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Abstract—The effect of multipacket reception (MPR) on stability
and delay of slotted ALOHA based random-access systems is
considered. A general asymmetric MPR model is introduced and
the medium-access control (MAC) capacity region is specified.
An explicit characterization of the ALOHA stability region for
the two-user system is given. It is shown that the stability region
undergoes a phase transition from a concave region to a convex
polyhedral region as the MPR capability improves. It is also shown
that after this phase transition, slotted ALOHA is optimal i.e., the
ALOHA stability region coincides with the MAC capacity region.
Further, it is observed that there is no need for transmission
control when ALOHA is optimal i.e., ALOHA with transmission
probability one is optimal. Next, these results are extended to
a symmetric 2 user ALOHA system. Finally, a complete
characterization of average delay in capture channels for the
two-user system is given. It is shown that in certain capture
scenarios, ALOHA with transmission probability one is delay
optimal for all stable arrival rates. Further, it is also shown that
ALOHA with transmission probability one is optimal for stability
and delay simultaneously in the two-user capture channel.

Index Terms—Capacity, delay, multipacket reception, random
access, scheduling, slotted ALOHA, stability, wireless networks.

I. INTRODUCTION

A. Motivation

I T has been more than three decades since Abramson’s land-
mark work on ALOHA [1]. Much of what we know about

slotted ALOHA is based on the so-called collision model: a
transmission is successful if and only if a single user transmits.
While a deterministic collision model is accurate for wire-line
communications, it is inadequate to model probabilistic recep-
tions in wireless multiple access. Furthermore, advances in mul-
tiuser detection and space–time processing make it necessary to
have a multipacket reception model that captures the ability of
the receiver to decode simultaneous transmissions and the prob-
abilistic nature of reception.
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Fig. 1. Two-user stability region of slotted ALOHA for the collision channel
and orthogonal channels. Solid lines represent the boundary of the ALOHA
stability region. (a) Collision channel. (b) Orthogonal channel.

Insights into the effect of MPR on ALOHA can be gained
by examining two extreme cases: the collision channel and the
orthogonal channel. Fig. 1 shows the ALOHA stability regions
of the two-user system for these cases. By stability region, we
mean the set of arrival rates such that there exist transmission
probabilities under which the system is stable,
in a sense to be made precise later. For the collision model,
the stability region is not convex; an increase in the maximum
rate of one user implies a disproportionate decrease of the other.
As a random-access protocol, ALOHA is inferior to centralized
time-division multiple access (TDMA) since its stability region
is contained inside that of TDMA. To stabilize any point in the
rate region, transmission control is necessary by choosing trans-
mission probabilities carefully. The onus of handling multiuser
interference rests entirely with the random-access protocol. The
orthogonal channel, in contrast, models a physical layer that
nullifies multiuser interference. As a result, the stability region
takes the simple form of a unit square. There is no need for trans-
mission control, and the rate for one user is independent of that
of the other; ALOHA is optimal.

The orthogonal channel, of course, is not interesting for
random access. What would be interesting are those cases
when the multiuser interference affects the reception but not as
severely as in the collision model. Can a distributed random ac-
cess protocol such as ALOHA still be optimal? Is transmission
control necessary? Is the stability region convex? A positive
answer to the last question implies that given two stable rate
pairs, all rate pairs on the line joining them are stable as well.
What can we say about the performance of ALOHA for the
general -user system?

B. Summary of Contributions

We consider a general multipacket reception model. For
each scheduled transmission, this model specifies a proba-
bility measure on the event space. We first give a complete
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characterization of the medium-access control (MAC) capacity
region. By MAC capacity we mean the maximum throughput
achievable by any MAC protocol without considering queue
stability. We show that this region is a convex hull of a set of
marginal probabilities. In particular, the MAC capacity region
is specified only by the marginal probabilities of success of
individual users.

We consider next the ALOHA stability region. Obviously, the
ALOHA stability region is contained in the MAC capacity re-
gion. As already shown in Fig. 1, the ALOHA stability region
is, in general, strictly smaller than the capacity region. We give a
complete characterization for the two-user ALOHA system. We
show that the stability region undergoes a distinct phase transi-
tion, from a nonconvex region to a convex polyhedral region,
from a strict subset of the capacity region to the exact capacity
region (thus, ALOHA is optimal). Furthermore, there is no need
for transmission control once ALOHA is optimal. The same re-
sults hold for the symmetrical -user system which has indis-
tinguishable users with equal arrival rates. An inner bound for
the general asymmetric -user system is provided.

For a given rate vector, there are usually many transmission
probabilities that stabilize the system. It is thus interesting to
find the transmission probability that minimizes the average
delay. We provide a complete delay characterization for the
capture model in a symmetrical two-user system. Any nonzero
probability of capture leads to a set of rates for which no
transmission control minimizes the delay. As the probability of
capture increases, the region of rates for which no transmission
control minimizes the delay increases. As soon as the stability
region becomes convex, no transmission control is delay op-
timal for all stable arrival rates.

C. Related Work

In spite of being such a simple random-access protocol,
queueing theoretic analysis of ALOHA turns out to be ex-
tremely difficult under the collision model. Tsybakov and
Mikhailov [2] initiated the stability analysis of finite-user
slotted ALOHA. They found sufficient conditions for stability
of the queues in the system using the principle of stochastic
dominance. They found the stability region for the two-user
case explicitly. For the symmetric case (viz. equal arrival rates
for all terminals), they gave the maximum stable throughput.
Rao and Ephremides [3] explicitly used the principle of sto-
chastic dominance to find inner bounds to the stability region
for the case. Szpankowski [4] found necessary and
sufficient conditions for the stability of queues for a fixed
transmission probability vector for the case. However,
there is no simple computational procedure to verify these
conditions since it involves the stationary joint queue statistics,
which have not been found in closed form yet. Later, Luo and
Ephremides [5] introduced the concept of instability ranks in
queues to obtain tight inner and outer bounds on the stability
region for the case. Interestingly, Anantharam [6] found
the exact stability region of ALOHA for the finite-user case,
albeit with a specific correlated arrival process. All the above
stability results were derived for the collision channel only. And
to date, there is no closed-form characterization of the stability
region for the case (even for the collision channel with

independent and identically distributed (i.i.d.) arrivals). The
primary difficulty in analyzing this problem is the complex
interactions among the queues.

The first attempt at analyzing ALOHA under multipacket
reception was made by Ghez, Verdú, and Schwartz in [7], [8]
under the infinite-user single-buffer model. Their multipacket
reception (MPR) model was symmetrical in which users were
indistinguishable. A special case of the symmetrical MPR
model, but for finite users, was analyzed by Sant and Sharma
[9]. They found a sufficient condition for stability with no
transmission control. Adireddy and Tong [10] considered the
effect of having knowledge of fading at the transmitters on the
design of ALOHA. They showed that significant gains can be
made by allowing the transmission probability to be a function
of the channel state (as opposed to conventional power control).
However, the MPR model that they used was symmetric with
respect to the users while ours is not. A study of stability and
capacity of general wireless networks for MPR models was
presented in [11] where the MAC stability and capacity regions
were characterized. In [11], the main focus was stability and
capacity considerations with optimal MAC layer protocols
whereas in this work we analyze performance of a specific
random-access protocol viz., ALOHA. Protocols that exploit
MPR have been proposed [10], [12], [13].

The remainder of this paper is organized as follows. In Sec-
tion II, we specify the system model. In Section III, we define
the notion of capacity region and in Section IV we define sta-
bility region. In Section V, we derive the stability region for the
two-user case. We also characterize some interesting properties
of this region. In Section VI, we provide stability results for the
symmetric MPR case with . We also give sufficient con-
ditions for stability for the asymmetric MPR case with .
In Section VII, we apply our analytical results to three different
receiver structures, viz., decorrelating, matched filter, and min-
imum mean-squared error (MMSE) and compare their perfor-
mance in terms of the stability region to gain some insights. In
Section VIII, we find expressions for delay and the optimizing
transmission probability for the case for a subclass of
MPR reception models. Finally, we conclude in Section IX.

II. SYSTEM MODEL

The system consists of users communicating with a
common receiver. Each user has an infinite buffer for storing
arriving and backlogged packets. The channel is slotted in
time and a slot duration equals the packet transmission time.
Packets are assumed to be of equal length for all the users. The
arrivals at the th queue ( ) are i.i.d.
Bernoulli random variables from slot to slot with mean .
Arrival processes are assumed to be independent from user to
user. If the th users’ buffer is nonempty, he transmits a packet
with probability in a slot.

A multiuser physical layer is assumed that allows the receiver
to receive multiple packets simultaneously. Specifically, sup-
pose that the set of users transmit in a slot, then we
define for , the conditional probability of reception by

only packets from are successfully

received transmits (1)
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We assume that packet receptions are independent from slot to
slot. Note that our reception model completely defines the prob-
ability space of packet receptions. The MPR reception model
defined in [7] is symmetric with respect to the users and a spe-
cial case of the above model. It follows that the marginal proba-
bility of success of given that set of users transmit is given
by

(2)

For example, consider the two-user case . Then for

user is successful only

user transmits

user is successful both

users transmit

both users are successful both

users transmit (3)

and the marginal probabilities of success are ( )

(4)

We assume that the receiver gives an instantaneous feedback
of all the packets that were successful in a slot at the end of the
slot to all the users. The users remove successful packets from
their buffers while unsuccessful packets are retained. It should
be clear that the probabilities are a function of the receiver
front end which will be employed by the receiver to “separate”
users’ signals.

Let represent the queue length at the th buffer at the
beginning of time slot . Under the above system model, the

-dimensional process is a Markov
chain. The transition probability matrix of the Markov chain

can be computed using the reception probabilities given
by (1). Under mild conditions (for instance, for all

), is irreducible and aperiodic. We will assume
to be an irreducible and aperiodic Markov chain throughout
this paper. Let be the number of arrivals during the th slot
to the th user with . Let the Bernoulli random
variable denote departures1 from queue in time slot . Note
that captures the MPR receptions as well as the ALOHA
random-access transmission of user in time slot . Then the
queue evolution for the th queue has the well known form [4]

(5)

where denotes .

III. MAC CAPACITY

For the reception model defined by (1), we now define the
notion of capacity region ( ) of the network. Suppose that at

, all users in the network have infinitely many packets to
send to the receiver. One may ask what possible long-term rates
the reception model specified by (1) can support or achieve with

1The process fY g represents departures in the sense that Y = 1

implies that a packet from queue j was successfully received in slot t only
when Q > 0. However, we could have Y = 1 even when Q = 0 [14].

optimal centralized scheduling. Here, we neglect the effects of
source burstiness and thus the long-term “achievable” rates de-
pend only on the reception model.

Let be the set of successful transmissions when the
set of users transmit in slot under scheduling policy .
We allow the scheduling policy to be a function of the history
of the network, viz., all the past arrivals and the packet success
outcomes. The scheduling policy can be randomized as well.

Definition 1: A rate is called achievable
if there exists a scheduling policy ( ) with delivery rate at least

, i.e.,

a.s. (6)

Capacity region ( ) is the closure of the set of all achievable
rates.

This notion of “achievable” rate has been used before in [11],
[15]. The following theorem provides a simple way to compute

in terms of the marginal probabilities of success of each user.

Theorem 1: A rate is achievable if and only if there exists
a probability measure such that

(7)

Proof: Refer to [14].

The above result shows that is the convex hull of the -tu-
ples consisting of the marginal reception probabilities of the
users in all possible transmission scenarios. Intuitively, the
achievability part of the proof follows by observing that if a
scheduler chooses the subset of transmitting users with proba-
bility i.i.d. in every slot, then satisfying (7) is achievable.
Note that a direct consequence of the above theorem is that the
capacity region is convex.

Fig. 2 shows the two-user capacity region for two different
reception models. Clearly, the convex hull can take only two
possible forms; either it is a triangle (Fig. 2(a)) or it is a quadri-
lateral (Fig. 2(b)). For the case of Fig. 2(a), optimal scheduling
is equivalent to TDMA where to achieve any rate in the capacity
region, it suffices to allow only one user to transmit in a slot. On
the other hand in the case of Fig. 2(b), the scheduler has to con-
sider allowing both users to transmit simultaneously to achieve
some rate pairs.

IV. MAC STABILITY REGION

Before we proceed to derive some of the results of the next
section, a few definitions are in order. We use the definition of
stability used by Szpankowski [4].

Definition 2: A multidimensional stochastic process
is stable if for the following holds:

and (8)

If a weaker condition holds, viz.,

(9)
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Fig. 2. (two-user case) under different reception models. (a) +

< 1. (b) + > 1.

then the process is called substable. Further, the process is said
to be unstable if it is not substable.

The related concepts of stability and substability have been
well studied (see [4], [5]). For a queueing system, stability can
be interpreted as the convergence of the queue lengths in dis-
tribution to a proper random variable (viz., a random variable
that is finite with probability one) or, equivalently, the exis-
tence of a proper limiting distribution. As mentioned before,
with ALOHA, the queue process is an aperiodic and ir-
reducible Markov chain on a countable state space. It can be
shown that for , the notions of stability and substability are
equivalent and stability is equivalent to the existence of a unique
stationary distribution (see [16]). Though the transition matrix
of depends on the reception probabilities given by (1), we
will see that the stability properties of can be character-
ized with only the marginal probabilities of success of users
( ).

It would be natural to expect the stability of a queueing system
to depend on the average arrival rate and average service rate.
This intuition is made concrete by the Loynes’ theorem [17]
which says that if the arrival and departure processes of a queue
are strictly stationary and ergodic then i) the queue is stable if
the average arrival rate is less than the average departure rate
and ii) the queue is unstable if the average arrival rate exceeds
the average departure rate. This motivates the following charac-
terization of stability.

Definition 3: For an -user multiple-access system with a
given MAC protocol and arrival process distribution, the sta-
bility region is defined as the closure2 of the set of arrival rates

for which the queues in the system are
stable.

In particular, for the -user slotted ALOHA system defined
in Section II, the stability region is defined as the set of arrival
rates for which there exists a transmission
probability vector such that the queues
in the system are stable. We will denote the stability region of
ALOHA by . We define the stability region ( ) to be

2Generally, it is difficult to characterize stability on the boundary of the sta-
bility region. The set operation of closure allows us to conveniently get around
stability properties of points on the boundary of the stability region.

the union of the stability regions over all MAC protocols (for
the reception model given by (1)).

The capacity region characterizes the set of departure rates
that are supported by centralized scheduling whereas the sta-
bility region provides the set of stable arrival rates with all
MAC protocols. Here, note that we also consider MAC proto-
cols with memory, viz., the MAC scheme can allow users to
transmit based on the past history of the channel outcomes. In-
tuitively, we expect the stability region of any MAC protocol to
be contained within the capacity region since in a stable system,
the arrival rate is equal to the departure rate3.

Theorem 2: For the -user random-access system with re-
ception model specified by (1), .

Proof: Refer to [14].

Thus, provides a simple easily computable upper bound
to . However, unlike the capacity region, the stability
region of ALOHA is not easy to characterize. We have the fol-
lowing relation: .

V. STABILITY AND OPTIMALITY OF ALOHA FOR

A. Stability Region of ALOHA

We first find the stability region for the case for the
general reception model given by (3). We will show that the mar-
ginal probabilities given by (4) are alone sufficient to charac-
terize the stability region of ALOHA.

Define , , and
. Thus, and denote

the difference between the (conditional) probability of success
in the absence of interference and the (conditional) probability
of success in the presence of interference for the users. For the
collision channel, whereas for orthogonal chan-
nels, .

To find the stability region, we first find the stability region of
the ALOHA system for a fixed transmission probability vector

( ). The following lemma gives us exactly that.

Lemma 1: If and , the stability region of
slotted ALOHA for the general packet reception model for a
given ( ) is given by

for (10)

and

for (11)

where

and

Proof: We use the idea of stochastic dominance and an
argument similar to that by Rao and Ephremides [3]. Refer to
the Appendix for details.

3In fact, in [18], it is shown that under certain general conditions on the recep-
tion model, = . Further, there exist cases when � . A simple example
can be found in [18].
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Fig. 3. Stability region for a fixed transmission probability vector [p ; p ].

The stability region of ALOHA with fixed for the
following well-known cases are as follows.

a) Orthogonal channel: In this case, . By
Lemma 1, the stability region is the two-dimensional box
in the nonnegative quadrant bounded by the lines ,

, . and .
b) Collision channel: Since in this case,

and . The stability
region is

for (12)

and

for (13)

Irrespective of the reception model, the stability region for a
given has a form as shown in Fig. 3. The conditions

and are equivalent to the probability of success of
any user in the presence of interference (from the other user)
be no greater than the probability of success in the absence of
interference—a reasonable and practical assumption. Note that
although Fig. 3 shows the stability region for a fixed to be
convex, it need not be convex as varies over . It follows
from Lemma 1 directly that the stability region of ALOHA in
the two-user case depends only on the marginal probabilities
of success of the users since and depend only on the
marginals.

Using

we give a complete description of the stability region of
ALOHA with the following lemma.

Lemma 2: If and , then the stability region
of slotted ALOHA ( ) for the general reception model
is given by where

lies

below the curve

(14)

and

lies

below the curve

(15)

where

(16)

where

and (17)

If either or equals zero, then we assume and the
result still holds.

Proof: Refer to the Appendix.

We note a few interesting properties about the stability region.
First, the function characterizing the stability region in (16)
is linear for some part of the domain and is strictly convex
in the remainder of its domain . The stability region for the
two-user collision channel can be found as a special case with

, , , and and it is
bounded by the curve , which is strictly convex
everywhere. In fact, it is easy to see that the interval where
is linear has nonzero Lebesgue measure as soon as there is a
nonzero probability of success in the presence of interference,
i.e., . Thus, there is a characteristic
change in the structure of the stability region as soon as we have
multipacket reception. Second, we see that there is a symmetry
in the way the two regions and are defined in terms of
the function .

We now provide one of the main results that gives a structural
characterization of the ALOHA stability region.

Theorem 3: Let and . Assume , i.e.,
nonzero probability of success in the presence and absence of
interference. Then, the following are equivalent.

1) is convex.
2) is a polyhedron.
3) The marginal reception probabilities satisfy

(18)

4) .
5) is optimal in the sense that

.
If is nonconvex, then it is bounded by lines close to
the axes and by a strictly convex function in the interior.

Proof: Refer to the Appendix.

Fig. 4 shows the stability regions characterized by the vector
as given by Theorem 3. For the collision channel, the stability
region is nonconvex and bounded by a strictly convex curve. As
soon as there is (weak) MPR, the stability region is bounded by
lines near the axes and a nonlinear strictly convex function else-
where. After a certain critical MPR level ( ) is reached,
the stability region becomes a convex polyhedron. Thus, there is
a critical point for the vector at which the behavior of the sta-
bility region makes a phase transition from a very complex form
to a much more simpler form (a quadrilateral). Further, this crit-
ical point depends only on the sum of the ratios of probability
of success of users in the presence of interference to that in the
absence of interference.



NAWARE et al.: STABILITY AND DELAY OF FINITE-USER SLOTTED ALOHA WITH MULTIPACKET RECEPTION 2641

Fig. 4. for different reception models with q and q fixed.

The condition of the stability region being a convex polyhe-
dron corresponds to a regime in which when one user increases
his rate, the other user’s maximum supportable rate decreases
linearly, and that too at a rate which is low until a certain
point and then suddenly increases. Another interpretation is
that when the stability region is convex then higher sum rates
can be achieved. In addition, when the stability region is convex
we know that if two rate pairs are stable then any rate pair
lying on the line segment joining those two rate pairs is also
stable. When equality holds in (18), the stability region is a
triangle as shown in Fig. 4. All the rate pairs in this region can
be stabilized by TDMA schemes (even in a collision channel).
Thus, the condition gives us the regime
in which a distributed strategy like slotted ALOHA can do
better than a TDMA scheme.

When is not a polyhedron, it has a much more com-
plex form. This is also the regime in which the stability region is
not convex. In this regime, when one user increases his rate the
other user’s rate has to be reduced drastically in order to keep
the system stable.

B. Optimality of ALOHA

Equivalence conditions three and four in Theorem 3 specify
the regime of MPR capability where slotted ALOHA is optimal.

implies that ALOHA can stabilize all rates that
can be stabilized by any centralized or decentralized MAC pro-
tocol. Note that the point from where slotted ALOHA is optimal
coincides with the phase transition point of the ALOHA stability
region.

In order to stabilize a rate within the stability region of
ALOHA, one has to choose an appropriate transmission prob-
ability which, in general, is a function of the arrival rate.
But the surprising observation when the stability region is
convex, is that . This implies that
when the stability region is convex, both users should always
transmit packets (if they have any) to stabilize any stabilizable
rate and no transmission control is required. We call this de-
generate instance of ALOHA “persistent ALOHA.” Note that
with centralized scheduling, to stabilize a particular rate the
scheduler has to allocate a proportion of time for each possible
subset of transmitting users. But the preceding result implies
that there is no need for “scheduling” any transmissions. The
strategy—transmit if you have packets—will do. The reason
for this is that the users’ queues empty out ever so often as a

Fig. 5. Regions showing optimal allocation of resources to PHY and MAC
layer for all MPR models.

result of which there is a proportion of time when the users
are transmitting alone. This pseudo scheduling of users auto-
matically takes care of stabilizing the queues for the particular
arrival rates.

The implication for cross-layer design is clear—if we can
design a reasonably strong physical layer, then there is no
need for a sophisticated MAC layer. Intuitively, it is quite clear
that as the ability of the physical layer to orthogonalize users
increases, then the need for random-access protocols does not
arise. However, surprisingly we find that the point at which
we could dispense the MAC layer comes well before we have
an ideal physical layer. Equation (18) gives both the metric
for measuring the MPR capability and the condition under
which the MAC layer is dispensable.

Fig. 5 shows how the knowledge of MPR capability can help
in designing a better MAC layer. In a low-MPR regime, the
physical layer is weak; a larger amount of resources should be
allocated to the MAC layer. On the other hand, if we allocate
more resources to the physical layer (with advanced signal pro-
cessing) thereby guaranteeing a strong MPR channel, no re-
sources are needed at the MAC layer; persistent ALOHA is
optimal.

VI. STABILITY OF ALOHA FOR THE CASE

Little progress has been made in giving an exact characteri-
zation of the stability region of ALOHA for the case. In
this section, for a symmetric MPR channel, we provide condi-
tions under which persistent ALOHA is optimal among all MAC
protocols. For the more general asymmetric MPR channel, we
provide sufficient conditions for stability.
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A. Symmetric MPR, Symmetric Arrivals Case

For completeness, we first provide the symmetric MPR re-
ception model introduced by Ghez, Verdú, and Schwartz [7].
Multipacket reception is parametrized by a matrix whose en-
tries are given by

packets are successfully

received packets are transmitted (19)

Thus, we can write as

...
...

...
. . .

(20)

This channel model is general enough to model the collision
channel and the capture channel as special cases. The corre-
sponding MPR matrices for the collision channel, and the cap-
ture channel are, respectively,

...
...

...
. . . ...

...
...

. . .

where denotes the probability of capture given simultaneous
transmissions. We also define

which is the expected number of correctly received packets
given packets are transmitted. By symmetry of this recep-
tion model, it follows that is the marginal probability of
success of any one of the users that transmit in a slot.

Consider an -user symmetric system with each user having
an arrival rate . Let be the -tuple representing the queue
lengths of users at time . Given a reception model and a MAC
protocol, we can define the maximum stable throughput to be
the supremum of all arrival rates such that is stable. For
example, the maximum stable throughput of ALOHA for a
given transmission probability (denoted by ) is the
supremum of all arrival rates such that is stable. Further,
we define the maximum stable throughput of ALOHA to be

Let denote the supremum of the maximum stable throughput
over all MAC protocols. By definition, . We also
have the following.

Corollary 1 (To Theorem 2): For the -user symmetric
system with symmetric MPR reception model given by (19)

(21)

Proof: By Theorem 2, for any stable arrival rates
, there exists a probability measure

such that

Summing over gives

(22)

where (22) follows from user and MPR channel symmetry.
Thus, the maximum stable throughput of any MAC protocol is
upper-bounded by .

Since for some , , we can conclude
that a sum rate of can be achieved by centralized scheduling
of all sets consisting of users. The above result is analogous to
the result for the two user case.

The following theorem extends Theorem 3 to the symmetric
case.

Theorem 4: For the symmetric MPR channel, let

(23)

Then, the following are equivalent.

1) The reception probabilities satisfy

(24)

2) .
Proof: Refer to the Appendix.

Theorem 4 shows that there is a regime for which ALOHA
with transmission probability one, i.e., persistent ALOHA is op-
timal among all MAC protocols. Equation (23) is equivalent to
the condition that the probability of packet success per user de-
creases as interference increases. Equation (24) ensures that the
expected number of successful receptions is maximized when
all users transmit.

Note that for the orthogonal channel case, and
obviously persistent ALOHA is optimal. As in the two user case,
we see that persistent ALOHA is optimal for a much larger class
of symmetric MPR channels as specified by (24) and (23).

It is interesting to compare our results with those of [19]
in which the problem of scheduling transmissions for the
downlink of a multiple-antenna cellular system is considered.
Viswanath, Tse, and Laroia show that from an information-the-
oretic point of view, a good strategy for the base station is to
employ “dumb” antennas (in the sense of not doing any signal
processing other than that in a single-antenna system) and
implement “smart” scheduling (in the sense of scheduling users
who have the best channel at that time). Thus, they show that
more resources should be allocated to scheduling than to the
physical layer for the downlink. Our problem is in some sense,
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a conceptual dual of the downlink problem. Our results apply to
the uplink of a multiple-antenna cellular system, and since we
wish to address source burstiness, we choose the framework of
random access. In contrast to [19], our results show the tradeoff
involved in allocation of resources to the MAC and the physical
layer.

Apart from the symmetric case, we cannot say whether such
a result would carry over to the finite user case . How-
ever, we can still extrapolate our two-user results for systems
with by orthogonalizing all users into groups of two
and implementing optimal scheduling or persistent ALOHA de-
pending on the level of MPR capability available in each group.
For example, one could think of separating users based on their
spatial locations into groups of two in such a way that no group
interferes with another group. This could be achieved by re-
ceiver beamforming at the base station or other spatial diversity
techniques. Though this technique is suboptimal, it shows how
a tradeoff between MAC layer complexity and physical layer
complexity can be achieved.

B. Sufficient Condition for the Asymmetric Case,

Deriving stability conditions for the asymmetric case
is quite hard even for the collision channel model. Nonetheless,
for a fixed transmission probability vector ( ), Szpankowski
[4] gave a sufficient and necessary condition for stability of the
ALOHA system with the collision channel model for the
case. In this subsection, we restrict ourselves to finding sufficient
conditions for stability for the general reception model for a fixed
transmission probability vector ( ). The main ideas involved
here are those of stochastic dominance and of constructing
suitable dominating systems for which stability conditions are
easier to determine. The way to construct such dominant systems
is to assume that some of the queues in the system continue to
transmit interfering dummy packets even when they are empty.
Because of the dominance, sufficient stability conditions for
the dominant system are enough for the original system as
well. For the collision channel, such systems are known to
stochastically dominate the original ALOHA system [2].

Let be a partition of such
that users in behave just like those in the original
ALOHA system while those in continue to transmit dummy
packets even when their queues are empty. We call users in
persistent and those in nonpersistent. For a partition defined
above, let denote the ALOHA system where users behave as
specified by . Further, let denote the queue
lengths in .

We note that the marginal reception probabilities given by (2)
are not enough to characterize the probability transition matrix
for . However, we find that the marginal probabilities given
by (2) are enough to find sufficient conditions for stability of
even for . We conjecture that the marginal probabilities of
success are sufficient to completely characterize the stability re-
gion for a fixed transmission probability. For a slotted ALOHA
system with set of (nonpersistent) users , we denote the set of
marginal probabilities of success of all the users by . More
precisely, if , where is defined by (2) then

(25)

We also assume that the reception probabilities ( ) permit
to stochastically dominate the original system.

The point to note is that the -dimensional process
is also a Markov chain which mimics the original ALOHA

system [4] except with modified reception probabilities (
). Thus, we can use induction arguments

to establish its stability. More precisely, for any and
, the modified reception probabilities for the smaller ALOHA

system consisting of the stand-alone nonpersistent set become

(26)

Now, suppose that the Markov chain is stationary and er-
godic. We denote the stationary version of queue lengths in the
nonpersistent set by . If we initialize with its stationary
distribution, the departure process from th users’ queue in
is also stationary and ergodic. Let and
define

where is the indicator function. Also, for

define

For , let be the probability of success of the th
user in in the stationary version constructed above. Then,
we have

(27)

Now define a region recursively as

and (28)

with .
Now, we claim the sufficient condition for stability in the form

of this theorem.

Theorem 5: Under conditions of stochastic dominance of
over the original ALOHA system, if , then the

ALOHA system is stable. In other words, .
Proof: Refer to [14].

The reasoning behind why is sufficient for sta-
bility is quite simple; for a particular partition ,
is sufficient for stability (by induction arguments) of the Markov
chain consisting of the nonpersistent set and this makes the de-
parture process for queues in the persistent set stationary and
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ergodic. Then, is sufficient for stability of
persistent queues by Loynes theorem. Thus, is stable and by
virtue of stochastic dominance, the original system is stable.

As an example, consider the asymmetric orthogonal channel
case. The inner bound for the stability region given by The-
orem 5 for this case is actually tight. This follows since for or-
thogonal channels we have

(29)

It is easy to check that the reception probabilities satisfying (29)
are sufficient for stochastic dominance. Further, it can also be
easily seen that the region for a fixed transmission prob-
ability vector is given by

(30)

Clearly, is the best policy in such a case. Similarly, for
the case of orthogonal doublets, the sufficient condition given by
Theorem 5 is tight since in this case, for
all the orthogonal doublets. However, the sufficient condition
given by Theorem 5 is too difficult if not impossible to evaluate
in practice in general. This is because evaluating the stationary
distribution of the queues for with arbitrary input dis-
tributions in closed form is an unsolved problem as observed in
[4], [5], [20], [21].

VII. MPR THROUGH MULTIPLE ANTENNAS: AN EXAMPLE

A. Two-User Case

To get more insights into the analytical results in Section V,
we now apply our results to a two-user scenario to compare
different receiver front-ends.

We consider two users, each communicating with a central
base station that employs a linear array of antennas. The
two users use slotted ALOHA as the MAC. We assume that
the slots are synchronized. The two users are located relatively
far away from the base station at fixed angular positions

with respect to the array normal. We assume that most
of the energy from user transmissions is received from a planar
wavefront arriving at the angle . Under these assumptions, we
can describe the received signal at the base station as

(31)

where is a Vandermonde matrix of array responses,
is a diagonal matrix of channel (flat) fading for the

two users, is a vector of users’ transmitted symbols,
and is additive white Gaussian noise.

We also assume slow channel fading that is independent for
the two users and i.i.d. from slot to slot. For our numerical
results, we assume Rayleigh fading with zero mean and co-
variance matrix . User symbols (

) are independent of each other and the channel fading with
. We also assume noncoherent receiver

operation, i.e., the base station does not know the channel re-
alization, when it implements the front-end. We consider the

effect of coherent receiver operation and knowledge of queue
statistics at the base station in [22]. We represent the front-end
processing by (the th row of is the set of beamforming
weights for the th user) as follows:

(32)

The most important assumption we make is that of the signal-to-
interference-plus-noise ratio (SINR) threshold model for packet
success, i.e., a packet is successfully received and decoded for
user if

SINR (33)

where the expectation is taken over user symbols and noise. In
the above, and is a threshold which depends
on the quality of service requirement. Under the SINR threshold
model, the vector of packet success probabilities for a partic-
ular can be found as

The explicit computation of is provided in [14]. We now con-
sider the performance of three different front-ends for the above
system.

1) Decorrelating or Zero-Forcing (ZF): is the pseudoin-
verse of .

2) Matched Filter (MF): .
3) Pseudo-MMSE (pMMSE): For this receiver,

where is the correlation matrix of assuming both
users transmit. Note that the perfect MMSE receiver needs
to know which users are transmitting and the channel re-
alizations in order to find the optimal weights.

Using the stability region as a figure of merit, we can now
compare the stability regions of these front-ends in various sit-
uations of interest.

1) Symmetric Case: In this case, the channels for the two
users are symmetric, i.e., . In Fig. 6, we see sta-
bility regions for the three different front-ends when the two
users are relatively close, . We observe that in this
rather pessimistic scenario, when one of the users demands a
very low rate (close to the axes) the MF performs better than the
ZF and pMMSE. This is not surprising since the MF is optimal
if only one user transmits; the ZF suffers from noise enhance-
ment, whereas the pMMSE assumes that both users transmit in
every slot. On the other hand, the ZF and pMMSE perform much
better than the MF when both users demand an equal rate since
in that case both the ZF and pMMSE suppress the interference
from the other user better than the MF. We also note that the
stability region of the ZF is a rectangle, since the ZF decouples
the two users’ signals.
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Fig. 6. M = 10, ��� = [54; 63], threshold = 10 dB, channel~gain = 3 dB.

2) Asymmetric Case: Fig. 7 shows the situation when the
second user has a very good channel as compared to the first and
the users are almost collinear, . We see a near–far
effect with the ZF and pMMSE front-ends, whereas the MF per-
forms very well. It is not surprising since the MF does not re-
ally attempt to null out the other user while the ZF and pMMSE
do that. Because of the angular proximity, the ZF and pMMSE
suffer. We also note that the stability region of the pMMSE con-
tains the stability region of the ZF receiver in Figs. 6 and 7.

VIII. DELAY PERFORMANCE OF ALOHA FOR

CAPTURE CHANNELS

Now, we consider characterizing delay in slotted ALOHA
systems with multipacket reception. Sidi and Segall [23] ana-
lyzed delay in buffered ALOHA type systems and found the
exact average delay in a two-user system with symmetric arrival
rates and transmission probabilities under a collision channel.
They also found optimal transmission probabilities to minimize
delay. Further, Nain [24] calculated the exact delay in the two-
user case for asymmetric arrivals and transmission probabilities
assuming a collision channel. The technique used to find delay
involves solving a functional equation in the generating func-
tion of the joint stationary queue length distribution. This func-
tional equation can be solved by formulating a Riemann–Hilbert
boundary value problem [25], [26]. It is indeed quite surprising
that there are no results on the “exact” delay of ALOHA for
this queueing model apart from these two. Takagi and Klein-
rock [27] use a similar approach to find average delay in a two-

user buffered carrier-sense multiple-access/collision detection
(CSMA/CD) system with a collision channel. There is also a
line of work that computes bounds on average delay for
for the collision channel [2], [21], [28], [29], and for a more
general symmetric MPR model [9]. There are quite a few other
results on delay of ALOHA but they are for different queueing
models, viz., infinite user single buffer, finite user single buffer.
These models do not quite capture the interdependence among
the queues and its effect on delay. The limited results found sug-
gest that characterizing delay in ALOHA systems is a nontrivial
task.

In this section, we characterize delay for a subclass of MPR
channels, viz., capture channels. In a capture channel, there is
a chance that at most one user has a successful packet trans-
mission even if many users transmit in that slot. In some sense,
it is an elementary generalization of the collision channel with
probabilistic receptions. We focus our attention on the two-user
symmetric ALOHA system. We assume that every user has an
infinite buffer in which he can store arriving and backlogged
packets. The arrivals to the th user are i.i.d. in
every slot. The arrivals are independent across users. The re-
ception model is like the one in the preceding sections.

By definition, for a capture channel, . Let
and . Further, we

assume (to use results of the previous sections). Note
that the capture model implies that and . Also,
let and be the transmission probability of both
users.
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Fig. 7. M = 10, ��� = [54; 58], threshold = 10 dB, channel gains= [3, 13] dB.

Theorem 6: Let be the average delay for either user in
the symmetric capture channel. If the system is stable, i.e.,

(34)

Proof: Refer to the Appendix.

From (34), we observe that the delay is an increasing function
of , as expected.

Next, we look at the problem of optimizing the transmission
probability ( ) to minimize the average delay. We find that
as soon as there is capture capability, the optimal transmission
probability is one for a set of arrival rates of the form
with . Thus, persistent ALOHA is delay optimal in the
class of ALOHA protocols with fixed transmission probability
for small arrival rates.

Lemma 3: Let be the optimal transmission probability for
minimizing delay in the capture channel. Then,

(35)

where

(36)

and

.
(37)

In the above

Proof: Refer to [14].

Lemma 3 gives explicitly in terms of the capture channel
parameters and the arrival rate . As a direct consequence of
Lemma 3 we have the following theorem.

Theorem 7: For the capture channel with , the
optimal transmission probabilities can take only two possible
forms, as follows.

1) If , then the optimal transmission probability is
one for a nonempty proper subset of all stable rates of the
form with .

2) If , then the optimal transmission probability is
one for all stable arrival rates.

Proof: For a fixed , from Lemma 3 note that

It can be shown that is a strictly increasing function of for a
fixed value of . Thus, as soon as we have capture ( ),

and there is a set of rates for which is the
best policy for minimizing delay. As long as , we have
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Fig. 8. Generic optimal transmission probabilities for capture channels.

. On the other hand, when ,
from Lemma 3

(38)

and so is delay optimal for any rate which is stabilizable.

Note that for , , and there is a set of
rates for which the optimal transmission probability is still a
function of the arrival rate ( ). Thus, also happens to be
the point where the optimal transmission probability ceases to
be a function of the arrival rate. We refer to as the critical rate
since rates below are delay optimized by persistent ALOHA.
In Section V, we have already shown that is the maximum
stable arrival rate for the capture model.

Fig. 8 shows the generic optimal transmission probabilities
as a function of the capture channel parameters. It is interesting
to compare the structure of the stability region along the equal
rate line with the optimal transmission probability for different
capture models. Note that is also the point from which
persistent ALOHA is optimal from a stability viewpoint. Thus,
persistent ALOHA is optimal from both delay and stability
viewpoints when .

Fig. 9 shows the set of transmission probabilities that stabilize
the ALOHA system for different arrival rates in a weak capture
( ) case. The maximum and minimum stabilizing trans-
mission probabilities are the solution to the equation

and thus form a parabola which is truncated since
the maximum transmission probability can be at most one. The
point at which the maximum and minimum transmission proba-
bilities coincide corresponds to the maximum stable arrival rate

. The delay optimal transmission probability lies in the fea-
sible region in the interior of the parabola.

Now, we look at the delay results in various situations of
interest.

Fig. 10 compares the critical rate with maximum stable arrival
rate for all possible capture scenarios. We see a phase transition

here that occurs at the point . As long as , per-
sistent ALOHA is only optimal for a subset of the stabilizable
rates. On the other hand, as soon as , persistent ALOHA
is optimal for all stabilizable rates. Note that all rates below the
solid curve are delay optimized by persistent ALOHA.

A. Delay Comparison of Different Capture Channels

Fig. 11 compares the minimal delay for three capture sce-
narios. In this case, we increase and decrease progressively.
It can be seen that at low arrival rates the capture model with

, is marginally better than the other capture
models. At higher arrival rates, the capture model with ,

is significantly better than the others. Thus, it seems
that for minimizing delay, “multiuser” receiver design is much
better than the omnipresent “single-user” designs.

Fig. 12 compares the minimal delay in collision channel
, with the delay in strong capture scenarios. It illustrates

the significant average delay reduction that can be achieved with
the strongest capture model , . We also note that
the minimal delay in this strong capture model ( , )
is quite close to one for arrival rates up to . Since the average
delay is lower-bounded by one, this suggests that ALOHA is
quite close to optimal for a large class of arrival rates for strong
capture models.

B. Delay Comparison With Fixed “ ”(or “ ”)

Figs. 13 and 14 show minimal delay as a function of the arrival
rate for fixed and fixed , respectively.
In Fig. 13, the curves are far apart as compared to those in
Fig. 14. The figures show that the delay is much more sensitive
to changes in than .

At this point, it is not clear what would happen if we had a
stronger reception model than the capture model we have con-
sidered in this work. First of all, the technique used to find the
average queue length fails as terms corresponding to probability
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Fig. 9. The optimal and stabilizing transmission probabilities for a = 0:5, b = 0:1.

Fig. 10. Maximum stable throughput versus critical rate q = a = 0:5.
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Fig. 11. Comparison of delay for various capture scenarios, q = a = 1; 0:9; 0:8, q = b = 0:2; 0:3; 0:4.

Fig. 12. Comparison of delay for capture scenarios with the collision channel, q = a = 1; 1; 1, q = b = 0:5; 0:25;0.
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Fig. 13. Comparison of delay for various capture scenarios, q = a = 0:8; 0:8;0:8, q = b = 0:3; 0:4; 0:5.

Fig. 14. Comparison of delay for various capture scenarios, q = a = 0:9; 0:8;0:7, q = b = 0:4;0:4;0:4.
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of success of both users simultaneously lead to some complica-
tions. However, we conjecture that even with a stronger (sym-
metric) reception model, i.e., , would mini-
mize the delay. The intuition behind this belief is that there is no
reason for the users to hold back transmissions in the presence
of a stronger reception model.

We also suspect that the delay results that we have will be
upper bounds on delay of MPR models which have the same
marginal reception probabilities as the capture model we con-
sider, i.e., for MPR models with and
with .

IX. CONCLUSION

In this paper, we considered the problem of characterizing
stability and delay behavior of slotted ALOHA for multipacket
reception models intended to capture the behavior of an im-
proved physical layer. It was shown that the stability region of
slotted ALOHA for the two-user case has only four possible
forms and that the stability region shows a phase transition from
nonconvexity to convexity as the MPR capability increases.
After the phase transition, slotted ALOHA was shown to be
optimal among all MAC protocols from the point of view of
stability. It was also found that when slotted ALOHA is op-
timal, ALOHA with a transmission probability one (referred
to as persistent ALOHA) is optimal. This suggests that after
a certain level of MPR capability is provided by the physical
layer, MAC layer design is simple; no transmission control is
the best policy. Further, it was shown that persistent ALOHA
is also optimal for the case for the symmetric MPR
model in a wide range of MPR regimes. Generalizing the
stability region results to the finite user case seems a rather
nontrivial task and although we have been able to provide
some sufficient conditions for stability, they are difficult to
check. Exact expressions for delay-minimizing transmission
probabilities and the exact average delay of slotted ALOHA for
a subclass of MPR models (capture channel) for the two-user
case were provided. It was also shown that persistent ALOHA
is optimal from a delay and stability viewpoint for all stable
arrival rates in a certain capture regime and that persistent
ALOHA is always delay optimal for a subset of stable arrival
rates once capture sets in. Our results present a clear case for
the so-called “cross-layer” approach (where a combination of
layers (here physical (PHY) and MAC) are designed jointly
to optimize network performance) by quantifying the gains
that can be achieved through an optimal design of the MAC
based on an accurate model of the physical layer.

APPENDIX

A. Proof of Lemma 1

We construct parallel dominant ALOHA systems in which
one of the queues continues to transmit dummy packets even
when the queue is empty. Dummy packets cause interference
but the successful reception of a dummy packet has no signifi-
cance. It has been shown [3] that for the collision channel model,
these dominant systems stochastically dominate4 the original

4A real random variable X is said to stochastically dominate a real random
variable Y if 8 z 2 ; PrfX > zg � PrfY > zg. We denote this domi-
nance by X � Y .

ALOHA system in the sense that if both the dominant system
and the original system have the same initial queue sizes, both
systems have the same arrivals in every slot, and have the same
“coin tossing” outcomes (that determine transmission attempts)
in every slot, then the queue sizes in the dominant system are
necessarily not smaller than those in the original system. As a
result, conditions for stability of dominant systems are sufficient
for stability of the original system.

Consider a two-user ALOHA system in which queue
1 transmits dummy packets when it is empty. The prob-
ability of success for a packet from queue 2 is always

. However, in the original ALOHA
system, the probability of success in queue 2 would be

if queue 1 were nonempty and
otherwise. If

(39)

the probability of success in queue 2 in the “dummy” packet
transmitting system would always be lower than that in the orig-
inal system. Now consider queue 1. Using standard
queue results, it follows that the average probability of success
seen in queue 1 is

which simplifies to

(40)

Now, if

(41)

queue 1 in the “dummy” packet system also stochastically dom-
inates queue 1 in the original system. This is because if (41) is
true, then the expression in (40) would certainly be less than
the average probability of success in queue 1 in the original
ALOHA system.

Now, by definition and so, by
a simple application of Loynes theorem, we find that the dummy
packet system is stable (with the possible exception of boundary
points) if and only if

(42)

If in addition and , by stochastic dominance the
original ALOHA system is also stable (see Fig. 15).

By a parallel argument for a system in which queue 2 trans-
mits dummy packets, we find that the original ALOHA system
is stable (with the possible exception of boundary points) if

and and

(43)

Combining the sufficient conditions for both the dominant
systems gives the sufficiency part of the lemma.



2652 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

Fig. 15. Stability region of dominant system in which queue 1 transmits
dummy packets.

The necessary part of the lemma follows by an “indistin-
guishability” argument similar to the one used by Rao and
Ephremides [3]. Consider the system in which queue 1 trans-
mits dummy packets. If along some realizations of queue 1 of
nonzero probability, queue 1 never empties, then the original
system and the dummy packet transmitting system are “in-
distinguishable.” Thus, with a particular initial condition, if
queue 1 never empties with nonzero probability in the dom-
inant system (which is equivalent to the Markov chain being
unstable), then queue 1 in the original system must be unstable
as well. Thus, for , is the
boundary of the stability region of the original system as well.
It follows that the conditions given in Lemma 1 are necessary
for stability as well.

B. Proof of Lemma 2

We use Lemma 1. Since we know the stability region for
a fixed transmission probability vector , we need to find the
union of all the stability regions as the parameter varies over

. One way of doing this is to set up a corresponding con-
straint optimization problem, i.e., for a fixed , maximize
as varies over , where and are related by (10)
and (11). The difficulty in using known optimization techniques
is that the objective function is not differentiable at a point in
its domain and so the optimization has to be carried out rather
explicitly.

Replacing by and by , we write the boundary given
by (10) and (11) as

for (44)

and

for (45)

Note that any which satisfies (44) does not satisfy (45)
and vice versa.

Now, we consider the following three cases.

• Case 1: and .
Consider the following constrained maximization

problem where the domain of is unconstrained (i.e.,
)

(46)
Differentiating with respect to

(47)

Equating the derivative to zero gives as

(48)

A simple check on the second derivative shows that the
maximizing is

(49)

But since is a probability, . Also, by (48)

(50)

and so for in the range given by (50), we have by sub-
stituting (49) in (45)

(51)

Now, we consider the constraint on the domain of as
given by (45). For a fixed , (45) is valid only for

. So, we need to show that given by (49) is,
in fact, less than . Clearly

(52)

and, therefore, given by (51) is actually really valid
only in the range of given by the intersection of (52) and
(50). Now observe that for

(53)
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Fig. 16. The appearance of y as a function of x.

This means that is a strictly increasing function of
in the range of given by (53). Thus, the optimizing
in this range of is equal to one. So, we have

(54)

But again we have to check that (45) is really valid. Note
that for , given by (45) is valid for
any . So, given by (54) is also really valid
only in

Fig. 16 shows the behavior of as a function of
as given by (51) and (54).

By an exactly parallel argument applied to (44), we can
show that

for (55)

and

(56)

for

The idea of the proof is as follows: First, we assume
that a rate can be stabilized for the first user and then we
find the highest rate for the second user for which the
second queue is stable. We also note from the preceding
discussion that if

then

for

where is given by (54) for

and (51) for

On the other hand, if

then for , where
is given by (54). But the problem is that the first users’ rate

might, in fact, not be stabilizable. So, we interchange
the users and find the best possible rate for the first user
assuming the second users’ rate can be stabilized. It can
be checked that the point where ceases to be equal
to is exactly the point from where
and vice versa. Therefore, it is clear that the intersection
of the regions below
and , where is de-
fined in (16), is actually the stability region that we seek,
because for any rate pair in this intersection, there exists
a such that the system is stable.

• Case 2: and .
It is obvious from (44) and (45) that in this case the

stability region is the rectangle and
.

• Case 3: and .
For this case, (44) and (45) take the form

for (57)

and

for (58)

Now, if (the only case of interest),
then maximizes in (58) and in this range

(59)

Also, in (57) has a maximum value of . Again,
by arguments similar to Case 1, the stability region is the
region bounded by the lines and

.
The case when and can be handled

similarly.
An equivalent formulation would be to find the geometric enve-
lope of the two-parameter ( ) family of curves which define
the boundary of the stability region given in Lemma 1.
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C. Proof of Theorem 3

We proceed to prove equivalence between the five statements
as follows.

Proof That Part 2) Is Equivalent to Part 3):
a) is polyhedral (18): If and

, then it can be easily seen that the stability region is
bounded by perpendicular lines and (18) is trivially sat-
isfied. If either or is equal to zero, then by Case
3 of the proof of Lemma 2, the stability region is poly-
hedral and (18) holds. So, we consider the case
and . Under our assumptions, the point of inter-
section of the lines defined by (54) and (55) is

. From (54) and (55), it follows that the
stability region is polyhedral if

(60)

and

(61)

which is equivalent to (18).
b) Equation (18) is polyhedral: For the case

, , and or equal to zero, we know
that the stability region is indeed polyhedral. When

and , then (18) clearly implies (60) and (61) and
these equations in turn imply that the stability region is
polyhedral.

Proof of That Part 1) Is Equivalent to Part 2):
a) is polyhedral is convex: Con-

sider the line with -intercept and -intercept

(62)

as shown in Fig. 17. By , if the stability
region is polyhedral, then (18) holds. Also, the point of
intersection of the lines is . So,
we have

(63)

which implies that the point lies
above the line given by (62). Since the stability region is
bounded by two lines, (63) is equivalent to the stability
region being convex.

b) is convex is polyhedral: We will
prove that the contrapositive is true. So, assume that the
stability region is not a polyhedron. Then, by Proposition
1 (proved below) the stability region has a form where the
boundary is a strictly convex function in the middle with
or without lines at the ends. In any case, it follows that the
stability region is not convex.

Fig. 17. The line with X-intercept q and Y-intercept q .

Proof That Part 3) Is Equivalent to Part 5):
We use Lemma 1. Substitute in Lemma 1. Then,

and and it is easily seen that the
stability region with coincides with if and
only if

Proof That Part 3) Is Equivalent to Part 4):
It can be easily verifed that when (18) holds, .

On the other hand, if (18) does not hold, then is a triangle with
vertices , , and whereas from Lemma
2, lies strictly inside this triangle.

Next, we claim the following.

Proposition 1: If is not polyhedral, then the
strictly convex parts of which bound the regions and
in Lemma 2 coincide on the boundary of the stability region.

Proof: Consider the equations

(64)

and

(65)

which are the strictly convex parts of characterizing regions
and , respectively. If we make the substitution

and , then (64) and
(65) become

and
(66)

Solving the equations in (66) simultaneously gives

(67)

It follows that any which satisfies (67) satisfies (66) as
well. In other words, all the points which satisfy (64) also
satisfy (65) and vice versa and we are done.
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The above claim guarantees that the nonlinear portions of the
function in Lemma 2 coincide for regions and . This
implies that the nonlinear boundary of is a strictly
convex function since is strictly convex.

D. Proof of Theorem 4

From [30], it can be shown (as a special case) that for a finite
( )-user system, with symmetric arrival rate, a symmetric
MPR reception model as given by (19), and transmission prob-
ability , under the following stochastic dominance condition:

(68)

the maximum stable throughput of ALOHA is given by

(69)

Now, note that

(70)

Clearly, if then the above inequality
is satisfied with equality for . By Corollary 1, it follows
that . The
converse follows directly.

E. Proof of Theorem 6

Let denote the queue length of the th user in time slot

. Let , denote the number of packets that
arrive at the th users’ queue in time slot . Let be the
moment-generating function of the joint arrival process. Thus,

(71)

Then, from the queue evolution (5), it can be seen that

(72)

By Lemma 1, if , then the ALOHA system
is stable. Since, is an irreducible, aperiodic Markov
chain, stability is equivalent to existence of a unique stationary

(limiting) distribution. Let be the moment-generating
function of the joint stationary queue process, viz.,

(73)

Now, note that

Using an approach similar to ([23], [24]), from (72) it follows
that satisfies the following functional equation:

(74)

where

(75)

As observed by Sidi [23], the above functional equation cannot
be solved for easily. However, (74) can be used to
compute the average delay as follows. First, use the fact that

and (symmetry) to find

(76)

Let . From (74), we can show that

(77)

and

(78)

It follows by symmetry that

(79)



2656 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

Substituting (79) in (78) and eliminating from (77) and
(78) gives

(80)

Since is equal to the mean queue length of the users,
a simple application of Little’s theorem gives us the mean
queueing delay ( ) as

(81)
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