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Abstract— We use the cutoff rate to study the optimal binary
input distributions for the Rayleigh flat-fading channel with
imperfect receiver channel state information (CSI). First, we
evaluate the cutoff rate and analyze the optimal binary input as
a function of the CSI quality and receiver SNR. Next, we study
the limiting distributions – BPSK and On-Off Keying (OOK) –
and derive an analytic design rule that allows adaptive switching
between these two as the receiver CSI changes. We establish the
virtues of a modulation scheme that employs only these limiting
distributions, rather than the full spectrum of binary inputs.
Finally, we use our results to design an adaptive modulation
scheme for Pilot Symbol Assisted Modulation systems. We show
that switching between just BPSK and equiprobable-OOK is
nearly optimal for moderate to large SNR, and that switching
between BPSK and generalized-OOK is nearly optimal for all
SNR.

Index Terms— Adaptive modulation, cutoff rate, correlated
fading, Doppler, imperfect CSI.

I. INTRODUCTION

B INARY input distributions are often assumed when
studying the reliable rates of communications systems,

either through channel capacity or other related metrics.
The widespread analysis of binary inputs follows from their
tractability and optimality, or near optimality, at low SNR
under varying amounts of receiver channel state information
[2], [34], [19]. We consider reliable rates (i.e., those for which
the probability of decoding error can be made arbitrarily small)
for communications over a discrete-time Rayleigh flat-fading
channel. We assume that the transmitter can select among
the class of binary input distributions, and that imperfect (or
partial) channel state information (CSI) is available at the
receiver.

When perfect receiver CSI is available, it is well known
that antipodal signaling (BPSK) maximizes the capacity of this
channel (among binary inputs). Conversely, without CSI at the
receiver, On-Off keying (OOK) has been shown to be capacity
achieving [2]. However, when only imperfect receiver CSI is
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available, it is not clear as to which strategy, even among these
two, is optimal. In this paper, we investigate this intermediate
case.

We use the cutoff rate Ro to characterize reliable rates.
Cutoff rate analysis has been common since its reintroduction
in [26], and studies have been conducted for perfect receiver
CSI in [21] (independent fading), [23] and [27] (temporally
correlated fading), and for no CSI multiple-input multiple-
output (MIMO) systems in [18]. The cutoff rate is a lower
bound on capacity that also provides a bound on the random
coding exponent (thereby characterizing the entire rate vs.
performance curve) via Pe ≤ 2−N(Ro−R), where R is the
rate, and Pe the probability of decoding error for length
N codewords [13],[30, Sections I and II]. Although certain
encoding-decoding structures can achieve rates greater than
Ro (e.g., turbo coding with iterative decoding), the cutoff
rate remains a metric of interest for these systems, as well
as others [6]. For example, in sequential decoding, the cutoff
rate specifies the largest rate for which decoding complexity
remains finite [4]. The cutoff rate often leads to a tractable
analysis that often would not be possible through direct
evaluation of the random coding exponent or the capacity.

In Section II we introduce a Rayleigh fading channel with
imperfect receiver CSI and find the corresponding cutoff rate
under binary signaling. Our model has been abstracted away
from the particular estimator used. Rather, these mechanics
are absorbed into a single parameter, the normalized variance
of the channel estimate, termed the CSI quality. In Section III,
we analyze the optimal binary input as a function of the SNR
and CSI quality available at the receiver. We establish the
cutoff rate optimality of the limiting distributions – BPSK and
On-Off Keying – and find an analytic design rule that allows
adaptive switching between these two based on the receiver
CSI quality. We then establish the virtues of a modulation
scheme that employs only these limiting distributions, rather
than the full spectrum of binary inputs. In the remaining
sections, we introduce an explicit Pilot Symbol Assisted
Modulation (PSAM) front-end, and use it to illustrate how
results from Sections II and III can be applied to design
an adaptive modulation scheme. In Section IV we include
temporal correlation in the channel model, and find the cutoff
rate under a PSAM scheme with minimum mean square error
(MMSE) estimation. In Section IV-C, we discuss adaptive
modulation strategies and show that switching between just
BPSK and equiprobable-OOK nearly achieves optimal binary
signaling for moderate (≈ 0 dB) to large SNR. Further, we
show that switching between just BPSK and generalized-OOK
is nearly optimal for all SNR. Finally, we provide a summary
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and discussion in Section V.
In this paper, we do not consider the design of higher order

inputs (which has been done in [2], [19], [10], and [34] for
the capacity) or optimal inputs when the channel is peak-
constrained (e.g., see [30], [31]). Here, we use the cutoff rate
to (i) study the behavior of the optimal binary inputs when
only imperfect CSI is available, and (ii) apply this analysis
to the design of a tractable adaptive modulation scheme for
PSAM based communications systems.

Notation and Definitions

We use the following notation and definitions: (a) x ∼

CN (μ, σ2
)

denotes a complex Gaussian random variable x
with mean μ and with independent real and imaginary parts,
each having variance σ2/2, (b) |A| is the magnitude of the
complex number A, (c) E [.] is the expectation operator, and
(d) superscript “H” denotes complex conjugation.

II. SYSTEM MODEL

A. Channel Model

We consider single-user communications over a time-
varying Rayleigh flat-fading channel. The received signal yk
is given by

yk =
√
E hksk + nk, (1)

where k denotes discrete time, hk ∼ CN (0, σ2
h) models

independent and identically distributed (i.i.d.) fading, E is
the average symbol energy used at the transmitter, and nk ∼

CN (0, σ2
N ) models additive white Gaussian noise (AWGN).

The binary channel input sk ∈ {A,−B} is assumed to be
real-valued, without loss of generality, and subject to a unit-
energy constraint pA2 + (1 − p)B2 = 1, where 0 ≤ p ≤ 1 is
the probability of transmitting A. Without loss of generality,
we assume that 1 ≤ A ≤ ∞ and 0 ≤ B ≤ 1. We assume that
σ2
N �= 0 and σ2

h �= 0.
During each symbol interval, the receiver obtains imperfect

CSI in the form of a channel estimate, ĥk, and so (1) can be
rewritten,

yk =
√
E ĥksk +

√
E h̃ksk + nk,

where h̃k = hk − ĥk is the residual error in the channel
estimate. We assume that both the estimate and the residual
error are zero-mean Gaussian and independent, i.e., ĥk ∼

CN (0, σ̂2), h̃k ∼ CN (0, σ̃2), and σ̂2 + σ̃2 = σ2
h. MMSE

estimation schemes exist that satisfy these assumptions, and
we describe one such PSAM-based scheme in Section IV.
However, this information is not needed for the discussion
contained in this section or in Section III.

The receiver employs the soft decision ML decoder which
treats sk as the channel input and the pair (yk, ĥk) as the
channel output. That is, letting s = (s1, . . . , sN ) denote
a transmitted codeword, and y = (y1, . . . , yN) and ĥ =
(ĥ1, . . . , ĥN ) denote the observation and channel estimate
during the span of a codeword, the decision rule maximizes
the posteriori probability of the observation,

max
s ∈ Q

P ( y, ĥ | s),

where Q is the set of all possible length N input sequences.
Lastly, we will find it useful to define the CSI quality as the
normalized variance of the channel estimate at the receiver,

ω � σ̂2/σ2
h.

Note that ω = 0 denotes no CSI, while ω = 1 denotes perfect
CSI.

B. Cutoff Rate

The cutoff rate, measured in bits per channel use, is [26]
(also see [23] for time-selective fading channels with perfect
receiver CSI),

Ro = −min
Q

log2

∫
yk

∫
�hk

[ ∑
sk∈{A,−B}

Q(sk)

×
√
P (yk, ĥk | sk)

]2

dĥk dyk,

(2)

where Q(A) = p , Q(−B) = 1− p , and where P (yk, ĥk|sk)
is the probability distribution function (pdf) of the received
signal and channel estimate, conditioned upon the transmitted
signal.1 We evaluate (2) in Appendix A and obtain

Ro = − min
C(p,A,B)

log2

[
1 + 2p (1− p)

×
(√

1 + κ (1− ω)A2
√

1 + κ (1− ω)B2

1 + κ
2

(
1− ω

2

)
(A2 +B2) + κ ω

2 AB
− 1

)]
, (3)

where C(p,A,B) � {(p,A,B) : 0 ≤ p ≤ 1, 1 ≤ A <
∞, 0 ≤ B ≤ 1, pA2 + (1 − p)B2 = 1} is the constraint set
on the input. We have defined the received SNR as

κ � E
σ2
h

σ2
N

.

III. OPTIMAL BINARY INPUTS

The optimal binary input (p∗, A∗, B∗) as a function of the
CSI quality ω and SNR κ is found from (3) through the
minimization

min
C(p,A,B)

p (1− p)

×
(√

1 + κ (1− ω)A2
√

1 + κ (1− ω)B2

1 + κ
2

(
1− ω

2

)
(A2 +B2) + κ ω

2 AB
− 1

)
. (4)

The behavior of the this input is shown in Fig. 1 parameterized
by ω.

Define the transitional CSI quality by

�
ω � 1− 1√

3
. (5)

Then the behavior of the optimal binary input is characterized
by the following statements:

R1. For small SNR (κ << 1) : If the CSI quality is below
the

�
ω threshold (ω <

�
ω), then a solution resembling

1Here, the term cutoff rate implies optimization over the inputs. Later, it
will imply certain fixed inputs.
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(d) Ro vs. κ for several values of ω

Fig. 1. The optimal binary input (p∗, A∗, B∗) and cutoff rate Ro versus SNR κ for several values of CSI quality ω. The quantity ε � 0.01 is used to
illustrate behavior around the ω =

�
ω transition point discussed in the text.

OOK with large amplitude is optimal. As κ → 0,
limp→0 OOK(p) is optimal.2 However, if the CSI quality
exceeds the

�
ω threshold (ω >

�
ω), the optimal distribution

is BPSK, A = B = 1, p = 1/2. Proofs are given in
Appendix B.

R2. For large SNR (κ >> 1): If ω <
�
ω, then from Fig. 1,

A∗ decreases with SNR to the value
√

2. If ω >
�
ω, A∗

remains fixed at 1 before diverging from the BPSK solu-
tion with increasing SNR. After divergence, A∗ increases
in SNR, reaches a peak, and then also decreases to the
value

√
2. As SNR → ∞, OOK(1/2) is shown to be

optimal for any CSI quality (ω �= 1) in Appendix B.
R3. The optimal transmission probability satisfies p∗ ≤ 1/2.

A sketch of the proof follows: let I1 � (p, A1, B) be an
arbitrary triple with p > 1/2. We show that the alternative

solution I2 � (1−p, A2, B), where A2 =
√

1−pB2

1−p due
to the energy constraint results in a smaller value of (4).

2Henceforth, we will use OOK(pθ) to denote the binary alphabet with
p = pθ, A = 1/

√
pθ , and B = 0.

That
�
ω = 1−1/

√
3 is the low SNR (κ→ 0) transition value

is shown in Appendix B. However, the cutoff rate can be seen
to be well behaved around ω =

�
ω in Fig. 1(d). In Fig. 2, we

plot the optimal input parameterized by the SNR κ. Again,
the presence of the

�
ω threshold at low SNR is evident.

Having examined the general behavior of the optimal binary
input, we now focus on the limiting cases of OOK and BPSK.

A. OOK Cutoff Rate

The cutoff rate of OOK was derived for the AWGN channel
and hard decision ML decoder in [15]. Here, we derive the
OOK cutoff rate for the fading channel with imperfect CSI
and soft decision ML decoder. Consider first the no CSI case
(ω = 0). We find that OOK(p) modulation maximizes the
cutoff rate at all SNR κ (as shown in Appendix C), and so it
remains to determine p∗. Setting A2 = 1

p , B = 0, and ω = 0
in (4), p∗ is given by

p∗ = min
0<p< 1

2

p(1− p)
⎡
⎣
√

1 + κ 1
p

1 + κ 1
2p

− 1

⎤
⎦
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Fig. 2. The optimal binary input (A∗, p∗) versus 0 ≤ ω ≤ 1 for several values of SNR κ.
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Fig. 3. The optimal OOK probability p∗ versus (a) SNR κ (dB) and (b) CSI quality.

=

{
p : 0 ≤ p ≤ 1

2
, 2(κ + 1)p4 +

(
11κ2

4
+ κ− 1

)
p3

+
(
κ3 − 3κ2

2
− κ

)
p2 − κ3p+

κ3

4
= 0

}
. (6)

Solving (6) yields p∗ explicitly (as the valid root of the fourth-
order polynomial), and provides an easy characterization of
the optimal transmission probability (equivalently, the optimal
signal energy) as a function of the SNR.

At low SNR (κ	 1), the transmission probability is linear
in SNR, i.e., p∗ = β κ, where

β � (19 + 3
√

33)
2
3 − 2(19 + 3

√
33)

1
3 + 4

6(19 + 3
√

33)
1
3

= 0.419 . . . . (7)

Returning now to the case of partial CSI, (3) yields the
OOK cutoff rate for arbitrary ω as

Ro,K = − min
0<p<1

log2

[
1 + 2p(1− p)

×
⎛
⎝
√

1 + κ(1− ω) 1
p

1 + κ (2− w) 1
4p

− 1

⎞
⎠]. (8)

Analytic maximization of (8) over p leads to a high-order
polynomial that does not have an explicit solution as a function
of κ and ω. We plot p∗ as a function of κ in Fig. 3(a) and as a
function of ω in Figure 3(b). It can be verified that as κ→∞,
p∗ → 1/2, and that as κ → 0, p∗ → 0. The transmission
probability p∗ is seen to be non-monotonic in ω at low SNR. A
second-order Taylor series expansion of the expression within
the curly brackets in (8) at κ = 0, yields (ω �= 0)

p∗ = arg min
0<p<1

−κ(1 − p) [4 p ω + κ(3ω2 − 6ω + 2)
]

16p
,

from which we get

p∗ =
√

κ
2

√
−2 + 6ω − 3ω2

w
for ω >

�
ω, (9)
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which is decreasing for ω ∈ (
√

2/3, 1).3 As κ increases, the
amplitude A∗ decreases (since A2 = 1

p ). From Fig. 3, we see
that for fixed κ, the amplitude A∗ is a decreasing function
of ω. For moderate to large values of κ, letting p = 1/2
is a reasonable approximation to p∗. Using p = 1/2, the
equiprobable-OOK cutoff rate is found to be

Ro,K = − log2

{
1
2

+
1
2

[√
1 + 2κ(1− ω)

1 + κ
(
1− w

2

)
]}

. (10)

In Fig. 4, we plot Ro,K for p = p∗ (solid lines) and p = 1/2
(dashed lines) for no CSI (ω = 0), perfect CSI (ω = 1), and
imperfect CSI (ω = 0.8). Note that the cutoff rate of both
OOK( 1

2 ) and OOK(p∗) approaches 1 at high SNR for any ω.

B. BPSK Cutoff Rate

Consider the case of perfect CSI. We let ω = 1 in (4), which
leads readily to the BPSK solution, A = B, and p = 1/2. For
arbitrary ω, the cutoff rate of BPSK is

Ro,B = − log2

{
1
2

+
1
2

[
1 + κ(1− ω)

1 + κ

]}
. (11)

Fig. 5 shows the cutoff rate as a function of the received
SNR κ and the CSI quality ω. Note that the CSI quality
imposes an asymptotic ceiling on Ro,B , and that at high SNR,
the cutoff rate saturates to

Ro,B = − log2

{
1− ω

2

}
.

As expected, the cutoff rate is zero when there is no CSI.
To study the relative impact of imperfect CSI on BPSK and

OOK, it is instructive to consider the statistics of yk under the
two hypotheses:

yk|ĥk, sk ∼ CN
(√

E ĥksk, σ
2
N (1 + s2k κ(1− ω))

)
,

3A third-order Taylor expansion yields an expression for p∗ that is valid
for all ω; it is omitted for brevity.
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Fig. 5. The BPSK cutoff rate Ro,B vs. SNR κ (dB) for different values of
the CSI quality ω.

where sk ∈ {−1, 1} for BPSK and sk ∈ {0,
√

2} for
OOK(1/2). When the SNR is large enough, i.e., κ 
 1

1−ω ,
the channel estimation error dominates, and it is easy to verify
that the BPSK performance saturates.

Thus, we expect that OOK is optimal at large κ, and that
BPSK is optimal for small κ. Next, we quantify the SNR at
which one should switch from BPSK to OOK as a function
of estimator quality ω.

C. Transitional SNR

We confine our interest to BPSK (optimal for perfect CSI)
and OOK (optimal for no CSI) and provide the transitional
SNR

�
κ, above which OOK is optimal, and below which BPSK

is optimal. This result provides an initial characterization of
the intermediate region where imperfect CSI is available, and
provides an analytic basis for an adaptive modulation scheme
in which the transmitter can select between OOK and BPSK
based on the SNR κ and CSI quality ω available at the
receiver as described in subsequent sections. For OOK(1/2),
the transitional SNR

�
κ is found by equating (11) and (10) and

solving for κ. Doing so yields the solution

�
κ(ω) =

{
κ : κ ≥ 0,

(2− ω)2(1− ω)2

4
κ3 − (1− ω)

2

×
[
(10− 3ω)ω − 4

]
κ2 +

(
13ω2

4
− 5ω + 1

)
κ− ω = 0

}
,

for which the explicit solution is

�
κ(ω) =

(a+ b)1/3 + (a− b)1/3 − 2
(
4− 10ω + 3ω2

)
3(2− ω)2(1 − ω)

,

(12)
with the definitions

a � 81ω6 − 468ω5 + 828ω4 − 640ω3 + 624ω2 − 192ω + 64,

b � 6
√

3(ω − 2)2w2
√

61ω4 − 208ω3 + 168ω2 − 64ω + 16.

The transitional SNR
�
κ depends on the CSI quality, and is

shown in Fig. 6 (dashed line). At the end points, ω = {0, 1},
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we find the anticipated results:
�
κ (0) = 0, implying that

equiprobable-OOK is preferred to BPSK at any SNR when
no CSI is available, and limω→1

�
κ(ω) = ∞, implying that

BPSK is preferred to equiprobable-OOK when perfect CSI is
available.

In Fig. 6, we repeat the threshold curve for OOK(p∗) (solid
line). To find this region we equate (11) and (8) and solve
for

�
κ numerically. As expected, optimizing over p results in

OOK(p) being preferred to BPSK over a wider range of SNR
for fixed ω. Interestingly, we find that there is a threshold
value of CSI below which BPSK is not useful. A low SNR
analysis once again reveals this value to be

�
ω= 1− 1/

√
3.4

D. Adaptive Modulation Based on CSI Quality

The performance of the adaptive modulation schemes de-
scribed in Section III-C is shown in Fig. 7. As upper and
lower bounds, we plot the cutoff rate of optimal binary
signaling (determined from (4)), and for the BPSK–only and
OOK( 1

2 )–only schemes when κ = 0 dB. Each curve has been
normalized by the cutoff rate of optimal binary signaling.
The OOK( 1

2 )–BPSK scheme simply traces out the best of
the BPSK and OOK cutoff rates. The BPSK–only scheme
performs arbitrarily poorly for small ω (as expected due to
its saturating behavior at large SNR, see Fig. 5), while the
OOK( 1

2 )–only scheme is seen to be suboptimal by up to ∼ 40
percent for large values of ω. In contrast, the OOK(p∗)–BPSK
scheme performs nearly as well as optimal binary signaling
over the entire range of ω. To understand this behavior, we
partition the (κ, ω) plane into three regions in Fig. 8: (a) the
region where BPSK is within one-percent of optimal, (b) the
region where OOK(p∗) is within one-percent of optimal, and
(c) the remaining region.5 Over most of the (κ, ω) plane, we

4This reoccurrence of
�
ω is to be expected. Earlier in this section we found

that, among all binary inputs, only OOK(p∗) or BPSK is optimal at low SNR.
5While BPSK is optimal over a (κ, ω) region, OOK is optimal only on

a line (from Fig. 1). This necessitates the use of optimality regions in the
figure.
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Fig. 7. The normalized cutoff rate for the Rayleigh flat-fading channel with
imperfect CSI as a function of the CSI quality ω, and for five different binary
transmission strategies with κ = 0 dB.
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where BPSK is within one-percent of optimal, (b) where OOK(p∗) is within
one-percent of optimal, and (c) the remaining region.

see that either BPSK or OOK(p∗) is indeed nearly optimal.
Comparing Fig. 8 to Fig. 6, we find that BPSK retains nearly
its entire optimality region even when arbitrary binary inputs
are admitted. In contrast, OOK(p∗) loses a portion of its
optimality region in this scenario. In particular, the region
loosely described by {(κ, ω) : −20 dB ≤ κ ≤ 10 dB, 0.2 ≤
ω ≤ �

ω} is now allocated to region (c).

E. Sensitivity Analysis

We study the sensitivity of the cutoff rate to the binary input
used for four limiting cases: (a) large κ (κ = 30 dB), large ω
(ω = 0.95) (b) small κ (κ = −10 dB), large ω, (c) large κ,
small ω (ω = 0.1), and (d) small κ, small ω.

Largeω. For large κ, the cutoff rate is sensitive to the choice
of p, but not to the choice of B. For example, with B = 1,
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the cutoff rate increases more than 300 percent as p increases
from 0.1 to 0.5. On the other hand, with p = 0.4, the cutoff
rate increases by only 4 percent as B varies from 0 to 1. For
small κ, the cutoff rate is sensitive to choice of both p and
B. For example, with B = 1, the cutoff rate increases by 280
percent as p increases from 0.1 to 0.5. With p = 0.5, the
cutoff rate increases by a factor of approximately 200 percent
as B varies from 0 to 1.

Small ω. At both small and large κ, the cutoff rate is
sensitive to the choice of B when p is chosen optimally. When
p is chosen suboptimally, sensitivity decreases. For example, at
small κ the cutoff rate increases by 400 percent as B increases
from 0 to 1. At large κ, the increase is 800 percent. In each
case, sensitivity to B diminishes if p is chosen suboptimally.
Overall, it is clear that optimization can provide large gains
in the cutoff rate.

IV. ADAPTIVE MODULATION SCHEME FOR PSAM

In this section we consider a temporally correlated flat-
fading channel and apply the results derived in Section III, in
particular those of Section III-C, to the design of an adaptive
modulation scheme for PSAM-based communications. We
then analyze the performance of the proposed scheme relative
to some clear alternatives.

In PSAM [8], [32], known pilot symbols are multiplexed
with data symbols for transmission through the communica-
tions channel. At the receiver, knowledge of these pilots is
used to form channel estimates, which aid the detection of
the data both directly (by modifying the detection rule based
on the channel estimate) and indirectly (e.g., by allowing
for estimate-directed modulation, power control, and media
access). In general, there is no guarantee that PSAM-based
approaches are optimal, and PSAM has been shown to be
suboptimal when the channel coherence time is small and/or
the SNR small from various perspectives [17], [25], [2], [11].
Nevertheless, the technique is of great practical significance.
In addition to providing implementable receiver structures,
PSAM facilitates accurate timing and synchronization. PSAM
has been incorporated into many commercial and Military
standards, and optimized approaches to PSAM have been
studied from the perspectives of frequency and timing offset
estimation [22], [14], bit-error rate (BER) [8], [11], [7], [12],
and the channel capacity or its bounds [17], [3], [24], [29].

A. System Model

We generalize the Rayleigh fading channel of (1) to include
temporal correlation. The observation equation is

yk =
√
Ehksk + nk,

where hk ∼ CN
(
0, σ2

h

)
now exhibits temporal correlation

described by the normalized correlation function Rh(τ) �
1
σ2

h
E [hkhHk+τ ]. We assume that training is sent with period

T at times k = mT,m ∈ Z and that smT = +1. In each
data slot mT + � (1 ≤ � ≤ T−1), an MMSE estimate of the
channel ĥmT+� is made at the receiver using some subset N
of past and future training symbol observations, so that

ĥmT+� = E [hmT+�|{ynT }, n ∈ N ⊆ Z], (13)

1 ≤ � ≤ T−1, m ∈ Z . The system equation in the mth frame,
i.e., mT ≤ k ≤ (m+ 1)T − 1, is then

yk =

{√
E hmT + nmT , (pilot),√
E
(
ĥmT+� + h̃mT+�

)
smT+� + nmT+� (data).

(14)
The use of an MMSE estimator implies that the estimate
ĥmT+� and the estimation error h̃mT+� are zero-mean,
jointly Gaussian, and independent with variances σ̂2

� and
σ2
h − σ̂2

� , respectively; ĥmT+� ∼ CN (0, σ̂2
�

)
and h̃mT+� ∼

CN (0, σ2
h − σ̂2

�

)
. To characterize the partial CSI provided by

the estimator � slots from the last-pilot, we define the CSI
quality in the �th slot

ω� � σ̂2
� /σ

2
h, (15)

for � = 1, . . . , T−1. The CSI quality ω�, 0 ≤ ω� ≤ 1, captures
the impact of the channel correlation Rh(τ), estimator N , and
SNR κ on the statistical quality of channel estimates at the
receiver. The variance of any estimator can be found by noting
that, ĥmT+� is the expected value of one Gaussian vector
conditioned upon another. The CSI quality is then readily
obtained via (15).

Given the periodic nature of the training, it is natural to
let the binary signaling scheme vary from data slot to data
slot, with period T . Therefore, defining [k] � k mod T , we
allow the input sk to be selected from a real-valued binary
signal set S[k] = {A[k],−B[k]} subject to a unit average-
energy constraint: p[k]A

2
[k] + (1 − p[k])B2

[k] = 1, where p[k]

is the probability of transmitting A[k] (note that S0 = {+1}).
We assume that A[k] and B[k] are real-valued, and that 1 ≤
A[k] < ∞ and 0 ≤ B[k] ≤ 1. Finally, we assume that
codewords can occur in integers multiples of a frame length,
i.e., N = n(T−1), n = 1, 2, . . . , and are decoded using the
ML decoder which treats s1, . . . , sT−1 as the channel input
and the pair (ĥ1, . . . , ĥT−1 ; y1, . . . , yT−1) as the channel
output.

We consider a system in which perfect interleaving [5], [23],
[27] is performed at the transmitter and channel estimation is
performed before deinterleaving at the receiver. The system
equation under interleaving is still given by (14), but now
hk ∼ CN

(
0, σ2

h

)
and nk ∼ CN

(
0, σ2

N

)
are i.i.d. sequences

representing the interleaved channel and noise. Interleaving
implies that ĥk and h̃k are independent sequences in k and
with respect to each other. However, the marginal statistics of
the channel estimate and estimation error are preserved, i.e.,
ĥmT+� ∼ CN (0, σ̂2

�

)
and h̃mT+� ∼ CN (0, σ2

h − σ̂2
�

)
.

B. Cutoff Rate

In [28], we have previously studied the cutoff rate of
a PSAM communications system. Under the assumption of
perfect interleaving, and by modification of the proof in [28]
to the case of generalized binary inputs, the cutoff rate of the
system of Section IV-A can be seen to be given by

Ro = − 1
T

T−1∑
�=1

min
C�(p,A,B)

log2

[
1 + 2p� (1−p�)
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×
(√

1 + κ (1− ω�)A2
�

√
1 + κ (1− ω�)B2

�

1 + κ
2

(
1− ω�

2

)
(A2

� +B2
� ) + κ ω�

2 A�B�
− 1

)]
,

(16)

where C�(p,A,B) � {(p�, A�, B�) : 0 ≤ p� ≤ 1, 1 ≤ A� <
∞, 0 ≤ B� ≤ 1, p�A2

� + (1−p�)B2
� = 1} is the constraint set

on the �th input.
Comparing the cutoff rate of the i.i.d. channel (3) to that of a

PSAM system operating over the temporally correlated fading
channel under interleaving (16), it is clear that the latter can be
interpreted as consisting of T−1 parallel data-channels, where
the �th channel consists of all data slots occurring � positions
after the most recent pilot. The �th (1 ≤ � ≤ T − 1) term
in the sum of (16) represents the cutoff rate in one of T−1
data channels, with CSI quality ω� and SNR κ. Therefore,
letting ω = ω�, we can apply the analysis given in Section III
on a per-channel basis. This motivates design of a PSAM
system in which the optimal binary distribution (A∗� , B

∗
� , p
∗
� )

is used in each data channel. Next, we combine the cutoff rate
(16) with the optimal input analysis of Section III to design
adaptive modulation schemes in which the transmitter selects
the modulation in each data slot based on the partial CSI ω�
and SNR κ at the receiver.

C. Adaptive Modulation Scheme

Adaptive transmission techniques for fading channels have
been well studied in the literature (e.g., see [7], [16], [9],
and the references therein). Typically, a subset of the key
transmission parameters – power, rate, modulation shape and
size, and bandwidth – is adapted based on some instantaneous
measure of the channel quality, which may determined by
the fading, noise, or interference level at the receiver. This
knowledge is typically provided to the transmitter via a feed-
back link, which introduces its own noise and/or delay to the
process. However, when PSAM is employed over continuously
time-varying fading channels, the transmitter need not adapt
to instantaneous channel quality measurements, since it can
adapt instead to the statistical quality of the channel estimates
– which varies with the estimate’s position relative to pilot
symbols. Further, if the transmitter has knowledge of the
channel Doppler spectra, Rh(τ), it can compute this statistical
quality without requiring explicit feedback.

In [1], this methodology is proposed and used to charac-
terize PSAM-based achievable rates for the Gauss-Markov
correlation model. An adaptive binary modulation scheme
was proposed in which the transmitter selects the achievable
rate optimal binary input in each data slot. It was shown
that adaptive modulation provides significant gains in the
achievable rates relative to static modulation when the channel
fading is slower and/or the estimator more accurate. Here,
we consider an adaptive binary modulation scheme based on
the cutoff rate. Our aim is to compare the performance of
the simple two-distribution modulation techniques derived in
Section III-C to optimal binary signaling (from Section III).
Specifically, we propose:

C1. The OOK( 1
2 )–BPSK adaptive system in which

equiprobable-OOK is used in each sub-channel
where it is preferred to BPSK, and where BPSK is

used otherwise. Denote the cutoff rate of this system
by RHYB1. This scheme is implemented through the
analytic switching rule derived in (12).

C2. The OOK(p∗)–BPSK adaptive system in which
generalized-OOK is used in each sub-channel where
it is preferred to BPSK, and where BPSK is used
otherwise. Denote this cutoff rate by RHYB2. This
scheme is implemented using the solid curve shown
in Fig. 6. In practice, this curve can be implemented
in hardware at low cost.

As benchmarks, we compare the performance of our
schemes to:

C3. Optimal binary signaling, in which each data slot is
assigned the cutoff rate optimal binary input as deter-
mined from (4). This will be computed numerically.
Denote the cutoff rate of this system by RBIN. This
scheme provides an upper bound on the performance
of C1 and C2.

C4. The BPSK–only system. Denote the cutoff rate of
this system by RBPSK. This scheme provides a lower
bound on the performance of C1 and C2.

C5. The OOK( 1
2 )–only system which uses OOK( 1

2 ) in
each sub-channel. Denote the cutoff rate of this
system by ROOK. This scheme also provides a lower
bound on the performance of C1 and C2.

We show that our adaptive modulation scheme, based on
switching between just two inputs6, captures the optimality
of scheme C3 over a wide range of SNR, while requiring a
fraction of the complexity.

Simulation. We consider two estimators (see [28],[1]): The
causal (1,0) estimator N = {m}, for which

ω
(1,0)
� =

∣∣R2
h(�)

∣∣ κ
1 + κ

,

and the non-causal (1,1) estimatorN = {m,m+1}, for which

ω
(1,1)
� =

(κ2 + κ)
(
|Rh(�)|2 + |Rh(T−�)|2

)
(κ + 1)2 − κ2|Rh(T )|2

−
2κ2 Re

{
Rh(�) Rh(T−�) R∗h(T )

}
(κ + 1)2 − κ2|Rh(T )|2 ,

where Re {.} denotes the real part. We assume that the channel
correlation is described by the well-known Jakes model [20],
for which Rh(τ) = Jo(2πfDTDτ), where Jo(.) is the zeroth-
order Bessel function of the first kind, and where fDTD is the
normalized Doppler spread. We let fDTD = 1/50, and T = 7.
Fig. 9(a) plots the cutoff rate versus SNR (dB) for each of
the schemes C1-C5 for the (1,0) estimator (each curve has
been normalized by the cutoff rate of optimal binary signaling,
scheme C3). Note that:

R4. For small SNR, BPSK outperforms OOK( 1
2 ). At high

SNR, the reverse is true.
R5. The performance of the OOK(p∗)–BPSK adaptive strategy

is nearly identical to that of optimal binary signaling.

6Note that this switching may be oscillatory, e.g., producing an BPSK–
OOK–BPSK or OOK–BPSK–OOK behavior, if ω� is non-monotonic in �.
This may be the case if the channel correlation Rh(τ) is non-monotonic
and/or a noncausal estimator is used.
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Fig. 9. The (normalized) cutoff rate of PSAM when using the (a) (1,0) or (b) (1,1) estimator for five different binary transmission strategies. Parameters:
Rh(τ) = Jo(2πfDTDτ), fDTD = 1/50, and T = 7. All curves are normalized to the range [0, 1] by the optimal binary input, which is not plotted
explicitly.

Therefore, using only two types of inputs, BPSK and
the OOK family, is nearly optimal.

R6. Limited to the OOK( 1
2 )–BPSK scheme, performance is

nearly identical to optimal binary signaling for moderate
to high SNR. This implies that nearly optimal trans-
mission can be achieved even under transmitter peak-
to-average power ratio (PAPR) constraints, simply by
switching between two constellations when the SNR is
moderate to large (in this example, k ≥ 2 dB).

In Fig. 9(b) we repeat the analysis for the (1,1) estimator.
This estimator provides at least the CSI quality of the (1,0)
estimator, implying that BPSK will be preferred to OOK in at
least as many data slots.7 Here, we find that BPSK is preferred
to OOK in every data slot. Note that for SNR greater than −2
dB, the optimality of scheme C3 is captured by the simple
OOK( 1

2 )–BPSK adaptive scheme.

V. DISCUSSION

We have studied cutoff rate optimal binary inputs for the
Rayleigh flat-fading channel with imperfect receiver CSI.
First, we evaluated the cutoff rate for i.i.d. fading (3), and
analyzed the optimal binary input as a function of the CSI
quality and SNR at the receiver (summarized in remarks R1-
R3). It was seen that there exists a CSI quality threshold,
�
ω, which characterizes the phase transition in the optimal
input versus the CSI quality at low SNR. Next, we considered
the limiting distributions – BPSK and OOK. Under OOK,
Equations (6), (7), (9) show that the cutoff rate provides a
simple characterization of the probability versus location of
the non-zero mass point as a function the CSI quality and
SNR. We derived a transitional SNR

�
κ (see (12) and Fig. 6)

that enables adaptive switching between these distributions
based on the CSI quality, and have shown that this scheme is
nearly optimal. Next, we applied our results to adaptive mod-
ulation design in PSAM communications over a temporally

7A similar conclusion holds for any estimator that provides uniformly as
good or better CSI quality than a simpler one.

correlated channel. We have shown that switching between
just BPSK and equiprobable-OOK nearly achieves optimal
binary signaling at moderate (≈ 0 dB) to large SNR, and
that switching between BPSK and generalized-OOK is nearly
optimal at all SNR.

While explicit expressions for the optimal transmission
probability, such as (6), (7), and (9), are not readily available
in a capacity analysis, similar trends have been observed [2].
Explicit expressions for the transitional SNR or CSI quality as
defined here do not readily follow for the mutual information,
and may not exist (given the sometimes drastically different
behavior of these two metrics, e.g., see [27]). As has been
previously noted in various contexts for the capacity, we have
found an extreme form of “peaky" OOK to be cutoff rate
optimal at low SNR when no CSI is available (and as long as
the CSI remains below the

�
ω threshold).

We have restricted our attention to binary inputs. However,
even at low SNR, binary inputs are not second-order optimal
[33], and a study of optimal higher order inputs for imperfect
CSI may be of interest.

APPENDIX

A. DERIVATION OF THE CUTOFF RATE, EQUATION (3)

Define S � {A,−B} and omit the subscript k for brevity.
Starting from (2), we get∫
y

∫
�h

[∑
s∈S

Q(s)
√
P (y, ĥ | s)

]2

dĥ dy

=
∑∑
v,w∈ S

Q(v)Q(w)E
�h

[∫
y

√
P (y|v, ĥ)P (y|w, ĥ)dy

]
.

Note that y|v, ĥ ∼ CN
(√

Eĥv,Eσ̃2v2 + σ2
N

)
and similarly

for y|w, ĥ. Thus, we get∫
y

√
P (y|v, ĥ)P (y|w, ĥ) dy= exp

[
−1

4
E|ĥ|2 (v − w)2

Eσ̃2
(
v2+w2

2

)
+ σ2

N

]
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×
√
Eσ̃2v2 + σ2

N

√
Eσ̃2w2 + σ2

N

Eσ̃2
(
v2+w2

2

)
+ σ2

N

.

Following (2), we take the expectation of the above with
respect to ĥ ∼ CN (0, σ̂2), yielding√

σ2
N + σ̃2Ev2

√
σ2
N + σ̃2Ew2

σ2
N + σ̃2E

(
v2+w2

2

)
+ 1

4 σ̂
2E (v − w)2

.

Dividing the numerator and denominator by σ2
N and substi-

tuting the result into (2) yields

Ro = − min
C(p,A,B)

log2 [1 + 2p (1− p)

×
( √

1 + κ (1− ω)A2
√

1 + κ (1− ω)B2

1 + 1
2 κ (1− ω) (A2 +B2) + 1

4 κ ω (A+B)2
− 1

)]
,

(17)

where C(p,A,B) is the constraint set on the input. Simple
algebraic manipulation yields (3).

B. PROOF OF OPTIMAL INPUTS - SECTION III

Proof of R1. Low SNR analysis (κ << 1):

Assume ω �= 1 (if ω = 1, the solution to (4) is easily seen
to be BPSK). Retaining the first two terms in a Taylor series
expansion of (4) about κ = 0, we get

max
C(p,A,B)

JL � p (1− p) (A+B)2

×
[
ω + κ

{
1
4
(A−B)2(3ω2−6ω+2)− ωAB

}]
. (18)

† If ω <
�
ω. Consider the case where B = 0. The low SNR

cost function (18) becomes

JL = (1− p)
[
1 +

κ
4
φ(w)
p

]
,

where φ(w) � 3ω2 − 6ω + 2, and where we have used the
energy constraint. The cost function becomes arbitrarily large
if p→ 0, with pA2 = 1, provided φ(ω) > 0. Therefore, at low
SNR and for ω <

�
ω, limp→0 OOK(p) is the optimal input.

† If ω >
�
ω. It follows that 3ω2−6ω+2 < 0. A consequence

is that the optimal A in (18) must be finite. If not, JL will take
on an arbitrarily large negative value. Since A is finite and κ
small, we omit the κ term in (18). Removing other irrelevant
terms, we seek

max
C(p,A,B)

p(1− p)(A+B)2. (19)

The solution to (19) is any input of the form Cp0 =(
p0,
√

1−p0
p0

,
√

p0
1−p0

)
where p0 ∈ (0, 1/2]. Next, using Cp0 as

a candidate set of possible solutions, we increase κ slightly,
to consider the κ term and determine which p0 ∈ (0, 1/2]
maximizes (18) when A =

√
1−p0
p0

and B =
√

p0
1−p0 .

Substituting Cp0 into the above, and removing irrelevant terms
(note that p(1− p)(A+B)2 = AB = 1 for solutions in Cp0),
we must solve

max
C(p,A,B)

(√
p

1− p −
√

1− p
p

)2

(3ω2 − 6ω + 2),

which is maximized for p0 = 1/2 (since 3ω2 − 6ω + 2 < 0).
Therefore, the optimal input distribution is C1/2 = (1

2 , 1, 1),
or BPSK.

Proof of R2. High SNR Analysis (κ→∞):

Again, assume that ω �= 1. At high SNR, the minimization
problem (4) becomes

min
C(p,A,B)

JH � p(1− p)

×
{ √

1− w A γB(κ)
√
κ
2

[(
1− ω

2

)
(A2 +B2) + ωAB

] − 1

}
,

where γB(κ) = {1, if B = 0, B
√

κ(1− ω), if B �= 0}.
Note that JH ≥ −p(1 − p) ≥ −1/4, with equality for A =√

2, B = 0, and p = 1/2. Therefore, OOK( 1
2 ) is optimal as

κ→∞.

C. ON-OFF KEYING OPTIMAL FOR NO CSI - SECTION III

Setting ω = 0, we seek to minimize (4) with the constraint
set C(p,A,B). Let p = p0 ≤ 1

2 be fixed, and let x =
B2. Using the energy constraint, the minimization problem
becomes

min
0≤x≤1

f(x) =

min
0≤x≤1

√(
κ+p0
p0

)
+ x

[
(2p0−1)κ+κ2

p0

]
− x2κ2 1−p0

p0(
p0+κ/2
p0

)
+ xκ

2

(
2p0−1
p0

) . (20)

It can be verified that ∂f(x)/∂x ≥ 0 for x ∈ [0, 1],
implying that (20) is minimized for x = B2 = 0. Therefore,
when ω = 0, an On-Off keying solution is optimal.
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