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Error Exponents for the Detection of Gauss–Markov
Signals Using Randomly Spaced Sensors
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Abstract—We derive the Neyman–Pearson error exponent for
the detection of Gauss–Markov signals using randomly spaced
sensors. We assume that the sensor spacings, 1 2 . . . are
drawn independently from a common density ( ), and we
treat both stationary and nonstationary Markov models. Error
exponents are evaluated using specialized forms of the Strong
Law of Large Numbers, and are seen to take on algebraically
simple forms involving the parameters of the Markov processes
and expectations over ( ) of certain functions of 1. These
expressions are evaluated explicitly when ( ) corresponds to
i) exponentially distributed sensors with placement density ; ii)
equally spaced sensors; and iii) the proceeding cases when sensors
fail (or equivalently, are asleep) with probability . Many insights
follow. For example, we determine the optimal as a function
of in the nonstationary case. Numerical simulations show that
the error exponent predicts trends of the simulated error rate
accurately even for small data sizes.

Index Terms—Error exponent, Gauss–Markov, Neyman–
Pearson detection, optimal placement density, sensors.

I. INTRODUCTION

W E study the detection of a correlated signal field by a
set of sensors and a fusion center (FC), as depicted in

Fig. 1. We assume that the signal is present under both hy-
potheses, , and that it has a Gauss–Markov corre-
lation structure and power level that are hypothesis-dependent.
The signal field is sampled by sensors, and these samples
are collected by the FC. The FC then makes a global decision
as to the true hypothesis using Neyman–Pearson (NP) hypoth-
esis testing [21]. We assume that the sensors are randomly lo-
cated along a straight line. The assumption that sensors are on
a straight line models scenarios such as when the fusion center
is a mobile collection agent (e.g., a unmanned rover) that tra-
verses the network to collect data, and/or when the sensor net-
work is in the far field of the signal source [19]. The assumption
of randomness models the fact that sensors are often deployed
without precise control (e.g., they are air dropped in military
applications). Even if sensors are deterministically spaced upon
deployment, mechanical failures and/or sleep cycles introduce
randomness into the spacing between the operational sensors.
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Fig. 1. The collection of N signal samples from randomly placed sensors.
fs g denotes the collected samples, and fd g denotes the (random)
sensor spacings. The data fs g and fd g are collected by a FC, which makes a
global decision as to the true hypothesis using the Neyman–Pearson framework.

We study the theoretical detection performance once the sam-
ples arrive at the FC.1

As an example in which this model is relevant, consider sen-
sors deployed ad-hoc in a hostile environment and tasked with
classifying a passing tank as either friendly (hypothesis )
or enemy , based on the acoustic wavefront that the tank
produces. This wavefront is a signal field that can be sampled
by acoustic sensors. The power and correlation structure of
these samples would depend on the tank’s class as well as the
(random) locations of sensors.

A. Background

Consider a general binary hypothesis test between and
. Let be a vector of observed

data, and assume that the NP framework is used. Let and
denote the probability of false alarm and probability of

miss as functions of , respectively. The NP error exponent is
defined, for a fixed constraint , as the expo-
nential rate of decay in as the number of data samples
approaches infinity, i.e.,

(1)

provided that the limit exists. is a useful metric. It provides an
estimate on the number of observations needed to attain a given
level of detection performance, and is often parameterized by
physical and design parameters [e.g., the signal-to-noise ratio
(SNR) and sensor spacing] that can be optimized to improve the

1The communication protocols used to initiate the detection process and to
deliver the samples to the FC are not considered in this work.
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detection performance. However, is currently in an implicit
form that is not amenable to analysis.

Let denote the probability density of when is true.
If the likelihood ratio test (LRT) is used at the FC, it can be
shown through a generalization of Stein’s lemma that [27]

a.s. in (2)

provided that the limit exists, where the notation (a.s. in )
means that the limit is to be taken in the almost sure sense under

. Note that (2) is independent of .

B. Related Work

For a general overview of multisensor detection, see [28]. For
a discussion of issues related to multisensor detection with cor-
related sensor observations, see [1], [4], [7], [9], [16], and the
references therein. This paper addresses the multisensor detec-
tion of correlated signals using randomly placed sensors and the
NP error exponent (1).

Most related to this paper are [24], [25], [3, pp. 138-139],
[18], and [19], each of which considers correlated signals and
evaluates the criterion (1) for deterministically spaced sensors.
In [24], the authors derive the error exponent when the signal
is a stationary Gauss–Markov signal under one hypothesis, and
independent and identically distributed (i.i.d.) noise under the
other. In [25], this work is extended to analyze the optimal ar-
rangement of sensors along a spatial line. The error exponent is
found using implicit solutions of certain matrix equations. An
extensive numerical analysis is used to characterize the optimal
sensor spacing as a function of the SNR and field correlation.
It is observed that either a uniform or a clustered approach to
sensor spacing appears to be optimal, depending on the field
correlation and SNR. When clustering is optimal, there appears
to be an optimal cluster size. In [3, pp. 138-139] and [18], error
exponents are derived assuming Gauss–Markov signals under
both hypotheses. In [19], we previously derived properties of
the error exponent for Gauss-Markov signals under both hy-
potheses, using a physical model which linked the correlation
parameter to network design parameters.

In the Bayesian setup, error exponents based on the Chernoff
information or the similar Bhattacharya bound can be found
in [5], [6], [15], and [23], among others. In [15], the Cher-
noff and Bhattacharya bounds are used to determine the optimal
number of sensors for communications to a FC under power
and bandwidth constraints. In [5] and [6], the error exponent
is derived when sensors have dependent observations. The op-
timal sensor density is studied when sensors are equally spaced,
using both numerical techniques and closed-form expressions
(depending on the assumptions). In [23], a routing scheme is
designed based on the Chernoff information for a deterministic
sensor placement.

However, none of these works provide insights for the case
when sensors are randomly located, motivating the need for the
analysis presented in this paper.

C. Organization and Main Results

In Sections II and III, we derive for Gauss–Markov signal
models assuming that sensor spacings , are drawn

i.i.d. from an arbitrary density function . Error exponents
are seen to take on algebraically simple forms involving the
parameters of the Markov processes and expectations over

of certain functions of . In Section II, we consider the
nonstationary case. We show that the error exponent simplifies
to closed form expressions under the following (physically
motivated) special cases of : (i) exponentially distributed
sensors with placement density ; (ii) equally spaced sensors
with spacing , and (iii) the proceeding cases when sensors
fail with probability . For exponentially distributed sensors
with failures, the optimal sensor placement density is found in
closed form. In Section III, we consider the stationary case. We
evaluate the error exponent in closed form, in terms of the Psi
function, when corresponds to exponentially distributed
sensors with failures. This expression is seen to simplify in
the limit of sparsely and densely placed sensors. Numerical
simulations are used throughout to show that the error exponent
predicts trends of the simulated error rate accurately, for even
small data sizes. Thus, the analytic framework presented here
allows for an accurate and efficient optimization of system
resources that would not be possible otherwise. Finally, as
a matter of organization style, we defer all proofs to the
Appendices.

D. Notation

We use the following additional notation and definitions:
(a) denotes expectation. When there is potential ambiguity,

denotes expectation with respect to a random variable ,
and denotes expectation with respect to the hypothesis

, (b) denotes that the random variable is dis-
tributed according to the density function ,
denotes a zero mean Gaussian random variable with variance

, (d) if , then for some
and all sufficiently small , and (e) boldface lowercase letters,
e.g., , denote vectors.

II. NONSTATIONARY GAUSS–MARKOV MODEL

Nonstationary Gauss–Markov models have been used to
describe communications signals in a wide variety of contexts
(e.g., see [12]–[14], and the references therein). Here, we
model the signal under each hypothesis as a Gaussian signal
that evolves with a Markov correlation structure along any
straight line. Consider the observations taken by the
sensors. We assume that the statistics of under are
described by

where describes the correlation strength between the

th and th sensors, and is impulsive (or
innovations) noise. We assume that for

. Let be the i.i.d. sequence of sensor spacings.
We assume that , where is either
a continuous or discrete probability density function which is
independent of , and that is a function of , i.e.
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where is a hypothesis-dependent deterministic
function (for an example, see (5)). We assume that and

are obtained by the FC.2 Finally, it will be convenient

to define and for use in expressions where
the index is irrelevant.

Usually in sensor array processing applications, the data re-
ceived across sensors is a function of: (a) the signal emitted by
the source, (b) the propagation characteristics of the environ-
ment, (c) the sensor locations, and (d) the signal direction of
arrival. In the model above, , , and capture the ef-
fects of (a)–(c) under (illustrative examples will be given in
the sequel). Although we do not specifically incorporate (d) into
our model, an example of how to do so is given in [19].

A. Derivation of the Error Exponent

Notice that summarizes the data obtained by the
FC, where and . Evaluating
the log-likelihood ratio in (2), we get

(3)

where follows since is independent of , follows
since is a Markov process given , and follows from the
form of the conditional Gaussian distribution. In Appendix I,
we reference three useful forms of the Strong Law of Large
Numbers (SLLN). Using these results, we take the almost sure
limit of (3) in Appendix II. We arrive at the following theorem.

Theorem 2.1: Suppose . Then the NP error
exponent for the detection of nonstationary Gauss–Markov sig-
nals with randomly placed sensors is

(4)
where .

The proof relies on bounding the correlation function of
certain sequences appearing in (3), so as to apply SLLN-3
(Appendix I), which is applicable to certain nonstationary
processes. We emphasize that can be either a continuous
or discrete density (examples of each are given in Section II-B).
If the sensor spacing is deterministic, the expectations above
disappear, and it can be verified that (4) reduces to the error
exponent given previously in [18], as it must.

2If the FC is a mobile collection agent, it can measure fd g directly. Other-
wise, sensors can send fd g to the FC, if they are equipped with GPS.

B. Example

We evaluate (4) explicitly for two models of the sensor
spacing. In each, we assume that decays exponentially in

at a rate proportional to a constant , i.e.,

(5)

for , where is known at the FC, and where
. We assume that sensors are in “failure” with proba-

bility independently from sensor to sensor. Specifi-
cally, sensor is said to be in failure if its data is not re-
ceived at the FC. Typical reasons for failure include mechanical
malfunction or battery depletion at the sensor, and lost trans-
missions due to interference at the FC. In addition, by choosing

appropriately, the analysis below incorporates probabilistic
transmission schemes (in which a node transmits its data only
with some probability; such a scheme was shown to provide the
optimal tradeoff between error exponents and energy consump-
tion in [26]) and schemes in which sensors enter cycled “sleep”
states.

1) Exponentially Spaced Sensors With Failures: Let the
sensor spacings be exponentially distributed with placement
density (or “arrival rate”) and failure rate . We have

(6)

where , and where (6) is valid for by the “thin-
ning” property of the Poisson process [10, p. 287].3 Evaluating
(4) with (5) and (6), we get

(7)
where . The proof follows from algebraic manip-
ulation and is omitted for brevity.

It may be suspected that there exists a maximizing
in (7). To understand why, fix . As , the sen-
sors will be placed arbitrarily close together, and their observa-
tions will cover an arbitrarily small evolution of the
(random) signal. Conversely, as , the sensors will be
placed arbitrarily far apart, and their observations will approach
an i.i.d. set. Thus, the correlation in the signal field cannot be
exploited in the detection process. Indeed, it can be verified that
(7) is unimodal in and is maximized when

(8)

i.e., there exists an optimal placement density.
Assume that time and energy are required for sensors to

transmit their data to the FC. It then makes sense for the FC
to limit the number of sensors that are polled during each
“detection process”. Given that sensors are to be polled, (8)
provides guidance, increasingly accurately as increases, on
which sensors should be polled.

3More formally, we have that d = ~d , where f ~d g is an i.i.d. se-
quence with common probability density given by the right-hand side (RHS) of
(6) with q = 0, and whereP [M = k] = q (1�q) for k 2 f1; 2; . . .g. It can
be verified that the probability density of d is f (x) = �(1� q)e .
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Fig. 2. NP detection performance versus placement density for exponentially
distributed sensors. Plot of K and K(N) (for N 2 f10; 20;40;70g) versus �
for A = 2, A = 0:1, � = 3=2, � = 1, � = � = 0:5, q = 0, and
� = 0:01.

To study the usefulness of in predicting the behavior of the
error rate for finite , we use numerical simulations. Define the
finite- exponential error rate to be

and note that . In Fig. 2, we plot , de-
termined from (7), and for , de-
termined numerically, versus for , ,

, and (other parameters are given in the caption).
It is seen that the behavior predicted by holds for .

is seen to be unimodal in for each . For example,
we have that , while is maximized for

. Based on similar simulations over a wide va-
riety of parameters, we conclude that the error exponent accu-
rately predicts features of the error rate even for finite sample
sizes.

2) Equispaced Sensors With Failures: Let sensors be equally
spaced with common spacing upon deployment, and let

be the failure rate. Then

(9)

for , is the probability density of the spacing
between operational sensors. The error exponent is evaluated
using (4), (5), and (9). We get

(10)

The proof follows from algebraic manipulation, including the
use of the geometric series, and is omitted for brevity. A gen-
eral closed form expression for the optimal as a function of is
not available. However, an asymptotic analysis of (10) is given

Fig. 3. NP detection performance versus sensor spacing for geometrically dis-
tributed sensors with q 2 f0:0;0:1; 0:3;0:5;0:7g for (a) the error exponentK ,
and (b) the finite-N exponential error rate K(N) with N = 15. Parameters:
� = � = 0:5, � = 1, � = 5, A = 4, and A = 0:1, and � = 0:01.

in Appendix III and reveals the following: As , is in-
creasing in both and , and as , is decreasing in and
. Theoretical curves generated from (10) are shown in Fig. 3(a),

where we plot versus for (other
parameters are given in the caption). It is seen that, for each
value of , the error exponent is unimodal in with an optimal

that decreases in .
In Fig. 3(b), we plot when for the same pa-

rameters. These numerically determined curves are seen to coin-
cide with theoretical predictions based on is seen to
be unimodal in with an optimal spacing that decreases with .
When , increases in both and , and when ,

decreases in and . The magnitude of and are
in relatively close agreement. Based on our simulations across a
wide range of parameters, we conclude that predicts the be-
havior of with respect to and . In Fig. 4, we examine
the curve corresponding to in more detail. We plot
and for (other parameters are as before).
We see that increases towards with increasing .
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Fig. 4. NP detection performance versus sensor spacing for geometrically dis-
tributed sensors with q = 0:5. We plot K and K(N) for N 2 f10; 20g.
Parameters: � = � = 0:5, � = 1, � = 5, A = 4, A = 0:1, and
� = 0:01.

III. STATIONARY GAUSS–MARKOV MODEL

Stationary Gauss–Markov models have also been used to de-
scribe communications signals in several related applications
(e.g., see [2], [8], and [17]). The model is defined as in the first
paragraph of Section II but with two changes. First, we redefine
the impulsive noise term to be

(11)

and second, we take the special case that , .
Note that is indeed i.i.d. since is an i.i.d. se-
quence. It easy to verify that , for all , under

, and that this Gauss–Markov model is stationary. We em-
phasize that this model is not a special case of the nonstationary
model of Section II. For example, (11) introduces dependency
of the random quantity into .

A. Derivation of the Error Exponent

We start by evaluating the log likelihood ratio. Following a
procedure similar to the nonstationary case, we get

(12)

In Appendix IV, we take the almost sure limit of (12). Doing
so, we arrive at the following theorem.

Theorem 3.1: Suppose ,
,

, and
are each bounded from above. Then the NP error

exponent for the detection of stationary Gauss–Markov signals
with randomly placed sensors is given by

(13)

The proof makes use of SLLN-2 (Appendix I). Again, we em-
phasize that may be either a continuous or discrete distri-
bution. In the special case that is deterministic, (13) matches
the NP error exponent that we previously derived in [19], as it
must. It is often the case that either or

, , i.e., the signal often decays “uniformly
faster” with respect to distance under one of the hypotheses.
When either relation holds, the technical conditions required by
Theorem 3.1 simplify, as detailed in the following corollary.

Corollary 3.2: Suppose . Then a necessary
and sufficient condition for Theorem 3.1 to hold is

. Alternatively, suppose
. Then sufficient conditions for Theorem 3.1 to hold

are and
.

The proof of the first claim of the corollary follows by upper
bounding the argument in each of the first three expectations (in
the conditions for Theorem 3.1 to hold) by 1. The proof of the
second claim follows by upper bounding the argument in each
of the first three expectations by .

B. Example—Exponentially Spaced Sensors With Failures

We evaluate (13) for exponentially distributed sensors with
independent failures. The probability density of the spacing be-
tween two consecutive operational sensors is given in (6), and
we again use the correlation model (5). In Appendix V, it is
shown that the technical conditions of Theorem 3.1 hold, and
that substituting (5) and (6) into (13) yields

(14)

where again , and where is the Psi function
[11, p. 943].

When sensors are sparsely placed , consecutive
signal samples approach statistical independence under both hy-
potheses. Therefore, we expect to depend only on the signal
powers, . Using the fact that
[11, p. 943], it can be shown that

(15)

When , the error exponent is 0, as expected. When sensors
are densely placed , we use the asymptotic expansion,

for large [11, p. 943] to find that

(16)
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Fig. 5. NP detection performance versus placement density for exponentially
distributed sensors. Plot of K and K(N) (for N 2 f10; 30;50g, determined
numerically) versus � for A = 2, A = 0:2, � = 1=2, � = 1, q = 0, and
� = 0:01.

The minimum with respect to occurs when , for
which the error exponent is equals zero. Note that

implies that the minimum occurs for .
This reflects the intuitive fact that detection is harder when the
hypothesis with the more strongly correlated signal is also the
hypothesis for which the signal variance is greater.

In Fig. 5 we plot and (for ) versus
for , , , and (other parame-

ters are given in the caption). It is seen that approaches
as increases. Next, we determine if the behavior given in (15)
and (16) holds for finite as well. In Fig. 6(a) and (b), we plot

for versus for progressively smaller values
of , , and progressively larger values of

, , when (other parameters are
given in the caption). In the case of small , note that the theory
holds. We see that as decreases, the error exponent decreases,
approaching a minimum of zero at as predicted by (15).
For large , Fig. 6(b) shows that the error exponent is minimized
as increases, approaching a zero around ,
as predicted by (16). We conclude that the asymptotic analysis
given above is useful in predicting trends even for finite .

IV. SUMMARY, DISCUSSION, AND FUTURE WORK

In this paper, we have derived error exponents for the de-
tection of Gauss–Markov signals with random (ad hoc) sensor
spacing. We assumed that spacings were drawn i.i.d. from an
arbitrary distribution function , and assumed arbitrary cor-
relation-decay functions . We provided exact
error exponents for both the nonstationary and stationary cases
in (4) and (13), respectively. The error exponents were evaluated
using specialized forms of the SLLN [20], [22], and were seen
to take on algebraically simple forms involving the parameters
of the Markov process and expectations of polynomial functions
of over .

In the nonstationary case, we evaluated the error exponent
in closed form for two special cases of : i) exponentially
distributed sensors with placement density and failure rate
(7), and ii) equally spaced sensors with spacing and failure

Fig. 6. NP detection performance versus sensor spacing for expo-
nentially distributed sensors for (a) progressively smaller values of �,
� 2 f0:2;0:1;0:0001g. (b) Progressively larger values of �, � 2 f2;5; 100g.
Parameters: � = 1, � = R, A = 2, and A = 0:2, q = 0 and � = 0:01.

rate (10). In the first case, the optimal placement density
was found in closed form (8). In the second case, properties of
the error exponent for small and large density were provable
(Section II-B). In the stationary case, we evaluated the error
exponent in closed form, in terms of the Psi function, when

corresponds to exponentially distributed sensors with
failures (14). This expression was seen to simplify in the limit
of sparsely and densely placed sensors [(15) and (16), respec-
tively]. Numerical simulations were used throughout to show
that the error exponent predicts trends of the simulated error
rate accurately for even small data sizes. Thus, the analysis
presented here provides many nonobvious and key insights that
would not be readily available otherwise.

We discuss assumptions made in this work, and detail avenues
of further research. First, we assumed that samples are collected
along straight line. If sensors are not located on a straight line,
one way to apply the results of this paper is as follows: Generalize
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to specify the correlation as a function of the Euclidean dis-
tance separating two consecutively sampled sensors, and let
be the distribution on this Euclidean distance (this would depend
on order in which sensors are sampled, and thus, would be a func-
tion of the sampling algorithm). The results (4) and (13) still hold
with this new interpretation of (provided that the signal re-
tains the Markov property, either directly or for some permuta-
tion of the order in which samples are taken), and it would be in-
teresting to see if there exist special cases for which these equa-
tions simplify sufficiently to permit a careful analysis. Next, we
assumed that sensor observations are free of thermal noise. This
assumption is most readily justified when sensors have a high ob-
servational SNR. However, the error exponent with noisy obser-
vations is clearly of interest. Unfortunately, we are not aware of
any techniques which will permit an analysis of (2) in this case.
For example, the SLLN techniques in presented in this paper, the
spectral factorization method of [24], and the use of certain prop-
erties of estimation theory as in [3] all fail to provide ready in-
sights. Finally, we assumed that the distances are known
or learnt, and that the correlation-decay functions are
perfectly known. It would be of interest to study the case where

is unknown and/or where must be estimated.

APPENDIX I
USEFUL FORMS OF THE STRONG LAW OF LARGE NUMBERS

We reference three forms of the SLLN that will be used in
Appendices II and IV. The first version is commonly known and
included for completeness.

Theorem SLLN-1 [22, p. 4] (SLLN for i.i.d. Sequences): Let
be an sequence of i.i.d. random variables with

and . Then

a.s.

Theorem SLLN-2 [22, p. 206] (SLLN for Weakly Sta-
tionary Sequences): Let be a weakly stationary
sequence of zero-mean random variables, i.e., ,

, and ,
. If

for each and some , then

a.s.

Theorem SLLN-3 [20] (SLLN for general sequences): Sup-
pose is a sequence of random variables, not neces-
sarily zero mean, and with arbitrary correlation structure (not
necessarily stationary) that is characterized by the existence of
a and such that

for . Then for any

a.s.

APPENDIX II
PROOF OF (4)

We define the following notation for use in Appendices II
and IV: i) If is a function of , then operator
is shorthand for (a.s. in ); ii) define

; iii) all expectations are taken under
hypothesis .

Before proceeding, we will find it useful to state the following
facts. Proofs are omitted, as each can be verified through al-
gebraic manipulation. Let . First, we have that
under

from which it can be verified that

(17)

and

(18)

Now, we start from (3) and prove (4). We have

(19)

where follows since we can ignore deterministic terms that
do not scale with in evaluating the limit, and follow
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from the fact that under , and fol-
lows from the observation that is an i.i.d. sequence
with expected value 1, and applying the SLLN-1. Next, we eval-
uate , , and .

Consider . Note that is an i.i.d. sequence with
. Thus, by the SLLN-1.

Consider . Define . We show
that SLLN-3 can be applied to . We get

and for , that

and

where follows from (18). Now, we apply SLLN-3 to .
We have

where is a constant which can clearly be chosen
to satisfy for all since by assumption of the
theorem. Fixing and taking in the conditions
for SLLN-3, we conclude that .

Next, we evaluate . Define and

. We have

(20)

where follows from (18), and follows by applying
SLLN-3 to the zero-mean sequence where .
The proof that the SLLN-3 can indeed be applied to the (non-
stationary) sequence is nontrivial and lengthy. Therefore,
we pause momentarily to remark that if we accept (20) without
further proof, then by substituting our results for , , and

into (19), we have arrived at (4), as desired.
Now, we use the remainder of this appendix to show that the

SLLN-3 can be applied to . Before proceeding, we state a
second set of facts. The first fact is that, for

(21)

This follows from
. The second is that

(22)

for some . The proof is lengthy, and thus omitted. How-
ever, the technique relies on expanding according to
(17) and bounding each term in the expansion. The third fact is
that, for

(23)

for some . To see this, we first establish that
using the law of iterated expectation and the ex-

pression for the fourth moment of a Gaussian random variable,
and then apply (22).

We are now ready to show that the SLLN-3 applies to .
Define

Our approach is to upper bound by lower bounding and
upper bounding , and then showing that this upper bound sat-
isfies the condition of SLLN-3. Hence, satisfies SLLN-3.

We lower bound for . We have (24), shown at the
bottom of the next page, where follows from substitution of
(18), and follows from neglecting the two positive terms in
the proceeding equation, and since .

Similarly, we upper bound for . First, we have
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where we have substituted (21) and then (18) in . Bounding,
we have

(25)

where the constants (with respect to the subscripts and )
clearly exist after using (22) in .

Combining (24) and (25), we have

(26)

where is a constant w.r.t and which clearly
exists.

Now we apply the SLLN-3 to the sequence . Note

where and are constants with respect to and
. The term within square brackets in follows from direct

substitution of (26), and exists as a consequence (23). Thus
SLLN-3 with and can be applied to
concluding the proof.

APPENDIX III
TAYLOR SERIES ANALYSIS OF (10)

From (10), define

(27)

As , we can ignore the higher-order terms in a Taylor
series expansion of about . We get

from which it is clear that is increasing in and .
As , we can ignore terms dominated by , for some

, in . From (27), we get

Clearly, is decreasing in . Taking the derivative with
respect to , we get

(24)
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which is negative. Thus, is decreasing in .

APPENDIX IV
PROOF OF (13)

We use the notation defined in the first paragraph of Ap-
pendix II. Starting from (12), we prove (13). From (12), we have

(28)

where follows since we can ignore deterministic terms that
do not scale with in evaluating the limit, the appearance of

in follows by definition, the expectation in follows
from SLLN-1 since is an i.i.d. se-
quence and since by as-
sumption of the theorem, the first three terms in follow from
the fact that under , and the last term
in from the observation that is an i.i.d.
sequence with expected value 1.

Next, we evaluate , and . To evaluate , define
and note that is an i.i.d. se-

quence. By the SLLN-1, we get

provided that , which is true by assump-
tion of the theorem.

To evaluate , define
. Then note4

that

where follows from assumption of the theorem, and that for

where the argument in has been omitted for brevity.
Applying the SLLN-2, we find that .

To evaluate , note that

with and
. We will show that the SLLN-2 can

be applied to the sequence , where . Note that
, and

where follows since given , and by
assumption of the theorem. Now, note

(29)

4The law of iterated expectation is necessary since z and a are not in-
dependent without conditioning on d .
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for . Using the fact that
, it can be verified that

Substituting into (29), using the fact that is an i.i.d.
sequence, and summing over the resulting geometric series, we
get

Finally, we have for ,

(30)

Clearly , where and
are obvious from (30). Using this result in the SLLN-2, we find
that obeys the SLLN. Thus, . Finally, substituting
the results for , , and into (28) and simplifying, we get
(13), as desired.

APPENDIX V
EVALUATION OF THE ERROR EXPONENT–FROM (13) TO (14)

The following three facts will be useful (see [11] and [11,
p. 305])

(31)

(32)

and

(33)

for , , and . Also, we make use the following:
Let be constants. Then

(34)

A proof follows:

where follows from a Taylor series expansion of
about , from performing the integration, and

from (32).
First, assume that the technical conditions of Theorem 3.1

hold. We evaluate the two terms containing expectations in (13).
Recall . For the first term, we have

(35)

where follows by applying (34) and then (31).
For the second term, we have

(36)

where follows from writing the expectation in terms of an
integral and decomposing the resultant fraction into two terms,
and follows from applying (33) and then (31). Substituting
(35) and (36) into (13) and simplifying yields (14).

We now verify that the technical conditions of Theorem
3.1 hold. It is either the case that , implying from
(5) that , or that , implying
that . Thus, we can use Corollary 3.2 to
verify the technical conditions. Suppose that . That

is evident from (35).
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Suppose . That
is also evident from (35). Additionally, note that

in this case, which implies

Thus, the technical conditions of Theorem 3.1 hold.
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