matrices for the conventional chan-
nel, the capture channel, and the perfect MPR are, re-
spectively,0B@0 1 0 . . .

1 0 0 . . .
...

...
...

. . .

1CA ,

0BBB@
0 1 0 . . .

1− p2 p2 0 . . .
1− p3 p3 0 . . .

...
...

...
. . .

1CCCA ,

0BBB@
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

. . .

1CCCA
where pi denotes the probability of capture given i si-
multaneous transmissions in the reception neighborhood.

In MPR networks, it can be shown that the proba-
bility of a packet success given that n packets are trans-
mitted is Cn

n where

Cn
∆=

n∑

k=1

kCn,k (3)

is the expected number of correctly received packets
given n packets are transmitted.

3. RANDOM SCHEDULING PROTOCOL

An ad hoc network is modeled as an undirected graph
G = (V,E), where each vertice (node) represents a radio
terminal, and edges denote the logical connections be-
tween terminals. The links are logical because the nodes
also hear transmissions from out of their neighborhood
but with very low power that they can not correctly
decode. In a receiver’s MPR matrix, the transmissions
coming from out of his neighborhood are reflected as
interference.

The operation of the RASC is briefly illustrated in
Figure 1 using a network with 5 nodes. The four phases
of the protocol are given as follows: 1.a is the beginning
of a slot, 1.b transmitters and receivers are assigned, 1.c
transmitters associate with receivers 1.d transmissions
take place. In each slot the network goes through these
four phases in the given order.
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Figure 1: Four phases of the RASC protocol

Every node in the network has a different seed, just
as in the SEED-EX protocol [1], and has a sequence
of 0’s and 1’s (i.e., fair coin flips) which are generated
pseudo-randomly. Each node knows the topology up to
two-hop distance, seeds of his neighbors and seeds of
neighbors of neighbors. In every slot a node becomes a
transmitter or a receiver with probability 1/2 depending
on the state of its random number generator. Since
a node knows seed of his neighbors and neighbors of
neighbors, he knows if they have become a transmitter
or a receiver.

After possible transmitters and receivers are deter-
mined, every transmitter in the network looks at the re-



ceivers in its neighborhood and choose an associated re-
ceiver randomly with uniform probabilities. Since each
node has a seed (and a sequence of fair coin flips), he
can generate a uniform discrete distribution using his
random number generator. A transmitter’s association
decision is based on his generated uniform distribution.
Using this random association method, every node in
the network can figure out which neighbors of him are
associated with whom since the seeds of nodes up to the
two-hop distance are known. In [7] it’s shown that any
arbitrary discrete distribution can be generated from an
infinite number of coin flips. A uniform distribution can
also be generated as elaborated more in the appendix.

In the end of association the network is divided into
disjoint groups of nodes each of which contain a single
receiver and its associated transmitters. There can be
also receivers which do not have an associated trans-
mitter, or a transmitter which do not have any receiver
to associate with in its neighborhood. Such isolated
nodes stay idle in that particular slot, they neither re-
ceive nor transmit. A transmitter in a slot can only
transmit to his associated receiver, and he uses some
form of transmitter or receiver oriented coding such that
the transmitted signal can be monitored by the associ-
ated receiver. We assume in different groups different
set of codes are used which are orthogonal or pseudo-
orthogonal, so that the receivers can consider the out of
associated neighborhood signals as background noise.

After association, the rest of the problem is very
similar to the MAC problem in up-link of cellular net-
works. Although the network is divided into disjoint
groups, a receiver still does not know which nodes in his
associated neighborhood hold packets for him (if there
are any). Here, there are many different possibilities
for the protocol, but we will only consider perfect local
scheduling/polling. In perfect local scheduling, every re-
ceiver controls its associated neighborhood and chooses
the ones to transmit by knowing they hold a packet. A
receiver can learn the transmitters holding packets for
him either by employing a form of RTS/CTS communi-
cation or by polling. Such methods provide the highest
local throughput if the time spent for polling can be con-
sidered negligible comparable to the data packet length.

Given that m associated transmitters are holding
packets, it depends on the policy and the MPR ma-
trix of a receiver to choose what to do. If the aim is to
maximize throughput a receiver should give

τm
∆= arg max

n=1,··· ,m
Cn

nodes the permission to transmit. If τm nodes transmit
the average number of packets the receiver receives is

ηm
∆= max

n=1,··· ,m
Cn, (4)

which is the maximum that can be achieved. Those τm

nodes out of m can be selected randomly, or by consider-
ing Quality-of-Service requirement of the transmitters,
or depending on some other factors. In the analysis of
the RASC protocol we will assume that given m trans-
mitters hold packets, τm users are selected to transmit
randomly with uniform probabilities. The receivers re-
ceive the packets and after transmissions (at the end
of a slot) notify the transmitters if they are correctly
decoded.

4. THROUGHPUT ANALYSIS IN A
GENERAL NETWORK

In this section, we will determine lower and upper bounds
on rates that can be supported by the RASC proto-
col. Given a network graph G and end-to-end traffic
requirement, we suppose the routes are determined and
local traffic matrix R = [ri,j ] is computed. The non-
negative scalar ri,j denotes the traffic (no. of packets
per slot) to be transmitted from node i to node j where
node i and j are neighbors in the graph G. We assume
the network is fully loaded, i.e., every node holds pack-
ets for all its neighbors all the time. A traffic matrix
R is called feasible if there exists a transmitter selec-
tion policy of receivers such that the rates ri,j can be
achieved with the RASC protocol with probability 1 as
time tends to infinity . The problem is to determine
whether a given traffic requirement matrix R is feasi-
ble or not. Although the answer of this question yields
all the set of achievable rates, it is not clear how it can
be answered. Because of this we will provide an upper
bound on the feasible set of throughputs by assuming ev-
ery association yields a transmission, and a lower bound
by assuming the receivers choose their transmitters op-
timally and randomly to maximize the throughput in
each slot as explained in Section 3.

Heavy load assumption, and the transmitter selec-
tion policy mentioned in Section 3 generates a proba-
bility space on the set of events happening in a given
slot. Suppose P{·} shows probability of an event, and
E{·} denotes the expectation operator, and |{·}| denotes
the number of elements in a set. Let ηi,j denote the
throughput on the link from i to j, {i tx−→ j} denote
the event of successful transmission from node i to j,
{i assoc−→ j} denote the event of association of node i with
j, {i tx, j rec} denote the event of i being transmitter
and j being receiver. With these definitions the follow-
ing is clear

{i tx−→j} ⊂ {iassoc−→j} ⊂ {i tx, j rec}. (5)

Suppose Ni denote the set of neighbors of i, and
define Ni

∆=|Ni| as the number of nodes in the neighbor-
hood of i. The throughput (i.e., the supported rate) on



link i, j can be expressed as

ηi,j = P{i tx−→j} = P{i tx−→j, i
assoc−→j}

= P{i tx−→j|iassoc−→j} P{iassoc−→}. (6)

It is obvious that P{i tx, j rec} = 1
4 , and P{iassoc−→j} can

be written as

P{iassoc−→j} = P{i tx, j rec} P{iassoc−→j|i tx, j rec}(7)

=
1
4

Ni−1∑
r=0

1
1 + r

(
Ni − 1

r

)
1

2Ni−1
(8)

4.1. The upper bound

Recall that Cn

n is the probability of successful transmis-
sion of a packet given n packets are transmitted simul-
taneously. In this case, probability of any transmission
is upper bounded by

U
∆= sup

n=1,2,···

Cn

n
. (9)

Which means P{i tx−→j|iassoc−→j} ≤ U holds. Using this
inequality, (6), and (8), we can upper bound ηi,j as

ηi,j ≤ U

Ni−1∑
r=0

1
1 + r

(
Ni − 1

r

)
1

2Ni+1
. (10)

This upper bound is tight if only if P{i tx−→j|iassoc−→j} ≈
U , which means once i is associated with j he is highly
likely to transmit a packet with probability close to U .
This is the case when j doesn’t have traffic from its other
neighbors and/or the MPR capability is high compared
to number of associated neighbors of j. Also in perfect
MPR case (where U = 1) this bound is achieved.

4.2. The lower bound

Under the full load assumption, the best thing a receiver
j can do is choosing the optimal number τm of transmit-
ters to transmit given m = |{k : k

assoc−→j}| transmitters
are associated with j. In this case the expected num-
ber of correctly received packets is ηm (4). With these
definitions the following holds

P{i tx−→j|iassoc−→j} = E
{ηm

m
| i

assoc−→j
}

(11)

The expectation in (11) is very hard to compute,
and we will use a lower bound on (11). ∀ m, C1 ≤
maxn=1,...,m Cn = ηm holds, and by Jensen’s inequality

E
{ηm

m
| i

assoc−→j
}
≥ C1

E{m | i
assoc−→j}

∆= L. (12)

The quantity L can be computed analytically, but due
to the space limitations we leave it to the reader. The
lower bound in an implicit form can be expressed as

ηi,j ≥ L

Ni−1∑
r=0

1
1 + r

(
Ni − 1

r

)
1

2Ni+1
. (13)

We will give some numerical examples for this lower
bound in the following section. This bound is close to
the actual throughput only if C1 ≥ Ci,∀i and the out-
going traffic from each node to every neighbor are the
same (i.e., the heavy traffic assumption holds when the
network load is high).

5. THROUGHPUT OF SINGLE HOP AND
MANHATTAN NETWORKS

In this section, we will present performance of the RASC
protocol in MPR networks and compare the results with
that of slotted ALOHA. The slotted ALOHA is the
only protocol that has an immediate direct extension
to the MPR networks among non-MPR protocols such
as MACA, CSMA etc. This is why we use it to com-
pare with the RASC. Also slotted ALOHA has a striking
similarity with the RASC protocol. In both protocols a
node randomly becomes a transmitter with some prob-
ability (0.5 in RASC, the retransmission probability p
in ALOHA). On the other hand, the RASC has two
advantages over ALOHA. In RASC since every trans-
mitter knows which neighbors are receiving, the packets
are not lost by transmitting packets to other transmit-
ting neighbors, and secondly, two transmitters do not
transmit to the same receiver at the same time (with
the help of polling mechanism) and possible collisions
are avoided.

Note that in the simulations we will not consider
the traffic load of by acknowledgments and polling. The
MPR matrix of all nodes in the network is assumed iden-
tical, and we will consider two special types of MPR ma-
trices: the collision channel and the perfect MPR. We
will also consider two types of network topologies, fully-
connected network and the Manhattan network (Figure
2). In a Manhattan network of N nodes, the nodes are
placed on a grid with dimensions

√
N×√N . The nodes

on the edge are connected to the nodes on the other side,
just like a torus covered by a grid. Capacity results for
single hop and Manhattan networks which are obtained
in [3] will be used in the comparisons.

We consider the fully connected and Manhattan net-
works with N = 100 nodes, and for both the traffic is
uniform. The maximum achievable throughputs with
different MAC protocols are tabulated in Table 1 and 2.
The unit used in each entry is packet/slot. The through-
put values in the tables show the maximum achievable
throughput on a link from an arbitrary node i to a neigh-
bor j. Those values are the same for any neighboring



Figure 2: The Manhattan Network

Collision Channel Perfect MPR
Capacity 0.125 0.200
ηALOHA 0.044 0.063

ηRASC 0.070 0.117
Lbound 0.053 0.053
Ubound 0.117 0.117

Table 1: Performance figures for the Manhattan network

pair. The capacity is obtained by perfect scheduling [3]
which is the absolute maximum throughput under uni-
form load. ηALOHA is the maximum throughput of slot-
ted ALOHA protocol with optimal retransmission prob-
ability (obtained analytically). ηRASC is the maximum
throughput of the RASC protocol which is obtained by
evaluating the expectation in (11) through simulations.
Lbound and Ubound are the lower and upper bounds
obtained in (13) and (10) respectively. As expected, the
upper bound is very tight in Perfect MPR case, and the
lower bound is quite close to the ηRASC for the collision
channel.

6. CONCLUSION

For MPR networks, a random scheduling multiple ac-
cess protocol is proposed. First the MPR model is intro-
duced and random scheduling alternatives are discussed.
Then the RASC protocol is stated and its throughput
performance is analyzed. The proposed protocol decom-
poses the network randomly. After the decomposition
each receiver controls its associated neighborhood op-
timally considering the MPR capability. RASC proto-
col provides high throughput much better than that of
ALOHA, and to our knowledge, it is the first distributed
MAC protocol which is specifically designed for MPR ad
hoc networks with arbitrary topologies and traffic pat-
terns.

Collision Channel Perfect MPR
Capacity 0.500·10−2 0.990·10−2

ηALOHA 0.161·10−2 0.250·10−2

ηRASC 0.316·10−2 0.499·10−2

Lbound 0.250·10−2 0.250·10−2

Ubound 0.500·10−2 0.500·10−2

Table 2: Performance figures for the Single-hop network

7. APPENDIX: GENERATION OF
UNIFORM DISTRIBUTIONS

Suppose we are given a random sequence of fair coin
flips and we want to generate a random distribution
with probabilities 1/N . We need to define a mapping
from coin flips to N events whose probabilities are each
1/N . If there exists a k such that N = 2k, the required
mapping is just to take the first k flips in the sequence
and to assign to any N events with any order. For N 6=
2k there exists an infinite number of such mappings [7]
which generates uniform probabilities in about log2 N
expected number of coin flips. The basic idea is mapping
the coin flips to [0,1] interval as considering the flips as
the dyadic expansion of a number in [0,1]. An example
for N = 3 is given in Figure 7.
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Figure 3: Events A,B,C has probability 1/3 each
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