
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 2, FEBRUARY 2006 613

Type Based Estimation Over Multiaccess Channels
Gökhan Mergen and Lang Tong

Abstract—We study the problem of communicating sensor read-
ings over a Gaussian multiaccess channel. We focus on the scenario
that each sensor observes a single random variable and transmits
it using certain signaling in a shared channel. The objective is the
design of channel waveforms (i.e., the signal constellation) to facil-
itate the estimation of field parameters from the channel output.
We propose a communication scheme in which sensors transmit
according to the type of their observations—type-based multiple
access (TBMA)—and show that the TBMA is asymptotically op-
timal in the limit of large number of sensors if the sensor channel-
gains are identical. In particular, we show that TBMA together
with a variant of the maximum-likelihood estimator achieves the
Cramer–Rao bound asymptotically. We then extend the asymp-
totic analysis of TBMA to fading channels and compare the perfor-
mance of TBMA with other orthogonal allocation methods such as
time-division multiple access.

Index Terms—Asymptotic efficiency, distributed estimation,
multiaccess channel, orthogonal allocation, sensor networks,
time-division multiple access (TDMA), types.

I. INTRODUCTION

A. Context and Problem Setup

MAIN functions of wireless sensor networks include
sensing of physical phenomena and the delivery of the

sensed data. Since sensor data are correlated, the efficiency is
improved by processing the data locally by a fusion center and
then delivering compressed information. The fusion center can
be a cluster-head in a hierarchical sensor network or a mobile
access point.

In this paper, we focus on the multiaccess part of sensor com-
munication. How should the multiaccess be designed such that
the sensor data are gathered by a fusion center most efficiently?
The conventional approach mandates the data to be packetized
and then transmitted according to a multiaccess protocol. This
approach, however, ignores the fact that the sensor data are cor-
related and that the ultimate objective is the estimation of the
field. In this paper, we show that significant gains can be real-
ized in estimation quality and in system resource consumption
if the physical layer and the multiaccess are designed jointly for
the purpose of estimation.
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We consider the case that a group of sensors observe
conditionally independent identically distributed (i.i.d.) data

(Fig. 1) given a parameter . For convenience,
it is assumed that each is discrete1 with the
probability mass function (pmf) . The
pmf belongs to a family , where is the
parameter space, and the objective is to estimate the parameter

. Each sensor transmits a waveform , which depends on
the node index and the observation (energy constraint

must be satisfied). The transmitted signals are
received through a Gaussian multiaccess channel (MAC). The
fusion center produces an estimate of the parameter after
reception. The objective is to design the channel waveforms
and the estimator such that the mean squared error (MSE)

is minimized.
First, consider the ideal scenario that the fusion center has ac-

cess to all s directly. In this case a fundamental limit on esti-
mation performance is given by the Cramer–Rao bound (CRB)
[1]. That is, under regularity conditions on , the
MSE of any unbiased estimator satisfies

(1)

where is the Fisher informa-
tion2 in observation . The CRB is not always achievable for
finite , but there is a class of estimators, including the max-
imum likelihood (ML) estimator, achieving the CRB asymptot-
ically, i.e.,

(2)

as ;3 such estimators are called asymptotically efficient.
Of course, the fusion center having direct access to s is an
idealistic assumption due to the channel noise and the energy
constraints, and this performance may not be achievable in the
Gaussian MAC.

B. Type-Based Multiple Access

In waveform design, a crucial observation is that the estimator
does not need to know the raw data to achieve the
best performance. Actually, if the nodes could deliver a suffi-
cient statistic with their transmissions, then there is no loss of

1X should be viewed as quantized data. In this paper, we do not deal with
continuous variables or how the quantization is done.

2It is assumed that I(�) < 1 , p (i) > 0;8i.
3Notations !;! denote the convergence in distribution and convergence

in probability, respectively. Asymptotic efficiency at � = � requires � to
be identifiable, i.e., 8� > 0;9� > 0 such that kp � p k < � for some
� ) j� � � j < �. This will be assumed throughout this paper.
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Fig. 1. Estimation over MAC setup.

information. One such sufficient statistic is the empirical mea-
sure (i.e., the type)

where is the number of nodes that
observe .4 Sufficiency of motivates us to use the following
scheme, which we shall call the type-based multiple access
(TBMA). Let be orthonormal waveforms. Set

, i.e., let every node observing transmit
with energy . The received signal at the fusion center is

modeled as

(3)

where is the channel noise. This scheme is easier to understand
when all s are equal to one. In this case (3) simplifies to

(4)

After matched filtering by and scaling by ,
it is seen that the received signal contains a noisy version of the
empirical measure.

C. Summary of Results

In this paper, we provide an asymptotic performance analysis
of the TBMA. Our main result states that the TBMA together
with a variant of the ML estimator is asymptotically efficient if
the channel gains from different nodes are identical. In other
words, the asymptotic performance of TBMA is as if the fusion
center has access to all s directly.

In contrast, the asymptotic MSE of time-division mul-
tiple access (TDMA) is shown to scale as , where

is considerably smaller than particularly at low

41( � ) is the indicator function, i.e., 1(E) = 1 if event E happens, and
1(E) = 0 otherwise.

signal-to-noise ratio (SNR). In our model all orthogonal-alloca-
tion methods such as TDMA and frequency- and code-division
multiple access are mathematically identical. Therefore, our
result implies that the TBMA outperforms all such methods
with orthogonal allocation.

Another advantage of TBMA over TDMA is its bandwidth
requirement; TBMA uses orthogonal dimensions irrespective
of the number of users, whereas the bandwidth requirement of
TDMA grows linearly with . In a large network, , this
translates to significant bandwidth savings. The performances of
TBMA and TDMA are compared by simulations for Bernoulli
distributed data. It is observed that the asymptotic analysis pro-
vides accurate performance estimates for most of the considered
cases even for finite .

We next generalize the analysis of TBMA to symmetric
fading channels ( are complex-valued i.i.d. random).
For the case that the channel gain has nonzero mean
and variance,5 Var it is shown that the estimation
error with the proposed ML-variant estimator satisfies

In other words, fading incurs a loss of performance in MSE
which depends on the value of . On the other hand, for circu-
larly symmetric fading with zero mean, we obtain a starkly dif-
ferent result: the MSE does not go to zero even though .
This is because transmissions from different nodes do not add
up coherently (transmitted signals cancel each other).

Since bandpass channels are subject to phase uncertainty,
zero-mean is expected to be the norm rather than an excep-
tion. Thus, some form of transmitter channel side information
(CSI) is needed for TBMA to work in practice (to normalize
the channel gains and to set the phases appropriately). By using
CSI, the effective channel can be converted from zero-mean to
nonzero mean. An estimate of transmitter CSI can be obtained
in a distributed way from a pilot tone transmitted by the fusion
center (see [2]). We analyze the performance of TBMA with
transmitter CSI by simulations and analysis.

5<( � );=( � ) denote the real and imaginary parts of a complex number, re-
spectively.
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D. Related Work

Estimation over MAC problem has been previously con-
sidered in the context of information theory. Gastpar studied
the scaling of distortion with respect to the number of sensors
for the case that the sensor observations are noisy versions of
a Gaussian source [3]. He showed that transmitting uncoded
observations in the Gaussian MAC gives the best scaling law.
Other relevant work includes source compression for detection
or estimation under communication rate constraints (e.g.,
[4]–[8]) and joint source-channel coding for the MAC (e.g.,
[9]–[11]). The information theoretic approach considers the
asymptote that the amount of source data/channel resources is
large. On the other hand, our setup models the situation that
very many sensors each with limited amount of data and finite
energy access a common channel.

During the preparation of this paper, Liu and Sayeed sug-
gested communicating types [12] and independently proposed
the TBMA scheme for distributed detection [13]. The effect
of multiaccess protocol on the reconstruction MSE of corre-
lated fields is studied in [14] and [15]. Chamberland and Veer-
avalli [16] studied distributed detection under sum communi-
cation rate constraint. Distributed detection over independent
noisy channels is considered in [17]–[19]. Quantization of ob-
servations for transmission over multiaccess channels with dis-
crete input alphabet is investigated in [20]. Quantizer design for
distributed estimation is studied in [21]–[23]. High-rate quanti-
zation for asymptotically optimal detection is studied in [24].

The organization of this paper is as follows. Section II an-
alyzes the asymptotic performance of TBMA in deterministic
and fading channels. Section III discusses the asymptotic per-
formance of TDMA. Section IV gives numerical examples and
checks the validity of the asymptotic theory for finite . Sec-
tion V concludes this paper and points out some further research
directions. Proofs of the main theorems concerning the asymp-
totic efficiency of TBMA are provided in the Appendix.

We use the notation for and for
, where is the parameter from which the

data comes. All vectors, unless transposed, must be understood
as column vectors. denotes the derivative with respect to .

II. A SYMPTOTIC PERFORMANCE OF TBMA

A. Identical Channels

Consider the received signal with the TBMA scheme in (4).
We assume that the is white proper-complex Gaussian noise
with power 2 in each orthogonal dimension. Suppose that
the fusion center processes the received signal to obtain

where denotes the inner product. Here, we take the real
component of the signal, since its imaginary component only
contains noise. The signal can be equivalently written as

where is the empirical measure and
.

In the following lemma, we characterize the asymptotics of
and , which actually turn out to be the same.

Lemma 1: and as ,
where

...

Diag (5)

The same types of convergence hold true for as well, i.e.,
and as .
Remark 1: Intuitively, the lemma states that is asymptoti-

cally Gaussian with mean and covariance . To denote
this, we use the notation

for large . This property will be instrumental in establishing
the asymptotic efficiency of TBMA. The reason why the vector

and the empirical measure have the same asymptotics is that
the noise term has power decaying with 1 .

Proof: It is straightforward to check that the empirical
measure has (scaled) multinomial distribution with mean and
covariance . We have from the law of large num-

bers and from the multivariate central
limit theorem ([25, p. 385]). It follows from Slutky’s theorem
(reviewed in Appendix B) that the addition of noise does not
change this convergence behavior

since . Similarly

Lemma 2: Let be distributed. Then:

i) the probability density function (pdf) of is

(6)

ii) .
Proof: To see ii), notice that is a singular matrix and

. This implies that has zero
variance, i.e., it is constant and is equal to its mean .

The pdf of is shown in the equation at the
bottom of the next page,where is the upper left
portion of the matrix ; similarly, should be understood
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as the first entries. Due to the special structure (5), the
determinant can be obtained as

Diag

Diag

Diag

Diag

Diag (7)

(8)

where again only refers to its first entries and the identity
is used in (7). Similarly, the inverse

matrix can be obtained from the Sherman–Morrison–Woodbury
formula [26]

(9)

where Diag . Direct evaluation gives

(10)

The lemma follows.
The lemma gives the pdf of when its distribution is ex-

actly equal to , whereas for our this is only
asymptotically true. In establishing the asymptotic efficiency of
TBMA, one would like to consider the ML estimator based on

. However, the exact likelihood function of has a compli-
cated form, and the ML based on that does not seem tractable.
This motivates us to consider the ML based on the asymptotic
distribution of , which amounts to maximizing the likelihood

in (6) with respect . This is the same as min-
imizing the exponent. For large , the second term

has a negligible effect on the minimization compared to the first
one. Therefore, we propose the estimator which minimizes

(11)

with respect to . This can be viewed as an asymptotic
version of the ML estimator, and as one would expect from the
ML, it is asymptotically efficient.

Theorem 1: Consider a network with the TBMA scheme and
the estimator that minimizes with respect to . If
the family satisfies certain regularity conditions, 6

then the estimator is consistent and is asymptotically efficient,
i.e., and

(12)

as .
Proof: See Appendix B.

Remark 2: Theorem 1 holds irrespective of the value of
as long as . However, the magnitude of determines the
speed of convergence of MSE to the lower bound .
As will be demonstrated later by simulations, the higher the
SNR (i.e., the higher the ), the faster the convergence.7

The intuition behind Theorem 1 is that the asymptotic be-
havior of MSE is determined by the gradient of with re-
spect to in the neighborhood . That is, the Taylor expan-
sion of at gives

Higher order terms (13)

where . Notice that
, therefore, the rest of the terms in the expansion

constitute the estimation error. The dominant factor in the
expansion is the linear term. Under the assumption that has
distribution , the linear term is also Gaussian with
variance , which is equal to .

6Given in Appendix B.
7Actually, Theorem 1 depends on y only through its asymptotic statistics (see

Lemma 1). Since the asymptotic statistics of y are independent of the distribu-
tion of the channel noise, Theorem 1 holds true irrespective of the statistics of
the noise, i.e., the noise need not even be Gaussian.



MERGEN AND TONG: TYPE BASED ESTIMATION OVER MULTIACCESS CHANNELS 617

See Appendix A for a heuristic derivation of and the
computation of .

B. Multiacess Fading Channel

This section analyzes the asymptotic performance of TBMA
when are i.i.d. random variables. We first focus on
the case that the channel has nonzero mean . Later,
zero-mean circularly symmetric will be considered. It is as-
sumed that the channel mean is known at the receiver.

We use the notations and
. Also, let be the variances of

and , respectively. The following lemma characterizes
the asymptotic distribution of and .

Lemma 3: In a fading channel with nonzero mean

(14)

as , where

Diag (15)

Moreover

and (16)

where Diag .
Proof: Notice that , where

Observe that and
where

In general, it can be shown that

By the law of large numbers,

. By the multivariate central limit theorem,
. Equation (14) follows from Slutky’s theorem.

To obtain (16), consider

Observe that

and . Thus, we get and .
Equation (16) follows from Slutky’s theorem.

The above lemma indicates that the imaginary component
carries information about only through its co-

variance. For large , the information in is of secondary
importance compared to the information in .
Therefore, we do not expect any loss in asymptotic performance
from an estimator based only on .

The difference between the fading and nonfading channels
is that the given in Lemma 3 is invertible when ,
which was not the case previously (5). For invertible , we have
the following analog of Lemma 2: If the distribution of was
exactly , then its pdf would be

(17)

In the fading channel, we define the estimator as the
minimizing

where is the covariance matrix (15) corresponding to . The
following theorem characterizes the asymptotic performance of
TBMA with this estimator.

Theorem 2: Consider the TBMA scheme over a fading MAC
with nonzero mean. Under regularity conditions on

, the estimator is consistent, and the scaled estimation error
is asymptotically normal

(18)

as .
Proof: See Appendix C.

The theorem says that asymptotically the loss in performance
due to fading is an increase in MSE by a factor of (1 ).

Remark 3: In the proof of Theorem 2, we show the following
more general result which may be of independent interest. Let

be a random vector with distribution a function of and .
For some and a set of invertible matrices

, suppose that

(19)
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for all . Then, under some regularity condi-
tions on and , the estimator minimizing

is consistent and satisfies

(20)

We next consider the case that the channel has circularly
symmetric distribution, i.e., i.i.d. over , where

Uniform and is a real valued random variable with
. Due to the uniform phase, circularly symmetric

channels can be viewed as channels with phase uncertainty.
The phase uncertainty exists in some channels naturally (e.g.,
in Rayleigh fading). More generally, in bandpass wireless
communications, phase uncertainty is created by the phase
difference between the modulator and demodulator clocks and
by the propagation delay [27]. It can be avoided only if the
transmitters’ and the receiver’s clocks synchronize (possibly
via transmitter CSI).

Lemma 4: Consider the TBMA scheme in a channel
with circularly symmetric distribution. The scaled
signal converges in distribution to

Diag .
Proof: A complex random vector is called proper

if .8 We need the following version of cen-
tral limit theorem (CLT): let be i.i.d. zero-mean
proper complex random vectors. If , then

as . This result is
straightforward to deduce from the original CLT [25], when
one views complex random vectors in as elements of .

The are circularly symmetric (
proper) and Diag . Hence, the CLT implies

Diag . The lemma
follows from Slutky’s theorem.

Lemma 4 points out that TBMA does not work in a circu-
larly symmetric channel. That is, Diag and
one expects the asymptotic MSE of any unbiased estimator to
be , where is the Fisher information in

Diag . This also implies that the MSE cannot go to
zero even though . Notice that even the signal scalings
are different for and ; the was defined

for the case , while in the
above lemma.

C. Channel Side Information at the Transmitter

In this section, we consider the fading channel with CSI avail-
able at the transmitter. It is assumed that every node knows its
own channel state and can control its transmission power and
phase as a function of that. In practice, an estimate of channel
gains (i.e., the transmitter CSI) can be obtained in a distributed
way from a pilot tone transmitted by the receiving node.

Suppose that the channel gain of user is where
and are i.i.d. random vari-

ables ( s need not be uniform[0, 2 ]). With the help of trans-
mitter CSI, nodes can control their transmissions to cancel the

8This definition of properness is equivalent to the more conventional one
which says that Y = Y + iY is proper if (Y Y ) = (Y Y ) and
(Y Y ) = � (Y Y ). To see this, notice that (Y Y ) = 0 ,
(Y Y )� (Y Y ) + i[ (Y Y ) + (Y Y )] = 0.

phase and to normalize the gain . That is, let the transmitted
signal by the th node be in TBMA, where

is a power control rule satisfying the energy constraint
.

One possibility for power control is to invert the channel, i.e.,
to set . Channel inversion effectively converts
the fading channel into a nonfading one. Under such a rule, the
results of Section II-A apply, and the asymptotic efficiency is
achieved despite fading. For certain channels (e.g., Rayleigh
distributed s); however, the channel inversion requires infinite
energy . Because of this reason, we shall con-
sider the following, more general class of power control rules:

otherwise

where are constants independent of . Under this
scheme the network performance can be analyzed using the
tools from Section II-B. That is, let be the ef-
fective channel gain of user (i.e., the channel gain seen by the
receiver). Set and Var . Notice that

Var Var

According to Theorem 2, the asymptotic MSE of TBMA with
power control is .

Notice that 1 is greater than or equal to one, which
corresponds to the case without fading (i.e., the best case). A
relevant question is how small can we make 1 with
the choice of while satisfying the energy constraint

. The following lemma states that it can be made
as close to one as possible by choosing and small enough.

Lemma 5:

i) Consider a channel with the property .
Then, the parameters and satisfy

.
ii) Suppose that and . Let

be equal to zero. For any given , choose to satisfy
. Then, as

and

Proof: Part i) is obvious; only part ii) needs to be proved.
Let be the pdf of . For , the power constraint is

. Therefore, as
. Furthermore, observe that

converges to as .
The above lemma says that with transmitter CSI, the best

asymptotic performance can still be achieved despite the ex-
istence of fading (as long as ). We saw in
Section II-B that the phase uncertainty hinders the operation of
TBMA. The results of this section, however, indicate that the
phase uncertainty and, in general, fading issues can be resolved
with the help of transmitter CSI.
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Note that in the nonasymptotic regime (i.e., finite ), the SNR
of the received signal also makes a difference in MSE (the higher
the received SNR, the closer the MSE to the CRB). The received
SNR is proportional to the and in the above power control
scheme. Therefore, the minimizing the MSE for finite
need not be negligibly small as suggested by the above lemma.

III. ASYMPTOTIC PERFORMANCE OF TDMA

Packetization is a common practice in communication net-
work design. The conventional layered architecture suggests
the data to be mapped into a bitstream, transmitted using some
form of modulation, and then received without collisions. In this
section, the asymptotic performance of such an approach (the
TDMA scheme) is considered.

For some , let be vectors in
satisfying (these are viewed as points in a constel-
lation). In TDMA users are allocated nonoverlapping time slots
of length . Every node uses time-shifted versions of the same
set of waveforms in its own slot, i.e., node transmits vector

in the th slot. Notice that the bandwidth requirement
of TDMA linearly grows with the number of users, whereas the
TBMA uses time units irrespective of the number users. We
denote the th received TDMA packet by

(21)

where .
For simplicity, first let us focus on the case that for

all . The random vectors are i.i.d. with Gaussian
mixture density. That is, is distributed
conditional on , and the pdf of is

(22)

From the CRB, the MSE of any unbiased estimator based on
satisfies

where

(23)

is the Fisher information in . Moreover, the ML estimator
based on achieves the MSE asymp-
totically. Hence, the asymptotic performance of TDMA is de-
termined by the Fisher information in each TDMA packet.

An important problem is the choice of constellation. One
ideally would like to maximize in (23) with respect to

to get the best performance. This maximization does
not appear tractable in general. For , however, we have
the following result.

Theorem 3: Let the channel for all . For , the
antipodal constellation maximizes under
the energy constraint .

Proof: Let be any constellation satisfying the
energy constraint. Consider a received TDMA packet

. Invertible mappings of
preserve the Fisher information. First, scale to get

. Then, translate by 2
to have the center of mass at the origin, i.e., , where

Let . Multiply by an
orthogonal matrix (i.e., a rotation matrix) with the first
row ( denotes conjugation). Notice
that and

. Only the first component of conveys
information (i.e., it is a sufficient statistic), and the rest of
can be dropped without any loss in Fisher information. Thus,
we have just shown that without loss of generality, we can focus
on one dimensional, symmetric constellations. Scale the first
component of by to get ,
where . Next, we will show
that maximizes the Fisher information in . Let
denote the corresponding to . Observe that the
for any can be viewed as a degraded version of . That
is, for some
independent of . A result analogous to the data processing
inequality in information theory is that processing of
reduces the Fisher information (irrespective of whether the
processing is random or deterministic) [28, p. 138] Hence, the
theorem follows.

For Bernoulli distributed data and antipodal con-
stellation, and are plotted in Fig. 2. Notice that the
asymptotic MSE of TDMA (1) is significantly higher
than the asymptotic MSE of TBMA at low SNR

. It is also seen that, in terms of asymptotic MSE,
the TDMA is as good as TBMA for SNR dB.

For , we evaluated by Monte Carlo integration for
three types of constellation: binary phase-shift keying (BPSK),
orthogonal s, and the simplex (orthogonal s translated to
have center of mass at the origin, and scaled to satisfy ).
Fig. 3 shows for Poisson truncated at

. The simplex constellation is observed to be marginally
better than the other two at all SNR values.

The discussion for the case that can be extended to
fading channels follows. When the channels are i.i.d.
random, the is distributed conditional
on and . The pdf of can be expressed similar
to (22), where this time the averaging is with respect to both
and . Again, the asymptotic performance is determined by the
Fisher information in .

So far, we have not considered any receiver CSI. In case
the receiver has CSI, the estimation can be done based on

and . The are i.i.d. for
different , and the asymptotic performance is determined by
the Fisher information in . Here, an important
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Fig. 2. Fisher information in TDMA packets (Bernoulli data).

observation is that the pdf of can be decomposed as
, and

(24)

Hence, the Fisher information in fading channels with receiver
CSI is the same as the averaged Fisher information conditioned
on the fading realization. For BPSK, orthogonal , and simplex,
this means that can be obtained by averaging the values
in Fig. 2 with respect to the SNR corresponding to the fading
realization. The can also be viewed as an upper bound to
the Fisher information without receiver CSI.

Finally, we would like to note that the above discussion can
be extended to fading with transmitter CSI by changing by

as defined in Section II-C.

IV. NUMERICAL EXAMPLES

A. Bernoulli Distributed Data

Simulation results for are given in Fig. 4. The curves
are the following.

i) TDMA (antipodal constellation) with the ML estimator
based on .

ii) Direct access ML: the hypothetical case that the esti-
mator has access to s directly.

iii) Asymptotic performance (of TBMA): MSE
predicted by our theory.

iv) TBMA (SNR dB) follows the expected
asymptotic performance closely, whereas TBMA (SNR

dB) reaches the asymptotic limit only at large .

Fig. 3. Fisher information in TDMA packets (Poisson data).

Fig. 4. MSE of TBMA, TDMA, and direct access.

In the TDMA scheme, the ML estimator based on
is not always computationally feasible. For

, we were able to compute it because the likelihood has a
simple, tractable form (22). In case of fading, however, without
the receiver CSI, the likelihood involves an integration with
respect to . This generally makes its computation intractable
and motivates us to find estimators other than the ML estimator.
In Fig. 5, we plot the MSE of TDMA under three different
estimators for .

i) Detect: A hard-decoder (ML detector for
channel symbols) followed by the estimator maximizing

.
ii) Detect MLE: Let be the probability that .

Because of channel errors, the distribution of is

. The estimator maximizes with
respect to the .

iii) MLE: The ML estimator based on .
From Fig. 5, it is seen that these three estimators perform

nearly the same when .
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Fig. 5. Comparison of different estimators for TDMA.

Fig. 6. Rayleigh fading with power control.

We next consider the case that the are
Rayleigh distributed (SNR dB), and each transmitter has
CSI for its own . After trial and error on , we found
that the following power-control rule performs reasonably well:

otherwise

where the parameter is chosen to meet the energy con-
straint . The transmitted signal
is in TBMA and in
TDMA. The performance of these two schemes is given
in Fig. 6. The figure also shows the asymptotic MSE
of TBMA with power control predicted by the theory

. In TDMA, the previously mentioned
detect ML estimator is used, because the ML estimator based
on is not tractable.

In Fig. 7, the TDMA and TBMA schemes are compared
in a Rayleigh fading channel without transmitter CSI (i.e., no
phase/power control). An advantage of Rayleigh channel is

Fig. 7. Rayleigh fading without power control.

that we can express the pdf of the received signal compactly
and apply the ML estimator both for TBMA and TDMA. For
example, in TBMA, the distribution of conditional on is

The orthogonal modulation is used in TDMA. As elaborated in
Section II-B, the MSE of the TBMA method, even with the exact
ML estimator, does not go to zero as . The MSE of
TDMA, however, does go to zero.

V. CONCLUSION

Communication for the purpose of estimation is a central
issue in sensor networks. We studied the problem of parameter
estimation for the case that a large number of sensors each with
limited data and limited transmission energy access a common
channel. We argued that with the use of TBMA significant gains
can be realized in estimation quality and in system resource con-
sumption compared to the conventional architecture allocating
orthogonal channels to sensors. We characterized the asymp-
totic performance of TBMA, and observed that this character-
ization gives reasonably accurate performance estimates even
for finite . Note that the TBMA can also be used in a non-
parametric setting for histogram estimation in case the family

is unknown.
In this paper, we have considered an individual power con-

straint for each sensor. This means that the total energy con-
sumed goes to infinity as the network size grows. Our analysis
can be extended to the network with sum-power constraint in a
straightforward manner.9 For example, if each node has power
constraint and all s are equal to one, then the received
signal satisfies

(25)

9The authors would like to thank the anonymous reviewer who raised this
question.
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where . If we let be 1 times (25),
then by following the steps of Lemma 1, we get

Diag

as . Using the Remark after Theorem 2, it is seen that
the MSE scales as

In case of fading with nonzero mean, the same expression is ob-
tained, where Diag . Surprisingly, despite
the bounded sum-power, the MSE still goes to zero as .
In this regime the asymptotic performance also depends on the
noise power.

In their recent work [29], Liu and Sayeed showed that the
asymptotic detection performance of TBMA is optimal when
all s are identical to deterministic and identical. In particular,
they showed that the error exponents of TBMA in Bayesian hy-
pothesis testing are as if the fusion center has direct access to
data. In [30], we characterized the error exponents for the case
that the sensor channels have i.i.d. fading for an asymptotic ver-
sion of the ML detector.

Some notable future research directions are the following.

• As argued in Section II-B, TBMA fails to deliver the em-
pirical measure when the channel has zero mean. Trans-
mitter CSI can be used to solve this problem. However,
in certain cases (e.g., in case of a mobile receiver), the
channel may vary too fast to be tracked, and it may not be
possible to obtain transmitter CSI. Strategies other than
TBMA are needed for zero-mean fading.

• Another issue is the choice of the estimator for TBMA.
The proposed estimator minimizing is equivalent
to ML estimator for large , and is tractable. However,
for finite , the problem of finding estimators better than
the one proposed seems to deserve further attention.

• Optimal quantization of continuous variables is also im-
portant. One idea is to quantize such that the Fisher infor-
mation in the quantized variable is maximized. However,
the optimal number of quantization levels (possibly, as a
function of ) and the structure of optimal quantizers are
unknown.

APPENDIX

A. Derivation of the Gradient

The distribution family traces a curve in
the -dimensional probability simplex (Fig. 8). For small
perturbations

where

the varies almost linearly along the tangent line

and (26)

where . This property is very important for
us because goes to zero as , and (26) becomes accurate.

Fig. 8. Probability simplex and the parametric family fp : � 2 �g.

Instead of minimizing , one might as well solve for in

(27)

where the approximation is because is much
smaller than for . Substituting (26), one
gets

(28)

where higher order terms with and are neglected.
From the last equation, is obtained as

(29)

Here, is the dominating term in the expansion (13), and we get
. Under the assumption

that is Gaussian with variance

Diag

B. Proof of Theorem 1

Let be the parameter to be estimated. The estimator
observes , where is the empirical
measure and . Let be the minimizing

In this Appendix, we prove the consistency and asymptotic ef-
ficiency of (Theorems 4 and 7, respectively). The proof of
Theorem 7 involves a significant amount of derivation, which



MERGEN AND TONG: TYPE BASED ESTIMATION OVER MULTIACCESS CHANNELS 623

are given as Lemmas 6–9. The proof of the theorem can be read
without reading the proofs of the lemmas.

Let point be identifiable in the following sense:
such that

(30)

i.e., points close in the simplex are also close in . Pictorially,
one can draw a small enough ball around such that

all within the ball satisfies (Fig. 9).
Theorem 4: If satisfies (30), and , then the

estimator is consistent (i.e., ).
Proof: Let denote the set of satisfying

. We need to show that

(31)

for all . Fix , and assume that satisfies (30). We
will argue that such that and

(32)

This is enough for (31), since by Lemma 1 (which
implies ).10 To prove (32), it suffices to show
that small enough such that

Observe

(33)

where the last step is because . Also

(34)

where the last step is because . By choosing
small enough, the theorem follows.
We state the following two theorems, which are standard in

probability theory, without proofs (see [1], [25], and [31]).

10It suffices to show the continuity of �̂ at y = p to establish the theorem.
Equation (32) also proves that �̂ is continuous at y = p .

Fig. 9. Illustration of (30).

Theorem 5: Let be random
-vectors defined on a probability space. Let

be a function continuous at every point of a set such that
.

i) If , then .
ii) If and , then .

Theorem 6 (Slutky’s Theorem): Let
be random variables on a probability space.

Suppose that and , where is a real number.
Then:

i) ;
ii) ;
iii) if .

Result i) holds if the random variables are changed by random
-vectors and . Similarly, ii) is valid when one considers

inner product of two random -vectors.
Theorem 7: Suppose that satisfies the conditions of The-

orem 4 and the following.

i ) contains an interval including .
ii ) is three times continuously differentiable

with respect to .

Then, the estimator is asymptotically efficient, i.e.,

In the following, we shall give a proof of Theorem 7 as-
suming that its conditions are satisfied. We adapt the proof tech-
nique in [32, Proposition IV.D.2]. Define the function

. Since is a minimizer of and is
differentiable, one would expect to have . The fol-
lowing lemma is based on this intuition.

Lemma 6: as .
Proof: For given , the estimate ( minimizer of )

is either inside and satisfies

(35)

or is outside , in which case (35) may not hold since
may be minimized at a boundary point of . Consistency of
implies . The lemma follows.

For the case , one can expand the function around
using Taylor’s theorem

(36)
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where is between and . Equation (36) defines only when
; define when . Rearranging (36)

gives

when

(37)

Lemma 7: .
Proof: Recall that . Direct cal-

culation gives

(38)

Therefore

(39)

The weak law of large numbers gives . Viewing
as a continuous function of , one

gets

(40)

from Theorem 5 i). Recall from
Lemma 1. Applying Theorem 6 ii) by setting

[left-hand side (LHS) of (40) as a vector] and

, we obtain ,
where

...
. . . ...

Lemma 8:
Proof: Differentiate (38) to get

Treating the whole expression as a continuous function of , one
can substitute by its limit [Theorem 5 i)] to get

.

Lemma 9: .
Proof: The estimate is always between and , and

. Therefore, . The is a continuous func-
tion of (we do not give an explicit expression, since it is not
necessary). Therefore, by Theorem 5 i).

The estimator is consistent and (1)/(2) . Since
both and (1)/(2) converge in probability, as a
vector (1)/(2) they converge to
[Theorem 5 ii)]. Multiplication is a continuous function, and
Theorem 5 i) gives the desired result.

Corollary 1:

Proof: Immediate from Lemmas 7–9 and Theorems 5 and
6.

Now, we can finish the proof of Theorem 7. For any

We wish to show that the term in the middle converges to the
cumulative distribution function (cdf) of . How-
ever, since by Lemma 6, it suffices to show that

converges. Note that

(41)

by (37) and

(42)

Since converges to the cdf of (Corol-
lary 1), the theorem follows.

C. Proof of Theorem 2

We will actually give a proof of the more general statement in
Remark 3 (the connection between Theorem 2 and the remark is
provided later by Lemma 10). The proof is a modification of the
one given previously. Let be a set (this can
be visualized as curve in ) and be a set of
invertible matrices. Suppose that is the estimator minimizing

with respect to .
Let point be identifiable in the following sense:

such that

(43)

Theorem 8: Let be invertible and
, where denotes the 2-norm of the

matrix. If satisfies (43), then the estimator is consistent
(i.e., ).
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Proof: Proof of Theorem 4 directly applies when is re-
placed by . Replace the bound (33) by

(44)

and (34) by

smallest singular value of

(45)

Theorem 9: Suppose that satisfies the conditions of
Theorem 8 and the following.

i) contains an interval including .
ii) are three times continu-

ously differentiable with respect to . Then, the estimator
is asymptotically normal and

Under the conditions of the theorem,
is three times continuously differentiable with

respect to for all . Define the function
as before. Lemma 6 holds verbatim. One can expand
using Taylor’s theorem as before, and establish:

i) ;
ii) ;
iii) ;

where . Observe

The LHS term in converges in distribution
to . And, from Slutky’s theorem, the right-hand-
side term converges to zero; this establishes i). One can differen-
tiate further to get plus terms that all contain

. Consequently, ii) holds. Part iii) can be shown similarly.
The proof of Theorem 9 is completed by following arguments
identical to the one in the previous section.

As the following lemma asserts, Theorem 2 follows from
Theorem 9 by substituting and corresponding to
the asymptotic distribution of in the fading channel (see
Lemma 3).

Lemma 10: For the special case that and
Diag , we have

(46)

Proof: Use the Sherman–Morrison–Woodbury formula
[26] to get

where Diag . Substitute this into
1 to get the result.
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