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Abstract— We consider the problem of stability of slotted ALOHA
for a system consisting of N users communicating with a common
receiver, which employs spatial diversity to receive multiple transmissions
simultaneuosly. We introduce a general packet reception model to
incorporate multiple packet receptions since the collision channel model
is no longer valid in such a scenario. We characterize the stability region
of slotted ALOHA for the two user case explicitly. We also provide
a sufficient condition for stability of slotted ALOHA for the N > 2
case. Finally, we apply our results to a simple system in which two
users communicate with a base station equipped with a linear antenna
array. Using stability region as a performance measure, we compare
four different receivers/beamformers viz. Matched Filter, Zero Forcing,
pseudo-MMSE and true MMSE employed by the base station to receive
information from the users.

I. INTRODUCTION

The recent surge of interest in multiple antenna wireless systems
has once again brought into focus the ability of the physical layer
to utilize spatial diversity for increasing capacity. Most of the effort
in utilizing the spatial diversity at the Media Access Control (MAC)
layer has been directed either towards modifying existing protocols
like ALOHA, CSMA etc. [10] -[15] or design of new MAC protocols
to exploit directional antennas and smart adaptive antenna arrays [16]-
[20]. In systems with spatial diversity, the main issues that need to
be addressed are the design of signal processing techniques for the
multiple antenna receiver at the physical layer and keeping buffers of
packets on the transmitter side under control at the MAC layer. One of
the most significant characteristics of such systems is the possibility
of receiving information from more than one user simultaneously.
To date, the issues of multiple antenna receiver design and buffer
stability have been looked at almost in isolation. Our main goal in
this paper is to look at the aforementioned problems jointly i.e., to
see how signal processing techniques like beamforming affect buffer
stability. In particular, we restrict ourselves to slotted ALOHA as the
MAC layer protocol and examine the effect of Multipacket receptions
on buffer stability.
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In Figure 1, we show the regions of buffer stability i.e., the rate
pairs (in terms of packets/slot) for which queues are stable for slotted
ALOHA with the collision channel and with perfectly orthogonal
channels (no interference). For orthogonal channels we have a unit
square, whereas for the collision channel we have a complex form
[1]. Our motivation was to look at the behavior of the stability region
when the diversity we have lies in between these two extreme cases.
We find that the stability region makes a smooth phase transition from
concavity to convexity as we move from one extreme to another. In
other words, as we allow multipacket receptions to become more
likely there comes a point at which the stability region becomes
convex. More surprisingly, we find that the stability region is bounded
by lines as soon as it becomes convex.

In [7]-[9], a packet radio system is analyzed in which a multiple
beam adaptive array is used at the base station to separate users
signals. The authors characterize the performance of slotted ALOHA
for such a system in terms of the throughput, assuming the users
have single packet buffers. In [6], Ghez et al. consider the stability
of ALOHA for an infinite user slotted channel with multipacket
reception (MPR) capability. In such a channel, the number of packets
successfully received in a slot is a random variable which depends
only on the number of attempted transmissions in that slot. Thus,
this model can capture the event of simultaneous packet successes
although it is not sufficient to capture asymmetry among users since
all users are treated equal by the model, which need not be true for
a multiple antenna wireless system.

Tsybakov and Mikhailov [1] initiated the study of the slotted
ALOHA system in terms of the stability of queues at each of the
terminals in the system. They found separate necessary and sufficient
conditions for stability of the queues in the system using the principle
of stochastic dominance. They also found the stability region for the
two-user case explicitly. Rao and Ephremides [2] explicitly used the
principle of stochastic dominance to find inner bounds to the stability
region for the N > 2 case. Szpankowski [3] found necessary and
sufficient conditions for the stability of queues in a slotted ALOHA
system for a fixed retransmission probability vector for the N > 2
case. Recently, Luo and Ephremides [4] introduced the concept of
instability ranks in queues to obtain tight inner and outer bounds on
the stability region for the N > 2 case. However, to date there is no
closed form characterization of the stability region for the N > 2
case. The point to note is that the above results were derived assuming
the collision channel model for packet success—an assumption that
we relax.

The remainder of this paper is organized as follows. In section II,
we specify the system model and its operation. In section III, we
derive the stability region for the two user case. We also characterize
some interesting properties of this region. In section IV, we give
sufficient conditions for stability for the N > 2 case. In section V,
we apply our analytical results to four different receiver structures
viz., Decorrelating, Matched filter, pseudo-MMSE and true MMSE
and compare their performance in terms of the stability region to



gain some insights. Finally, we conclude in section VI.

II. SYSTEM MODEL

The system consists of N users, each having an infinite buffer,
communicating with a common receiver. The receiver has multiple
antennas used to implement beamforming for receiving multiple
packets simultaneously. The channel is slotted in time and a slot
duration equals the packet transmission time. Packets are assumed
to be of equal length for all the users. The arrivals at the ith
queue (i ∈ {1, 2, . . . , N}) are independant and identically distributed
Bernoulli random variables from slot to slot with mean λi. Arrival
processes are assumed to be independant from user to user. If the ith
users’ buffer is nonempty, he transmits a packet with probability pi

in a slot.
Now we define a very general packet reception model to capture

the event of multipacket reception. Suppose that the set S ⊆
{1, 2, . . . , N} of users transmit in a slot, then we define for i ∈ S,

qi|S = Pr{ith users’ packet is successfully

received | S transmits} (1)

We assume that user i’s packet is successfully received independantly
from slot to slot. We assume that a perfect feedback mechanism
exists so that users retain packets which did not get through. It
should be clear that the conditional probabilities qi|S are a function
of the receiver front-end which will be employed by the receiver to
“separate” users’ signals. Before we proceed to derive some of the
results of the next section, a few definitions are in order. We use the
definition of stability used by Loynes [5].

Definition: A multidimensional stochastic process, Qt =
(Qt

1, . . . , Q
t
N ) is stable if for x ∈ N

N the following holds

lim
t→∞

Pr{Qt
< x} = F (x) and lim

x→∞
F (x) = 1. (2)

If a weaker condition holds viz.,

lim
x→∞

lim inf
t→∞

Pr{Qt
< x} = 1 (3)

then the process is called substable. Further, the process is said to be
unstable if it is not substable.

It can be easily shown that stability implies substability. For the
slotted ALOHA system we described in Section II, the stochastic
process under consideration is the queue length at the N buffers.
Thus, Qt

i represents the queue length at ith buffer at time t. Because
of the special arrival and departure statistics in this system, the N

dimensional queue evolution is an aperiodic and irreducible Markov
chain. The notion of stability in this system is then equivalent to the
positive recurrence of the Markov chain. Intuitively, stability means
that the buffers in the system are not growing to infinity.

Definition: For an N user slotted ALOHA buffer system, the stabil-
ity region is defined as the set of arrival rates λ = [λ1, λ2, . . . , λN ]
for which there exists a retransmission probability vector p =
[p1, p2, . . . , pN ] such that the buffers in the system are stable. The
stability region clearly depends on the underlying packet reception
model.

III. STABILITY REGION FOR THE TWO USER CASE

Since the stability region for the collision channel is unknown for
the N > 2 case, we first find the stability region for the N = 2
case for the general reception model given by (1). For notational
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convenience, we define the probabilities of packet success in the two
user case as

q
(1)
i = Pr{user i is successful | only user i transmits}

q
(2)
i = Pr{only user i is successful | both users transmit}

q
(2) = Pr{both users are successful | both users transmit}

Further, we define Q1 , q
(1)
1 − q

(2)
1 − q(2) and Q2 , q

(1)
2 −

q
(2)
2 − q(2). Thus, Q1 and Q2 denote the difference between the

(conditional) probability of success in the absence of interference and
the (conditional) probability of success in the presence of interference
for the users. Note that the above probabilities can capture not only
all possible packet reception events but also correlations among those
events and user asymmetry. To find the stability region, we first need
to find the stability region of the system for a fixed retransmission
probability vector p(= [p1, p2]). The following lemma gives us
exactly that.

Lemma 1: If Q1 ≥ 0 and Q2 ≥ 0, the stability region of slotted
ALOHA for the general packet reception model for a given [p1, p2]
is given by

λ1 < p1q
(1)
1 − p1p2λ2Q1

λ∗
2

, for λ2 < λ
∗
2 (4)

and

λ2 < p2q
(1)
2 − p1p2λ1Q2

λ∗
1

, for λ1 < λ
∗
1 (5)

where,

λ
∗
1 = p1q

(1)
1 − p1p2Q1 and λ

∗
2 = p2q

(1)
2 − p1p2Q2

Proof: We use the idea of stochastic dominance and use an
argument similar to that by Rao and Ephremides [2]. 2

Figure 2 shows us the stability region as given by Lemma 1. The
conditions Q1 ≥ 0 and Q2 ≥ 0 are needed for the stochastic dom-
inance of the associated dominant systems. In fact, these conditions
are equivalent to the probability of success of any user in the presence
of interference (from the other user) be no greater than the probability
of success in the absence of interference—a reasonable and practical
assumption.

We now give a key result of this paper in the form of this theorem.
Theorem 1: If Q1 ≥ 0 and Q2 ≥ 0, then the stability region of

slotted ALOHA for the general reception model is given by R1∩R2

where

R1 , {(λ1, λ2) : (λ1, λ2) ≥ (0, 0), (λ1, λ2) lies

below the curve λ2 = f(λ1, q
(1)
1 , q

(1)
2 , Q1, Q2)} (6)

and

R2 , {(λ1, λ2) : (λ1, λ2) ≥ (0, 0), (λ1, λ2) lies

below the curve λ1 = f(λ2, q
(1)
2 , q

(1)
1 , Q2, Q1)} (7)



where

f(λ, α, β, γ, δ) =

{

β − λδ
α−γ

, λ ∈ I1

(
√

αβ−
√

λδ)2

γ
, λ ∈ I2

(8)

where

I1 = [0,
β(α − γ)2

αδ
] and I2 = (

β(α − γ)2

αδ
,
αβ

δ
]. (9)

If either Q1 or Q2 equals zero, then we assume 1
0

= ∞ and our
result still holds.

Proof: We use Lemma 1. Since we know the stability region for a
fixed retransmission probability vector p, we need to find the union
of all the stability regions as the parameter p varies over [0, 1]2. One
way of doing this is to setup a corresponding constrained optimization
problem i.e. for a fixed λ1, maximize λ2 as p varies over [0, 1]2,
where λ1 and λ2 are related by (4) and (5). This is the method
which we used in our proof [22]. 2

We note a few interesting things about the stability region. First,
the function f characterizing the stability region in (8) is linear for
some part of the domain and is strictly convex in the remainder of its
domain. The stability region for the two user collision channel can be
found as a special case of our model with q

(1)
1 = 1, q

(1)
2 = 1, q

(2)
1 =

0, q
(2)
2 = 0 and q(2) = 0 and is bounded by the curve

√
λ1 +

√
λ2 =

1, which is strictly convex everywhere. In fact, it is easy to see from
(8) that the interval where f is linear has non-zero Lebesgue measure
as soon as there is a nonzero probability of success in the presence of
interference i.e. q

(1)
1 −Q1 > 0. Thus, there is a characteristic change

in the structure of the stability region as soon as we have multipacket
reception. Second, we see that there is a symmetry in the way the two
regions R1 and R2 are defined in terms of the function f . Third, the
stability region is entirely characterized by q

(1)
1 , q

(1)
2 , Q1 and Q2. In

turn, Q1 and Q2 depend only on the marginal probabilities of success
in the presence and absence of interference, which is not surprising
since the two users are not collaborating their packet transmissions.

Further, we observe the following three important properties of the
stability region:

Property 1: (P1) - Assume that q
(1)
1 > 0, q

(1)
2 > 0, q

(1)
1 −Q1 > 0

and q
(1)
2 −Q2 > 0 i.e. non-zero probability of success in the presence

and absence of interference. Then, the stability region is bounded by
lines iff

Q1

q
(1)
1

+
Q2

q
(1)
2

≤ 1 (10)

Property 2: (P2) - Assume that q
(1)
1 > 0, q

(1)
2 > 0, q

(1)
1 −Q1 > 0

and q
(1)
2 −Q2 > 0. Then, the stability region is bounded by lines iff

the stability region is convex.

Property 3: (P3) - If the stability region is not bounded by lines,
then the strictly convex parts of f which bound the regions R1 and
R2 coincide on the boundary of the stability region.

Figure 3 shows the stability regions characterized by the q vector
based on the above properties. P1 has a nice interpretation; there is
a critical point for the q vector at which the behavior of the stability
region makes a phase transition from a complex form to a simple
form (bounded by lines). Further, this critical point depends only on
the sum of the ratios of probability of success of users in the presence
of interference to that in the absence of interference.

P2 tells us that the two simple properties (convexity and being
bounded by lines) of a region are equivalent for the stability region.
The condition of the stability region being bounded by lines and being
convex corresponds to a regime in which when one user increases
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his rate, the other users’ maximum supportable rate decreases only
linearly, and that too at a rate which is low till a certain point and then
suddenly increases. Another interpretation is that when the stability
region is convex then higher sum rates can be achieved. In addition,
when the stability region is convex we know that if two rate pairs
are stable then any rate pair lying on the line segment joining those
two rate pairs is also stable. This is an important point because the
stability region for the two user collision channel is not convex. When
equality holds in equation (10), the stability region is a triangle as
shown in Figure 3. All the rate pairs in this region can be stabilized
by TDMA schemes (even in a collision channel). Thus, the condition
Q1

q
(1)
1

+ Q2

q
(1)
2

< 1 gives us the regime in which a distributed strategy

like slotted ALOHA can do better than a centralized TDMA scheme.

IV. BOUNDS FOR THE N > 2 CASE

Till this point we have considered the stability region for the two
user case. Finding the stability region for the N > 2 case is harder
since the number of the parameters required to define the general
reception model increases rapidly in addition to more complex queue
interactions. So in this section, we give a sufficient condition for
stability for N > 2 for the reception model given by (1).

Lemma 2: Let N , {1, 2, . . . , N}. If ∀ l ∈ N , ∀ A ⊆ N \ {l}
and ∀ p = [p1, p2, . . . , pN ] ∈ [0, 1]N ,

pl

∑

S⊆A




∏

i∈S
pi

∏

j∈A\S
pj



 ql|(S∪{l}) ≥ al(p) (11)

where,

al(p) = pl

∑

S⊆N\{l}




∏

i∈S
pi

∏

j∈N\{S∪{l}}
pj



 ql|(S∪{l}) (12)

then, an inner bound of the stability region is given by the region R,
where,

R =
⋃

p∈[0,1]N

Rp

where Rp is defined as,

Rp = {(λ1, λ2, . . . , λN ) ≥ 0 : λl < al(p), ∀ l ∈ N}. (13)

We will not prove this lemma but it follows by application of the
concept of stochastic dominance to the N queues [1]. We consider a
parallel ALOHA system in which every queue is persistent [3] viz.,
every queue continues to transmit dummy packets even when it is
empty. It can easily be shown that the region R given by Lemma
2 is the stability region of this parallel dominant system. Using
stochastic dominance, we can conclude that even the original system



is stable for arrival rates inside R. Equation (11) is the condition that
the probability of success for any user when all the N buffers are
nonempty be atmost equal to the probabilities of success when atleast
one buffer is empty – a condition required for stochastic dominance
to hold. We have also given a tighter inner bound of the stability
region using weaker stochastic dominant systems in [21] albeit for a
fixed retransmission probability vector (p).

V. RECEIVER PERFORMANCE

To get more insights for the analytical results in section III and as
an example, we now apply our results to a two-user cellular scenario
to compare different receiver front-ends.

We consider two users, each communicating with a central base
station that employs a linear array of M antennas. The two users use
slotted ALOHA as the MAC. We assume that the slots are perfectly
synchronized. The two users are located relatively far away from
the base station at fixed angular postions θ = [θ1, θ2] with respect
to the array normal. We assume that most of the energy from user
transmissions is received from a planar wavefront arriving at the angle
θ. Under these assumptions, we can describe the received signal at
the base station y as

y = V(θ)Hs + n (14)

where V(θ) is a Vandermonde matrix of array responses, H =
diag[h1, h2], is a diagonal matrix of channel (flat) fading for the

two users, s = [s1, s2]
T , is a vector of users’ transmitted symbols

and n ∼ CN (0, IM ), is additive white gaussian noise.
We also assume that the channel fading is slow and it is in-

dependant for the two users and also is i.i.d. from slot to slot.
For our numerical results, we assume Rayleigh fading with zero
mean and covariance matrix Σ = diag[σ2

h1
, σ2

h2
]. User symbols

(si, i = 1, 2) are independant of each other and the channel fading
with E(‖ si ‖2) = 1, i = 1, 2. We also assume that the base station
does not know the channel realization, when it implements the front-
end. We represent the front-end processing by F (ith row of F is the
set of beamforming weights for the ith user) as follows:

z = Fy =

R
︷ ︸︸ ︷

FV(θ)Hs + Fn

= Rs + w (15)

The most important assumption we make is that of the SINR
threshold model for packet success i.e., a packet is successfully
received and decoded for user i if

E(SINRi| channel(s)) =
‖rii ‖2

‖rii ‖2 +E(‖wi ‖2)
> Threshold = τ

(16)
where i = {1, 2} \ {i}. Under the SINR threshold model, the q

vector of packet success probabilities for a particular F can be found
as

q
(1)
i = Pr{ ‖rii ‖2

E(‖wi ‖2)
> τ}

q
(2)
i = Pr{ ‖rii ‖2

‖rii ‖2 +E(‖wi ‖2)
> τ,

‖rii ‖2

‖rii ‖2 +E(‖wi ‖2)
≤ τ}

q
(2) = Pr{ ‖r11 ‖2

‖r12 ‖2 +E(‖w1 ‖2)
> τ,

‖r22 ‖2

‖r21 ‖2 +E(‖w2 ‖2)
> τ}

We now consider the performance of four different front-ends for
the above system.

1) Zero forcing or Decorrelating (ZF): F is the pseudo-inverse of
V(θ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ
1

λ 2

Stability region of different beamformers for M=10, angles = [54  63], threshold = 10 dB and channel variance=[2  2]

Zero forcing
Matched Filter
pMMSE
true MMSE

Fig. 4. M = 10, θ = [54, 63], Threshold = 10dB, channel gain = 3dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
1

λ 2

Stability region of different beamformers for M=10, angles = [54        58.68], threshold = 10 dB and channel variance=[2  20]

Zero forcing
Matched Filter
pMMSE
true MMSE

Fig. 5. M = 10, θ = [54, 58], Threshold = 10dB, channel gains =
[3, 13]dB

2) Matched Filter (MF): F = VH(θ).
3) pseudo-MMSE (pMMSE): For this receiver, F =

diag[σ2
h1

, σ2
h2

]VH(θ)R−1
yy , where Ryy is the correlation

matrix of y assuming both users transmit. Note that the perfect
MMSE receiver needs to know which users are transmitting
in order to find the optimal weights.

4) true-MMSE (MMSE): The true MMSE receiver knows which
users are transmitting in a slot and thus adapts its weights
optimally. Clearly, when only one user is transmitting it is the
same as the MF and when both users are transmitting it is the
pMMSE.

Using the stability region as a figure of merit, we can now compare
the stability regions of these front-ends in various situations of
interest.

A. Symmetric Case

In this case, the channels for the two users are symmetric i.e.
σ2

h1
= σ2

h2
. In Figure 4, we see stability regions for the different

front-ends when the two users are relatively close, θ = [54, 63]°.
We observe that in this rather pessimistic scenario, the MF performs
better when one of the users demands a very low rate whereas the ZF
and pMMSE perform a little better when both users demand an equal
rate. We also note that the stability region of the ZF is a rectangle
since, the ZF decouples the two users signals perfectly. Also, it is
not surprising that the true MMSE outperforms all the other receivers
since it is the optimal receiver.
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B. Asymmetric Case

Figure 5 shows the situation when the second user has a very good
channel as compared to the first and the users are almost colinear,
θ = [54, 58]°. We see a near-far effect with the ZF and pMMSE
front-ends, whereas the MF performs very well. It is not surprising
since the MF does not really try to null out the other user while
the ZF and pMMSE do that. Because of the angular proximity, the
ZF and pMMSE suffer. We also note with interest that the stability
region of the pMMSE contains the stability region of the ZF receiver
in Figures 4 and 5.

C. Matched Filter, Symmetric Case

Since the MF performs so well, now we see how varying the
number of antenna elements changes the stability region of the MF.
In figure 6, we see that the stability region gets bigger as the number
of antenna elements increase, as expected. It also shows how having
more antennas allows us to achieve higher rates in the regime where
the user rates are equal. In fact, it can be easily deduced that there
would be a certain threshold on the number of antenna elements
after which, the gain that can be had from using spatial diversity is
insignificant.

For N > 2, we observe that the bound given by Lemma 2 is
actually the stability region for the ZF receiver assuming M > N

and V(θ) has full column rank. In this case, the probability of
success of any user does not depend on other users’ transmission and
so the stability region is a N dimensional box, which is identical
to the region R specified by Lemma 2 for the reception model
corresponding to the ZF case.

VI. CONCLUSIONS

In this paper, we considered the problem of stability of slotted
ALOHA for a general reception model intended to capture the
behavior of a multiple antenna wireless system. We characterized
the stability region of slotted ALOHA for the two user case. We
found that in some cases the two user stability region has a simple
structure as given by P1 and P2. We show that the stability region
makes a phase transition from concavity to convexity as the degree
of spatial diversity increases. We also found that the stability region
is characterized completely by the marginal probabilities of success
of the users. We conjecture that the stability region for the N > 2
user case is bounded by hyperplanes in some multipacket reception
regime. In fact, it would be interesting to see if we get some properties

analogous to P1, P2 and P3 for the N > 2 stability region. In the
specific two user scenario that we considered, the performance of the
relatively simple Matched filter was notably good—which is quite
surprising. Future work would be directed towards generalizing our
results to the N > 2 case. We would also like explore the implications
of stability on the statistics of delay in slotted ALOHA based random
access systems.
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