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ABSTRACT

We study the detection of Gauss-Markov signals using randomly
spaced sensors. We derive a lower bound on the Bayesian detection
error based on the Kullback-Leibler divergence, and from this, de-
fine an error exponent. We then evaluate the error exponent for sta-
tionary and non-stationary Gauss-Markov models where the sensor
spacings, d1, d2, . . ., are drawn independently from a common dis-
tribution Fd. In both models, error exponents take on simple forms
involving the parameters of the Markov process and expectations
over Fd of certain functions of d1. These expressions are evaluated
explicitly when Fd corresponds to (i) exponentially distributed sen-
sors with placement density λ (ii) equally spaced sensors, and (iii)
the proceeding cases when sensors also fail with probability q. Many
insights follow. For example, in the non-stationary case, we deter-
mine the optimal λ as a function of q. Numerical simulations show
that the error exponent, based on an asymptotic analysis of the lower
bound, predicts trends of the actual error rate accurately, even for
small data sizes.

Index Terms— Distributed Bayesian detection, Error exponent,
Gauss-Markov, Sensors, Optimal placement density

1. INTRODUCTION

We study the detection of a signal by a sensor network as depicted in
Figure 1. We assume that the signal is present under two hypotheses,
Hj , j ∈ {0, 1}, and that it has a Gauss-Markov correlation structure
and power level that are hypothesis-dependent. The signal field is
sampled by a set of N sensors, and these samples are delivered to a
fusion center (FC). The FC then makes a single global decision as
to the true hypothesis using Bayesian hypothesis testing [11]. We
assume that the sensors are randomly placed along a straight line.1

This is because sensors are often deployed without precise control
(e.g., they are air dropped in military applications). Further, even if
sensors are equally spaced upon deployment, sensor failures intro-
duce randomness into the spacing between operational sensors. We
study the theoretical detection performance once the N samples ar-
rive at the FC.2 As an example in which this model is relevant, con-
sider sensors deployed ad-hoc in a hostile environment and tasked
with detecting the class of a tank, either friendly or enemy, based on
the acoustic wavefront that it produces. This wavefront is a signal
field that can be sampled by acoustic sensors. The power and corre-
lation structure of these samples would depend on the tank’s class as
well as the (random) locations of sensors.

1The straight line assumption is for clarity of the exposition. Section 5
discusses the extension to more general placements.

2The communication protocols used to initiate the detection process and
to deliver the samples to the FC are not considered in this work.

1.1. Notation

We use the following notation and definitions: (a) E(.) denotes ex-
pectation. When there is potential ambiguity, EX(.) denotes expec-
tation with respect to (w.r.t.) a random variable X, while EHj (.) de-
notes expectation w.r.t. the hypothesis Hj , (b) N (0, σ2) denotes a
zero mean Gaussian random variable with variance σ2, (c) if f(x) =
O(xk), then |f(x)| < Cxk for some C ∈ R

+ and all sufficiently
small x, (d) boldface lowercase letters, e.g. x, denote vectors, (e) xN

1

denotes the sequence x1, . . . , xN , and (f) pj(x) denotes the proba-
bility density of x under Hj .

1.2. Background

Consider a general binary hypothesis test between H0 and H1. Let
y = [y1, . . . , yN ]T ∈ R

N be a vector of observed data. Let πj be
the prior probability of Hj . The Bayesian error is defined

Pe � π0 P ( error | H0) + π1 P ( error | H1),

where P ( error | Hj) is the detection error when Hj is true, and
where we assume that the maximum a posteriori probability (MAP)
detector is used. Without loss of generality, let the function K(N) be
defined so that Pe = e−N K(N) for all N . The quantity of interest is
the exponential rate of decay in Pe as the number of signal samples
approaches infinity, i.e.,

K � lim
N→∞

K(N), (1)

provided that the limit exists and is independent of N . Exact, im-
plicit, expressions for K are available [2]. However, these expres-
sions are rarely tractable for specific signal models. Thus, more
tractable approximate methods are often used to characterize detec-
tion performance.

A common approach is define an error exponent based on an up-
per bound to Pe. For example, it is well known that Pe ≤ e−NKU (N),
for all N , where KU (N) is such that

KU � lim
N→∞

KU (N) = − lim
N→∞

1

N
min

s∈[0,1]
ln EH0

��
p1(y)

p0(y)

�s�
,

(2)
[11, p.89]. In the special case that {yk} are independent and identi-

cally distributed (i.i.d.), KU = K (e.g., see [3]). Unfortunately, KU

is intractable for the (non-i.i.d.) models we study in this paper.
To obtain tractability, we lower bound Pe instead. From this,

we are led to an error exponent that is seen to be the normalized
limit of the Kullback-Leibler divergence between p0(.) and p1(.).
Specifically, we first show that Pe ≥ e−NKL(N) for all N , where
KL(N) is given in Section 2. It will be seen that

KL � lim
N→∞

KL(N) = lim
N→∞

1

N
EH0

�
ln

p0(y)

p1(y)

�
. (3)
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We then evaluate KL explicitly for the signal models of interest.
It will be seen that KL remains tractable and permits a thorough
analysis of the effect of sensor placement density and failure rate on
the error exponent.

1.3. Organization and Main Results

In Section 2, we derive KL(N) in (4), and show that it leads to the
error exponent KL in (5). We then study KL for Gauss-Markov
signals under both hypotheses when sensor spacings are drawn i.i.d.
from an arbitrary distribution function Fd, for both the stationary (7)
and non-stationary (16) cases. We consider the non-stationary case
in Section 3. The error exponent is seen to simplify to closed form
expressions under the following (physically motivated) choices for
Fd: (i) exponentially distributed sensors with placement density λ
(ii) equally spaced sensors with spacing d̄, and (iii) the proceeding
cases when sensors fail with probability q, e.g., see (10) and (12).
For exponentially distributed sensors with failures, the optimal sen-
sor placement density is found in (14). We consider the stationary
case in Section 4. We evaluate the error exponent in closed form,
in terms of the Psi function, when Fd corresponds to exponentially
distributed sensors with failures, see (17). This expression is seen to
simplify in the limit of sparsely and densely placed sensors in (18)
and (19). Numerical simulations of the true exponential rate of er-
ror decay are used throughout to show that the analytic framework
presented here allows for an accurate and efficient optimization of
system resources; one that would not be possible otherwise.
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Fig. 1. The collection of N signal samples from randomly placed
sensors. {sk}N

k=1 denotes the collected samples, and {dk}N
k=2 de-

notes the random sensor spacings. The data {sk} and {dk} are ob-
served and sent to a fusion center, which makes a global decision as
to the true hypothesis.

1.4. Related Work

Error exponents of the type (1)-(3) have been used to study a wide
range of issues in distributed detection, including sensor-data quan-
tization schemes, the number of sensors to transmit to a FC, and the
placement of sensors in hierarchical networks.

In the Bayesian setup, error exponents based on (2) or the similar
Bhattacharya bound can be found in [6], [4], and [12], among others.
In [6], the Chernoff and Bhattacharya bounds are used to determine
the optimal number of sensors for communications to a FC under
power and bandwidth constraints. In [4], an error exponent is pro-
vided when sensors have dependent observations, and the optimal
sensor density is found when sensors are equally spaced. In [12], a
routing scheme is designed based on the Chernoff information when
the sensor placement is deterministic.

In the Neyman-Pearson setup, [4] provides an error exponent for
dependent data with equally spaced sensors, [13] derives an error ex-
ponent when the signal is a stationary, Gauss-Markov signal under

one hypothesis and i.i.d. noise under the other. In [1, pp.138-139]
and [9], error exponents are provided for Gauss-Markov signals un-
der both hypotheses. In [10], we previously characterized properties
of the error exponent for Gauss-Markov signals under both hypothe-
ses, using a physical model which linked the correlation parameter to
network design parameters. However, none of the works discussed
thus far provide insights for the case when sensors are randomly de-
ployed, motivating the need for the analysis presented in this paper.

2. BOUND ON BAYESIAN ERROR

We develop a lower bound on Bayesian error of binary hypothesis
testing. Letting N → ∞ in this bound, we define KL. The expres-
sions derived here will be evaluated explicitly in later sections.

We can show that

Pe

(a)

≥ π0π1

�
EH0

��
p1(y)

p0(y)

��2

(b)
= π0π1 exp

�
2 ln

	
EH0

�
e

1
2 ln

p1(y)
p0(y)

�
�
(c)

≥ π0π1 exp

�
EH0

	
ln

p1(y)

p0(y)


�
(d)
= e

−N
�
EH0

�
1
N

ln
p0(y)
p1(y)

�
− 1

N
ln π0π1

�
(4)

where (a) is a general bound shown in [8] (see also [11, p.90]), (b)
and (d) follow from algebraic manipulation, and (c) follows from
Jensen’s inequality [7, p.249]. It can be shown that the RHS of (4)
is ∈ (0, 1/2], and so the bound is non-trivial. The term in brackets
in (4),

KL(N) � 1

N
EH0

�
ln

p0(y)

p1(y)

�
− 1

N
ln π0π1,

describes the decay of the error rate as a function of N . Observe that

KL � lim
N→∞

KL(N) = lim
N→∞

1

N
EH0

�
ln

p0(y)

p1(y)

�
. (5)

In the remainder of this paper we will concentrate on evaluating the
error exponent KL explicitly for certain signal models.

3. NON-STATIONARY MARKOV MODEL

We model the signal under each hypothesis as a Gaussian signal that
evolves with a Gauss-Markov correlation structure along any straight
line. Consider the observations sN

1 taken by the sensors. We assume
that sN

1 are noiseless, with statistics under Hj described by

s1 ∼ N (0, σ2
j,I),

sk = aj,k sk−1 + zj,k, k ≥ 2,

where aj,k ∈ (0, 1) describes the correlation strength between the

(k−1)th and kth sensors, and zj,k
i.i.d.
∼ N (0, σ2

j ) is impulsive
(or innovations) noise. Let {dk} be the i.i.d. sequence of sensor
spacings. We assume dk ∼ F ′

d, independent of Hj , and that aj,k is
a function of dk, i.e.,

aj,k = gj(dk),

where gj(.) is a hypothesis-dependent deterministic function (for an
example, see (8)). We assume that {sk}N

k=1 and {dk}N
k=2 are deliv-

ered to the FC. Finally, it will be convenient to define d � dk and
aj � gj(d) for use in expressions where the index k is irrelevant.



3.1. Derivation of the Error Exponent

Note that y = [d, s] summarizes the data delivered to the FC, where
d � [d2, . . . , dN ] and s � [s1, . . . , sN ]. Evaluating the argument
of the expectation in (5), we get

ln
p0(s,d)

p1(s,d)

(a)
= ln

p0(s | d)

p1(s | d)

(b)
= ln

p0(s1)

p1(s1)

N�
k=2

p0(sk|sk−1, dk)

p1(sk|sk−1, dk)

(c)
=

1

2
ln

σ2
1,I

σ2
0,I

+ s2
1

σ2
0,I − σ2

1,I

2σ2
0,Iσ2

1,I

+
N − 1

2
ln

σ2
1

σ2
0

+
N�

k=2

�
(sk − a1,ksk−1)

2

2σ2
1

− (sk − a0,ksk−1)
2

2σ2
0

�
, (6)

where (a) follows since pj(d) is independent of j, (b) follows since
s is a Markovian process given d, and (c) follows from the form of
the conditional Gaussian distribution. Next, we have

EH0

�
ln

p0(s,d)

p1(s,d)

�
= EH0

�
EH0

�
ln

p0(s,d)

p1(s,d)
|d
��

=
1

2
ln

σ2
1,I

σ2
0,I

+
1

2

�
σ2

0,I

σ2
1,I

− 1

�
+

N − 1

2

�
ln

σ2
1

σ2
0

− 1

�

+
(N − 1)σ2

0

2σ2
1

+
Ed


(a0 − a1)

2
�

2σ2
1

�
σ2

0,I

1 − Ed


a2
0

�N−1

1 − Ed [a2
0]

+σ2
0

Ed


a2
0

�N−1
+ (N − 2) − Ed


a2
0

�
(N − 1)

(1 − Ed [a2
0])

2

�
,

where we have omitted the lengthy calculations. Taking the limit as
N → ∞, we get the error exponent to be

KL =
1

2

�
ln R − 1 +

1

R

�
1 +

Ed


(g0(d) − g1(d))2

�
1 − Ed [g0(d)2]

��
, (7)

where R � σ2
1/σ2

0 . Equation (7) is valid when Fd is a continuous or
discrete distribution (examples of each are given in Section 3.1.1).
If the sensor spacing is deterministic, the expectations above disap-
pear, and (7) reduces to the error exponent given in [9] for Neyman-
Pearson detection.

3.1.1. Example 1

We now evaluate (7) for several models of the sensor spacing. In
each, we assume that aj,k decays exponentially in dk at a rate pro-
portional to a constant Aj , i.e.,

gj(x) = e−Ajx, (8)

for x ≥ 0, where Aj ∈ (0,∞) is known at the FC, and A0 �= A1.

Example 1(a): Exponentially spaced sensors

Let the sensor spacings be exponentially distributed with placement
density (or “arrival rate”) λ . We have

F ′
d(x) = λ e−λx, x ≥ 0, (9)

where λ = 1/E(d), by property of the exponential. Evaluating (7)
with (8) and (9), we get

KL =
1

2

�
ln R − 1 +

1

R

�
1 +

(A1 − A0)
2λ

A0(A0 + A1 + λ)(2A1 + λ)

��
.

(10)

It can be verified that (10) is unimodal in λ and is maximized when

λ = λ� �
�

2A1(A0 + A1),

i.e., there exists an optimal placement density. Larger A0 and/or A1

implies that a higher placement density is optimal, while smaller A0

and/or A1 implies that a lower placement density is optimal.
In Figure 2 we plot KL and K(N) with N = 20 (determined

numerically) versus λ for A1 = 1/10 and A0 ∈ {1/4, 1/2, 1, 2, 5}
(other parameters are given in the caption). It is seen that the behav-
ior predicted by KL holds for K(N). For example, K(N) is seen to
be unimodal in λ for each A0. Further, the optimal placement den-
sity predicted by KL is seen to hold for K(N). For example, when
A0 = 1/2 we get λ∗ = 0.34 . . ., while K(N) is maximized for
λ = 0.36 . . .. While KL and K(N) have similar behavior versus
λ, the magnitude of KL is larger than for K(N). While the analytic
framework allows for an accurate and efficient optimization of sys-
tem resources in this example, the convergence of the error exponent
in magnitude may be slow in N .
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Fig. 2. Bayesian detection performance versus the placement den-
sity λ when A1 = 1/10 and A0 ∈ {1/4, 1/2, 1, 2, 5} for (a) the
error exponent KL, and (b) the true error rate K(N) with N = 20.
Parameters: π0 = π1 = σ2

0,I = σ2
1,I = 0.5, σ2

0 = 2.5, and σ2
1 = 1.

Example 1(b): Equispaced sensors with failures

Next, suppose sensors are in failure with probability q indepen-
dently from sensor to sensor. A “failed” sensor is a sensor whose
data is not received at the FC. Typical reasons for failure may include
mechanical malfunction or battery depletion at the sensor, and lost
transmissions due to interference at the FC. In addition, by choosing



q appropriately, the analysis below incorporates probabilistic trans-
mission schemes (in which a node transmits its data only with some
probability; such a scheme was shown to provide the optimal trade-
off between error exponents and energy consumption in [14]) and
schemes in which sensors enter cycled “sleep” states.

Let d̄ be the spacing of sensors upon deployment and let q ∈
[0, 1) be the failure rate. Then

F ′
d(x) =

�
(1 − q)qn−1, x = nd̄

0, x �= nd̄
, (11)

for n ∈ {1, 2, . . .}, is the probability density of the spacing between
operational sensors. The error exponent is evaluated using (7), (8),
and now (11). We get

KL =
1

2

�
ln R−1

+
1

R

���1 +

�
eA0d̄ − eA1d̄

�2

(1 − q)(e(A0+A1)d̄ + q)

(e2A0d̄ − 1)(q − e2A1d̄)(q − e(A0+A1)d̄)

����. (12)

Unfortunately, a general closed form expression for the optimal d̄ as
a function of q is not available, but see the comments below.

Theoretical curves generated from (12) are shown in Figure 3(a),
where we plot KL versus d̄ for q ∈ {0.0, 0.1, 0.3, 0.5, 0.7} (other
parameters are given in the caption). It is seen that, for each value
of q, the error exponent is unimodal in d̄ with an optimal d̄ that
decreases in q. When d̄ � 1, a Taylor series analysis of (12) reveals
that KL is increasing in both d̄ and q, and when d̄ � 1, that KL

is decreasing in d̄ and q. In Figure 3(b), we plot K(N) when N =
12 for the same parameters. The numerical curves coincide with
theoretical predictions based on KL: K(N) is seen to be unimodal
in d̄ with an optimal spacing that decreases with q. When d̄ � 1,
K(N) appears increasing in both d̄ and q, and when d̄ � 1, K(N)
appears decreasing in d̄ and q. Also note that the magnitude of KL

and K(N) are in relatively close agreement. We conclude that KL

predicts the behavior of K(N), even for small samples sizes.
Example 1(c): Exponentially spaced sensors with failures

Consider the case where sensors spacings are exponentially distributed
with placement density λ and with failure probability q. In this case,

dk =
M�

�=1

�dk,�, where {�dk,�}� is an i.i.d. sequence with common

probability density given by the RHS of (9), and where P [M =
k] = qk−1(1− q) for k ∈ {1, 2, ..}. It can be verified that the prob-
ability density of the spacing between two consecutive operational
sensors is

F ′
d(x) = λ(1 − q)e−λ(1−q)x, (13)

where λ = 1/E(d) as before (i.e., the placement density of sensors).
Substituting (8) and (13) into (7), it can be verified that KL is given
by (10) with λ replaced by λ(1− q), and that the optimal placement
density in the presence of sensor failures is

λ∗ =
1

1 − q

�
2A1(A0 + A1). (14)

Thus, as q increases, sensors should be placed more densely.

4. STATIONARY MARKOV MODEL

The stationary Markov model is given as described in the first para-
graph of Section 3 by redefining the impulsive noise term as

zj,k
i.i.d.
∼ N (0, σ2

j (1 − a2
j,k)), (15)
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Fig. 3. Bayesian detection performance versus the sensor spacing
d̄ when q ∈ {0.0, 0.1, 0.3, 0.5, 0.7} for (a) the error exponent KL,
and (b) the true error rate K(N) with N = 12. Parameters: π0 =
π1 = σ2

0,I = σ2
1,I = 0.5, σ2

0 = 1, σ2
1 = 5, A0 = 4, and A1 = 0.1.

and secondly, by taking the special case that σ2
j,I = σ2

j , j ∈ {0, 1}.
It easy to verify that VAR

�
s2

k

�
= σ2

j , for all k, under Hj . Thus, this
Gauss-Markov model is stationary. We emphasize that this model
is not a special case of the non-stationary model of Section 3. For
example, (15) introduces dependency of the random quantity dk into
zj,k, which was not the case in Section 3.

4.1. Derivation of the Error Exponent

We start by evaluating the log likelihood ratio. Following a proce-
dure similar to the non-stationary case, we get

ln
p0(s,d)
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=
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2
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�
.

We take the expected value of the above under H0. We get
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�
+

σ2
0

2σ2
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where we have omitted calculations for brevity. Taking the limit as
N → ∞, we find the error exponent to be

KL =
1

2

�
lnR − 1 + Ed

	
ln

�
1 − g1(d)2

1 − g0(d)2

�

+

1

R
Ed

	
1 − 2g0(d)g1(d) + g1(d)2

1 − g1(d)2


�
. (16)

This expression is valid whether Fd is a continuous or discrete dis-
tribution. In the special case that d is deterministic, (16) matches the
Neyman-Pearson error exponent that we previously derived in [10].

4.1.1. Example 2

We evaluate (16) for exponentially distributed sensors with inde-
pendent sensor failures. The probability density of the spacing be-
tween two consecutive operational sensors is given by (13), where
λ = 1/E(d) is the placement density of sensors. We use the corre-
lation model (8). Substituting (8) and (13) into (16) and simplifying,
we get

KL =
1

2

�
ln R−R + 1

R
+ Ψ

�
1+

λq

2A0

�
− Ψ

�
1+

λq

2A1

�
+

λq

RA1

	
Ψ

�
1

2
+

A0 + λq

2A1

�
−Ψ

�
λq

2A1

�
�
,

(17)

where λq � λ(1− q) and where Ψ(x) is the Psi function [5, p.943].
When sensors are sparsely placed (λ � 1), consecutive signal

samples approach statistical independence under both hypotheses.
Therefore, we expect KL to depend only on the signal powers, {σ2

j }.
Using the fact that Ψ(x) = − 1

x
+ O(x0) [5, p.943], we can show

that

lim
λ→0

KL = lnR +
1

R
− 1. (18)

When R = 1, the error exponent is 0, as expected.
When sensors are densely placed (λ � 1), we use the asymp-

totic expansion, Ψ(x) → ln(x) for large x [5, p.943], and find that

lim
λ→∞

KL = ln

�
R

A1

A0

�
+

�
R

A1

A0

�−1

− 1. (19)

The minimum w.r.t. R occurs when R = A0/A1. Note that
A0/A1 > 1 (< 1) implies that the minimum occurs for R >
1 (< 1). This reflects the intuitive fact that detection is harder
when the hypothesis with the more strongly correlated signal is also
the hypothesis for which the signal variance is greater. In Figure 4,
we plot KL versus R for several “large” and “small” values of λ
when A0/A1 = 10, A0 = 2, and q = 0. Note that the limits as
λ → 0 and λ → ∞ represent local minimizers of KL in λ.

5. DISCUSSION AND FUTURE WORK

We have studied error exponents for Bayesian detection of Gauss-
Markov signals with random (i.e., ad-hoc) sensor spacing. For a
summary of the paper, please refer to Section 1.3. We now dis-
cuss assumptions made in this work and detail avenues of further
research.

The assumption that samples are collected along straight line
can be relaxed. If sensors are not located in a straight line, one way
to apply the results of this paper is as follows: Generalize gj(.) to
specify the correlation as a function of the Euclidean distance sep-
arating two consecutively sampled sensors, and let Fd be the dis-
tribution on this Euclidean distance. The results (7) and (16) still
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Fig. 4. The error exponent KL versus R for several “large” (λ ∈
{10, 20, 1000}) and “small” (λ ∈ {0.0001, 0.01, 0.02}) values of λ
when A0/A1 = 10, A0 = 2, and q = 0.

hold with this new interpretation of Fd, and it would be interesting
to see if there exist special cases for which these equations simplify
to closed form expressions.We would like to investigate extensions
of the model considered here to noisy sensor observations, and when
{dk} is unknown at the fusion center.
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