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Abstract

We study the problem of communicating sensor readings over a Gaussian multi-
access (MAC) channel. We focus on the scenario that each sensor observes a single
random variable, and transmits it using certain signaling in a shared channel. The
objective is the design of channel waveforms (i.e., signal constellation) to facilitate the
estimation of field parameters from the channel output. We propose a new approach
named Histogram-Delivering Multiple Access (HDMA). In case of symmetric channel
gains, it is shown that the HDMA is asymptotically optimal in the limit of large num-
ber of sensors. In particular, we show that the HDMA together with a variant of
the maximum-likelihood estimator achieves the Cramer-Rao lower bound asymptoti-
cally. We then compare the performance of HDMA with other approaches that allocate
orthogonal channels to sensors such as TDMA.

1 Introduction

1.1 Context and Problem Setup

Main functions of wireless sensor networks include sensing of a physical phenomena, and

the delivery of the sensed data to a control center. The control center aims to estimate the

parameters related to the physical phenomena reliably. Since sensor data are correlated,

the efficiency is improved by processing the data locally, and then delivering a compressed
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the Office of Naval Research Contract N00014-00-1-0564, by the Army Research Laboratory CTA on Com-
munication and Networks under Grant DAAD19-01-2-0011, and by the National Science Foundation under
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Figure 1: Estimation over MAC setup.

version. Data aggregation can be performed by cluster-heads in a hierarchical sensor network,

or by mobile access points [1].

In this work we focus on the multiaccess part of sensor communication. How should

the multiaccess (MAC) be designed such that the sensor data is gathered by a cluster-

head or an access point most efficiently? The conventional approach mandates the data

to be packetized, and then get transmitted according to a MAC protocol. This approach,

however, doesn’t consider the fact that the sensor data are correlated and that the ultimate

objective is the estimation of the field. In this paper we show that significant gains can be

realized in estimation quality and in system resource consumption if the physical layer and

the MAC are designed jointly for the purpose of estimation.

We consider the case that a group of n sensors observe independent and identically

distributed (i.i.d.) data X1, · · · , Xn with pdf pθ (Fig. 1). The pdfs belong to a family {pθ :

θ ∈ Θ}, where Θ ⊂ R is the parameter space, and the objective is to estimate the parameter

θ. Each sensor transmits a waveform si,Xi
which depends on the node index i and the

observation Xi (energy constraint ||si,Xi
||2 ≤ E must be satisfied). The transmitted signals

are received through a Gaussian multiaccess channel. The receiver produces an estimate θ̂

of the parameter after reception. The objective is to design the channel waveforms and the

estimator such that the mean squared error (MSE) E{(θ̂−θ)2} is minimized. For convenience,

it assumed that each Xi ∈ {1, · · · , k} is discrete1 with the pdf pθ = (pθ(1), · · · , pθ(k)).

First, consider the ideal scenario that the receiver has access to all Xi’s directly. In

this case the fundamental limits of estimation are determined by the Cramer-Rao bound

(CRB) [2]. That is, under regularity conditions on {pθ : θ ∈ Θ}, the MSE of any unbiased

1Xi should be viewed as quantized data. In this paper, we do not deal with continuous variables, or how
the quantization is done.
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estimator θ̂ satisfies

E{(θ̂ − θ)2} ≥ 1

nI(θ)
, (1)

where I(θ) =
∑k

i=1
(dpθ(i)/dθ)2

pθ(i)
is the Fisher information2 in observation Xi. The CRB is not

always achievable for finite n, but there is a class of estimators, including the Maximum

Likelihood (ML) estimator, achieving the CRB asymptotically, i.e.,

√
n(θ̂ − θ)

d→ N (0,
1

I(θ)
)

as n→∞3; such estimators are called asymptotically efficient. Of course, the receiver having

direct access to Xi’s is an idealistic assumption due to the channel noise and the energy

constraints, and this performance may not be achievable in the MAC channel.

1.2 Histogram-Delivering Multiple Access

In waveform design a crucial observation is that the estimator doesn’t need to know the

raw data X1, · · · , Xn to achieve the best performance. Actually, if the nodes could deliver

a sufficient statistic with their transmissions, then there is no loss of information. One such

sufficient statistic is the empirical measure

p̃ =
1

n
(n1, · · · , nk),

where nj =
∑n

i=1 1(Xi = j) is the number of nodes that observe j4. Sufficiency of p̃ moti-

vates us to use the following approach which we call Histogram-Delivering Multiple Access

(HDMA). let δ1, · · · , δk be k orthonormal waveforms (these can be pulses in time, or tones

in frequency). Set si,Xi
=
√

EδXi
, i.e., let every node observing j transmit δj with energy E.

In case of identical channel gains (hi = 1), the received signal contains a noisy version of the

histogram of sensor observations. Moreover, the received signal, after appropriate matched

filtering, normalized by
√

En is equal to the empirical measure plus some noise with power

O( 1
n2 ).

In this paper we provide an asymptotic performance analysis of the HDMA. Our main

result states that the HDMA together with a variant of the ML estimator is asymptotically

efficient if the channel gains from different nodes are identical. In other words, the asymptotic

performance of HDMA is as if the receiver has access to all Xi’s directly. The performance of

TDMA (time-divison multiple access) is also analyzed5, and it is shown that its asymptotic

MSE is 1
nJ(θ)

for some J(θ) considerably smaller than I(θ) at low SNR (the exact value of

J(θ) depends on which modulation is used). Another advantage of HDMA over TDMA is its

2It is assumed that I(θ) < ∞ ⇔ pθ(i) > 0,∀i.
3Notations d→,

p→ denote the convergence in distribution and convergence in probability, respectively.
41(·) is the indicator function, i.e., 1(E) = 1 if event E happens, and 1(E) = 0 otherwise
5In our channel model, all schemes allocating orthogonal dimensions to different users (e.g., TDMA,

FDMA) are mathematically identical and have the same performance.
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bandwidth requirement; the HDMA uses k orthogonal dimensions irrespective of the number

of users, whereas the bandwidth requirement of TDMA grows linearly with n. Finally, the

performances of HDMA and TDMA are compared by simulations for Bernoulli and Poisson

distributed data. It is observed that the asymptotic analysis provide accurate performance

estimates for most of the considered cases even for finite n.

1.3 Related Work

Estimation over MAC problem has been previously considered in the context of information

theory. Gastpar studied the scaling of distortion with respect to the number of sensors for

the case that the sensor observations are noisy versions of a Gaussian source [3]. He showed

that transmitting uncoded observations in the Gaussian MAC channel gives the best scaling

law. Other relevant work includes source compression for detection or estimation under

communication rate constraints (e.g., [4]), and joint source-channel coding for the MAC

channel (e.g., [5]). The information theoretic approach considers the asymptote that the

amount of source data/channel resources is large. On the other hand, our setup models the

situation that very many sensors each with limited amount of data and limited energy access

a common channel.

During the preparation of this work, Liu and Sayeed suggested communicating types (i.e.,

the empirical measure) [6], and independently proposed the HDMA scheme for distributed

detection [7]. The literature on distributed detection is vast (e.g., [8]). [9] studied quantizer

design for distributed estimation.

The organization of the paper is as follows. Section 2 analyzes the asymptotic perfor-

mance of HDMA in deterministic channels. Section 3 discusses the asymptotic performance

of TDMA. Section 4 gives numerical examples, and checks the validity of the asymptotic

theory for finite n. Section 5 concludes the paper.

2 Asymptotic Performance of HDMA

Consider the MAC channel with n nodes shown in Fig. 1. Every node observes a random

variable Xi i.i.d. across users with pdf pθ = (pθ(1), · · · , pθ(k)), where θ ∈ Θ, Θ ⊂ R is the

parameter to be estimated. Node i has an encoder which maps observation j to a discrete-

time waveform si,j ∈ C∞ such that ||si,j||2 ≤ E. The received signal at the access point

is

z =
n∑

i=1

hisi,Xi
+ v, (2)

where each element of v = (v1, v2, · · · ) is i.i.d. CN (0, σ2). An estimate θ̂(z) of θ is produced

upon observing z.

Without loss of generality, assume that δ1, · · · , δk are unit-pulses in time at time instants

1, · · · , k. In the HDMA scheme nodes use identical encoders si,j =
√

Eδj, ∀i, j. We use the

4



notation p for pθ0 , and (p1, · · · , pk) for (pθ0(1), · · · , pθ0(k)), where θ0 is the parameter the

data comes from. All vectors, unless transposed, must be understood as column vectors. (·)′
denotes derivative with respect to θ. Re(·), Im(·) denote the real and imaginary parts of a

complex number, respectively.

2.1 Identical Channels (hi = 1)

When all hi are unity, the complex part of z only consists of noise, and it does not convey

any information. Consider the normalized received signal

y := Re

{
z

n
√

E

}
= p̃ +

1

n
√

E
Re{(v1, · · · , vk)}.

For convenience, let w = (w1, · · · , wk) := Re{(v1, · · · , vk)}. The following lemma gives the

asymptotics of p̃ and y, which actually turn out to be the same.

Lemma 1 p̃
p→p and

√
n(p̃− p)

d→N (0, Σ) as n→∞, where

Σ =




p1(1− p1) −p1p2 · · · −p1pk

−p1p2 p2(1− p2) · · · −p2pk

...

−p1pk · · · pk(1− pk)




= Diag(p1, · · · , pk)− ppT . (3)

The same convergences hold true for y as well, i.e., y
p→p and

√
n(y−p)

d→N (0, Σ) as n→∞.

The lemma basically states that y has statistics

y ≈ N (p,
1

n
Σ)

for large n. This property will be instrumental in establishing the asymptotic efficiency of

HDMA.

Proof It is straightforward to check that the empirical measure has (scaled) multinomial

distribution with mean p, and covariance 1
n
Σ. We have p̃

p→p from the law of large numbers,

and
√

n(p̃ − p)
d→N (0, Σ) from the multivariate Central Limit Theorem [10, p. 385]. It

follows from Slutky’s Theorem [10] that the addition of noise doesn’t change this convergence

behavior:

y = p̃ +
w

n
√

E

p→ p

since w
n
√

E

p→0. And, similarly,

√
n(y − p) =

√
n(p̃− p) +

w√
nE

d→ N (0, Σ).
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Lemma 2 Let y be N (p, 1
n
Σ) distributed. Then, its pdf is

p(y1, · · · , yk) =
1

(2π/n)
k−1
2

exp

(
−

n
∑k

i=1
(pi−yi)

2

pi
+ log

∏k
i=1 pi

2

)
1(

k∑
i=1

yi = 1) (4)

Proof Skipped due to space limitations; see [11].

The lemma gives the pdf of y when its distribution is exactly equal to N (p, 1
n
Σ), whereas

for our y this is only asymptotically true. In establishing the asymptotic efficiency of HDMA

one would like to consider the ML estimator based on y. However, the exact likelihood

function of y has a complicated form, and the ML based on that doesn’t seem tractable.

This motivates us to consider the ML based on the asymptotic distribution of y, which

amounts to maximizing p(y1, · · · , yk) in (4) with respect p. However, this is the same as

minimizing the exponent. For large n, the second term log
∏k

i=1 pi has a negligible effect on

the minimization compared to the first one. Therefore, we propose the estimator θ̂ which

minimizes

M(θ) :=
k∑

i=1

(pθ(i)− yi)
2

pθ(i)
(5)

with respect to θ ∈ Θ. This can be viewed as an asymptotic version of the ML estimator,

and as one would expect from the ML, it is asymptotically efficient.

Theorem 1 Consider a network with the HDMA scheme and the estimator θ̂ that minimizes

M(θ) with respect to θ ∈ Θ. If the family {pθ : θ ∈ Θ} satisfies certain regularity conditions,

then the estimator θ̂ is consistent and is asymptotically efficient, i.e., θ̂
p→ θ0 and

√
n(θ̂ − θ0)

d→ N (0,
1

I(θ0)
) (6)

as n→∞.

Proof See [11].

Remark 1 Theorem 1 holds irrespective of the value of E as long as E > 0. However, the

magnitude of E determines the speed of convergence of MSE to the lower bound 1
nI(θ0)

. As it

will be explored later by simulations, the higher the SNR (i.e., the higher the E), the faster

the convergence.6

Next, we will heuristically derive the asymptotic efficiency of θ̂. The distribution family

{pθ : θ ∈ Θ} traces a curve in the k dimensional probability simplex (Fig. 2). Since M(θ)

6Actually, Theorem 1 depends on y only through its asymptotic statistics (cf. Lemma 1). Since, the
asymptotic statistics of y are independent of the distribution of noise w = (w1, w2, · · · ), Theorem 1 holds
true irrespective of the statistics of noise i.e., the noise need not even be Gaussian.
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Figure 2: Probability simplex and the parametric family {pθ : θ ∈ Θ}.

in (5) is a form of distance measure, it naturally happens that pθ̂→p and e := θ̂ − θ0→0 as

y→p. For small perturbations,

θ = θ0 + e, where |e| << 1,

the pθ varies almost linearly along the tangent line:

pθ ≈ p + ep′ and p′θ ≈ p′ + ep′′, (7)

where p′ := p′θ0
, p′′ := p′′θ0

. This property is very important for us, because e goes to zero as

y→p, and (7) becomes accurate. Instead of minimizing M(θ), one might as well solve for θ

in M ′(θ) = 0.

M ′(θ) =
k∑

i=1

2p′θ(i)(pθ(i)− yi)

pθ(i)
− p′θ(i)(pθ(i)− yi)

2

pθ(i)2
≈

k∑
i=1

2p′θ(i)(pθ(i)− yi)

pθ(i)
,

where the approximation is because (pθ(i)− yi)
2 is much smaller than (pθ(i)− yi) for pθ ≈ y.

Substituting (7), one gets

M ′(θ) ≈
k∑

i=1

2(p′i + ep′′i )(pi − yi + ep′i)
pi + ep′i

≈
k∑

i=1

2p′i(pi − yi + ep′i)
pi

= 0, (8)

where higher order terms with e2 and e(pi − yi) are neglected. From the last equation, e is

obtained as

(
k∑

i=1

(p′i)
2

pi

)e =
k∑

i=1

p′i(yi − pi)

pi

⇒ e =
1

I(θ0)

k∑
i=1

p′i(yi − pi)

pi

.

Since y − p is asymptotically Gaussian, e is asymptotically Gaussian with variance

E(e2) =
1

nI2(θ0)

[
p′1
p1

· · · p′k
pk

] (
Diag(p)− ppT

) [
p′1
p1

· · · p′k
pk

]T

=
1

nI(θ0)
.
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3 Asymptotic Performance of TDMA

Packetization is a common practice in communication network design. The conventional

layered architecture suggests the data to be mapped into a bit-stream, transmitted using

some form of modulation, and then get received without collisions. In this section, the

asymptotic performance of such an approach (the TDMA scheme) is considered.

For some m ∈ {1, 2, · · · }, let s1, · · · , sk be vectors in Cm satisfying ||si||2 ≤ 1 (these are

viewed as points in a constellation). In TDMA users are allocated non-overlapping time

slots of length m. Every node uses time shifted versions of the same set of waveforms in its

own slot, i.e., node i transmits vector
√

EsXi
in the i’th slot . Notice that the bandwidth

requirement of TDMA linearly grows with number of users, whereas the HDMA uses k time

units irrespective of the number users. We denote the i’th received TDMA packet by

z(i) = hi

√
EsXi

+ v(i), (9)

where v(i) ∼ CN (0, σ2Im×m).

For simplicity, first let’s focus on the case that hi = 1 for all i. The random vec-

tors z(1), · · · , z(n) are i.i.d. with Gaussian mixture density. That is, z(i) is distributed

CN (
√

Esj, σ
2I) conditional on Xi = j, and the pdf z(i) is

f(z(i)) =
k∑

j=1

pj
1

(πσ2)m
exp

(
−||z

(i) −√Esj||2
σ2

)
. (10)

From the CRB, the MSE of any unbiased estimator θ̂ based on z(1), · · · , z(n) satisfies

E{(θ̂ − θ)} ≥ 1

nJ(θ)
,

where

J(θ) = Ez(i)

[(
d log f(z(i))

dθ

)2
]

(11)

is the the Fisher information in z(i). Moreover, the ML estimator based on z(1), · · · , z(n)

achieves the MSE 1
nJ(θ)

asymptotically. Hence, the asymptotic performance of TDMA is

determined by the Fisher information J(θ) in each TDMA packet. An important problem

is the choice of constellation. One ideally would like to maximize J(θ) in (11) with respect

to s1, · · · , sk to get the best performance. This maximization does not appear tractable in

general. For k = 2, however, we have the following result (see [11] for a proof).

Theorem 2 Let the channel hi = 1 for all i. For k = 2, the antipodal constellation s1 =

1, s2 = −1 maximizes J(θ) under the energy constraint ||si||2 ≤ 1.

For Bernoulli(θ = 0.8) distributed data and antipodal constellation, J(θ) and I(θ) are

plotted in Fig. 3 Notice that the asymptotic MSE of TDMA, 1
nJ(θ)

, is significantly higher
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Figure 3: Fisher Information in TDMA packets.

than the asymptotic MSE of HDMA, 1
nI(θ)

, at low SNR := E
σ2/2

. It also seen that in terms

of asymptotic MSE the TDMA is as good as HDMA for SNR ≥ 20dB.

For k = 8, we evaluated J(θ) by Monte-Carlo integration for three types of constellation:

BPSK, orthogonal si’s and the simplex (orthogonal si’s translated to have center of mass at

the origin, and scaled to satisfy ||si|| = 1). Fig. 3 shows J(θ) for Poisson (mean= θ = 1) Xi

truncated at k = 8. The simplex constellation is observed to be marginally better than the

other two at all SNR values.

4 Numerical Examples

Simulation results Bernoulli Distributed Data (θ = mean) are given in Fig. 4. The curves

are the following:

i) TDMA (antipodal constellation) with the ML estimator based on z(1), · · · , z(n).

ii) Direct Access+ML: The hypothetical case that the estimator has access to Xi’s directly.

iii) Asymptotic performance (of HDMA): MSE= 1
nI(θ)

predicted by our theory.

iv) The HDMA (SNR = E
σ2/2

= 0dB) follows the expected asymptotic performance closely,

whereas HDMA (SNR=−10dB) reaches the asymptotic limit only at large n.

5 Conclusions

Communication for the purpose of estimation is a central issue in sensor networks. We

studied the problem of parameter estimation for the case that a large number of sensors

each with limited data and transmission energy access a common channel. We argued that

with the use of HDMA significant gains can be realized in estimation quality and in sys-

tem resource consumption compared to the conventional architecture allocating orthogonal

channels to sensors. We characterized the asymptotic performance of HDMA, and observed
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that this characterization gives reasonably accurate performance estimates even for finite n.

The results of this paper is extended to fading multiaccess channels in [11].
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