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Abstract— An information theoretic queueing model is pro-
posed in a wireless multiple access communication setup. The
proposed symmetric N user model captures physical layer
parameters such as the encoding rate, transmit power and
Medium Access Control (MAC) layer metrics such as queue sta-
bility. Two alternative medium access strategies are considered:
centralized scheduling and ALOHA. Next, a cross-layer approach
is taken wherein the maximum stable throughput of the system is
achieved by a joint optimization over the MAC parameters (viz.,
scheduling set size with scheduling and transmission probability
with ALOHA) and the encoding rate. Performance comparisons
with traditional layered designs are given. It is shown that in
the low and high SNR regimes, layered designs are close to
optimal whereas in the moderate SNR range, cross-layer designs
outperform layered schemes. Exact characterizations of the “low”
and “high” SNR regimes are given quantitatively. It is also shown
that ALOHA with transmission probability one is optimal in the
low SNR regime.

Index Terms— ALOHA, cross-layer design, information theory,
multiple access, queueing, scheduling, stability.

I. INTRODUCTION

THE problem of multiple access to a shared communica-
tion resource somehow has evaded an approach which

jointly addresses the issues of noise, interference, and the
“bursty” arrivals of messages [1], [2]. Broadly, there have
been two main approaches to formulate the multiaccess com-
munication problem: the network theoretic approach (initiated
by Abramson [3]) and the multiaccess information theoretic
approach (due to Liao [4]). The network theoretic model ac-
counted for the burstiness of message arrivals and interference
but largely neglected the effects of noise. On the other hand,
the information theoretic line of thought modeled noise and
interference appropriately but ignored the randomness in the
arrival of messages. Taking note of this, Telatar and Gal-
lager [5] constructed a model that combined certain elements
from queueing theory and information theory to capture the
essential characteristics of the multiaccess problem. Recently,
there has been some work on defining better models for
multiaccess communication [6], [7] that combine ideas from
information theory and network theory. However, the task of
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constructing a model that captures all parameters of interest
in multi-access communication still remains a challenge. On
the other hand, information theoretic insights and network
theoretic principles have now been incorporated widely in
wireless (and wireline) networks, albiet in a “layered” fashion.
The modularity, inherent in the layered approach, results in
simplicity of network design. However, it is being realized
now that layered design might have a viable alternative viz.,
“cross-layer” design. There has been a line of work that
suggests that perhaps it is worthwhile to consider the intrinsic
“coupling” that exists between different layers [6], [8]–[11]
and to follow the cross-layer approach for network design (see
also the special issue of IEEE Signal Processing Magazine,
September 2004). Cross layer design means a joint design
of two or more layers to optimize system-wide performance
via an exchange of parameters across layers. The crux of
the cross layer approach is to boost network performance by
relaxing the layering constraints. It is therefore of interest to
characterize when and where cross layer strategies should be
used. At the same time, it is also of interest to see when the
gain due to cross layer strategies is not enough to warrant a
departure from traditional layered approaches.

A. Contributions and Context

We propose a joint information theoretic and queueing
theoretic system model that captures the random arrival of
messages, multiuser interference and other physical layer
parameters. In this model, cross layer design manifests itself
in the connection that exists between the information theoretic
rate R and the capability of multipacket reception [12]. This
connection is made explicit through the notion of outage viz.,
when the rate R exceeds the instantaneous channel capacity.
Next, in this symmetric N user model, we define the notion
of stability and characterize the maximum stable throughput
of the system under scheduling and ALOHA schemes. These
schemes include layered as well as cross layer schemes. We
compare these schemes and show that in low SNR regimes,
a layered scheme based on information theoretic ideas is
optimal whereas in high SNR regimes, a layered scheme based
on network theoretic principles is optimal. In the moderate
SNR regime, cross layer strategies are shown to outperform
layered strategies, although not by significant margins. Further,
exact characterizations of the “low” and “high” SNR regimes
are given quantitatively. It is also shown that ALOHA with
transmission probability one is optimal in the low SNR regime.
Thus, we provide conditions under which the proposed cross-
layer approach is beneficial and when it is not.

In this work, we restrict ourselves to a symmetric system
model. The main reason for this is that stability is extremely
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difficult to analyze in asymmetric N user systems. For exam-
ple, with ALOHA, closed form expressions for the stability
region are known only for the N = 2 case [10]. In addition,
we restrict ourselves to single user decoding schemes only.
Although, this is a suboptimal approach, it is still in wide
use (for example in CDMA cellular systems) because of its
inherent design simplicity. Further, in our setup, it provides
analytical tractability. Our work can be extended to systems
with multiuser detection schemes (such as rate splitting fol-
lowed by successive decoding), but that is not the focus of
this work and will be addressed in a future correspondence.

B. Related Work

Perhaps the most relevant piece of work to ours is that
of Telatar and Gallager [5]. In [5], the authors consider
an “infinite-user” multi-access communication model over a
bandlimited AWGN channel. Assuming single user decoding
and poisson arrival of messages, they draw connections of their
physical layer model with the processor-sharing model and
show the trade-offs involved between queueing theoretic quan-
tities and information theoretic quantities such as the trade-
off between delay and probability of error. We focus on the
finite user case and consider trade-offs between layered and
cross-layer schemes. In [6], the authors consider an ergodic
fading channel model consisting of a centralized scheduler that
allocates rates and transmit powers (subject to average and
peak power constraints) to users subject to the constraint that
the rate vector lies in the (ergodic) MAC capacity region. It
is also assumed that all the transmitters and the receiver have
complete channel and queue state information. The authors
find that under any power control scheme, the optimal rate
allocation is a “longest weighted queue highest possible rate”
scheme and under symmetric conditions it is throughput and
delay optimal. In contrast, in our work we consider a non-
ergodic Rayleigh fading channel model with only receiver side
information of the channel state. In [7], Medard et. al. propose
using ideas of rate splitting and broadcast codes to construct
coding schemes that allow the receiver to correctly decode a
subset of the transmitted bits, depending on the number of
interfering users in an AWGN setup. Using ALOHA at the
MAC layer, they show that as long as the average arrival rates
of the users are within the MAC capacity region, there exists
a family of codes such that the system is stable. The focus
in [7] is on coding at the physical layer whereas our primary
focus is a joint optimization of the physical and MAC layers.

Most of the work on cross-layer design is focused on the
interaction between the physical and MAC layers. In [10],
the authors consider the effect of multipacket reception on
stability of a finite user ALOHA system. They show that as
the multipacket reception capability improves, ALOHA with
transmission probability one becomes optimal in terms of
achieving the maximum stable throughput. In [9], Adireddy
and Tong consider the effect of having knowledge of fading
at the transmitters on the design of ALOHA. They show that
significant gains can be made by allowing the transmission
probability to be a function of the channel state (as opposed to
conventional power control). In [13], the authors propose and
analyze a class of protocols called Network Diversity Multiple
Access (NDMA) to resolve collisions through packet retrans-

missions using signal processing techniques. They find nec-
essary and sufficient conditions for stability of their protocols
using the Foster-Lyapunov criterion for stability (ergodicity) of
Markov chains. Our work is based on a cross-layer approach,
that in contrast to all of the above, incorporates information
theoretic and queueing theoretic quantities of interest in multi-
access communication.

The remainder of this paper is organized as follows. In
Section II, we define the system model and the notions
of stability and maximum stable throughput. In Section III,
we describe traditional layered approaches to optimize the
maximum stable throughput with two examples viz., (i) single
user coding with ALOHA and (ii) no MAC with single user
decoding. In Section IV, we describe novel cross PHY/MAC
layer approaches to jointly optimize the maximum stable
throughput. These approaches include (i) joint coding with
scheduling and (ii) joint coding with ALOHA. In Section V,
we first provide numerical comparisons between the layered
and cross layer schemes and then provide some quantitative
results about the optimality of the cross layer schemes. Finally,
we conclude in Section VI.

II. SYSTEM MODEL AND MAXIMUM STABLE

THROUGHPUT

We define the system model at the physical and MAC layer
below.

A. Physical Layer

We consider an N user symmetric slotted multiple access
system modelled by a discrete Gaussian MAC channel. A slot
consists of n channel uses and is indexed by t ∈ N. Each
user has an average power constraint P . The noise variance
at the receiver is σ2 and hence the transmit SNR = P/σ2.
We assume a Rayleigh block fading channel for every user
in every slot. The fading gain for user i in time slot t is
denoted by hi(t) and is assumed to have unit variance. The
fading is also assumed to be independant across users and
slots. We assume that only the receiver has perfect channel
state information. Each user encodes information at a fixed
rate of R bits per channel use1. The receiver employs single
user decoding to decode information from users. By that we
mean that the receiver decodes a user’s codeword assuming
every other user’s signal as noise. We also assume that the slot
size n is large enough to achieve the instantaneous capacity
of the channel provided that there is no outage.

B. MAC layer

We assume that every user has an infinite queue to store
arriving bits. Let Ai(t) be the number of bits2 arriving to
user i in time slot t with E(Ai(t)) = nλ/N so that the
sum arrival rate in bits per channel use is λ. We assume
that the arrivals are independent across users and time slots.
Let Qi(t) denote the number of bits in the ith user’s queue
in time slot t. Let Di(t) be the number of bits departing
(or successfully decoded) from the ith user’s queue in time

1We assume that nR is a positive integer.
2We assume that the number of arriving bits is a non-negative integer.
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slot t. Thus, Di(t) is a random variable that is a function
of the channel realizations and the underlying MAC protocol.
When a successful departure occurs, the following happens:
if Qi(t) ≥ nR then Di(t) = nR and if Qi(t) < nR then
Di(t) = Qi(t). Note that as a result, Di(t) ∈

{
0, 1, · · · , nR

}
.

Assuming that there are no feedback errors, it follows that the
queue for user i, 1 ≤ i ≤ N evolves as

Qi(t + 1) =
(
Qi(t) − Di(t)

)+ + Ai(t), (1)

where (x)+ denotes max{x, 0}. Define a new random variable
D̃i(t) as

D̃i(t) =
{

nR, if 0 < Di(t) ≤ nR,
0, if Di(t) = 0.

Note that if we replace Di(t) with D̃i(t) in (1), then the queue
evolution is left unaltered. So, for the remainder of this paper
we consider D̃i(t) as the departure process. Note also that we
are implicitly assuming that if a user has less than nR bits in
his queue at time t, then still he can encode his information
(by say stuffing the remaining bits) so as to be decoded by the
receiver provided that there is no outage. It is easy to see that
the joint queue lengths Q(t) � (Q1(t), Q2(t), · · · , QN (t))
has a countable state space N

N
+ , where N+ is the set of non-

negative integers.

C. Maximum Stable Throughput

In this subsection, we formalize our notion of stability and
maximum stable throughput. Intuitively, a system is defined
to be stable if for each node the queue size does not go to
infinity. In other words, given a positive number 0 < ε ≤ 1,
there exists a buffer size such that the probability of buffer
overflow is less than ε. It should be obvious that stability is
an important requirement for a network. The requirement of
stability can be said to impose a mild requirement on delay.

We now define the notions of stability and maximum stable
throughput. We say that the system Q(t) is stable for a
particular arrival process, if for x ∈ N

N
+ , there exists a H(x)

such that

lim
t→∞Pr{Q(t) < x} = H(x), lim

x→∞H(x) = 1.

This notion of stability has been used before [10], [14]–[16].
Note that this definition of stability does not imply that the
expected delay in the system is finite (but the converse is
true). We shall see that the stability of the system can be
characterized by λ, the sum arrival rate alone. This allows
us to define maximum stable throughput as the supremum of
all sum rates λ for which the system is stable. Note that the
maximum stable throughput is a function of the underlying
MAC protocol.

III. LAYERED APPROACHES

The traditional layered network architecture uses a modular
approach in the design of the various layers; all the layers
are designed separately so as to simplify network design. The
design of PHY and MAC layers are based on abstractions such
as the collision channel viz., the MAC layer is designed to

avoid “collisions” that result from simultaneous transmissions
from more than one user. The PHY layer is assumed to be
incapable of handling multi-user interference. Similarly, PHY
layer designs assume users always have data to send and thus
neglect the issue of source burstiness. As an example, consider
the following layered schemes for the system model described
in Section II.

A. No MAC With Single User Decoding

In this scheme, given an outage requirement ε, every user
transmits at the highest possible rate R1(ε, SNR) to meet
the outage requirement assuming that every other user has
information to send. An outage happens when the rate chosen
to encode information exceeds the instantaneous capacity of
the channel in the slot. Assuming single user decoding, it is
easy to see that R1(ε, SNR) satisfies

Pr

{
R1(ε, SNR) ≤ 1

2
log

(
1+

|h1|2SNR∑N
i=2 |hi|2SNR + 1

)}
= 1−ε.

Note that the encoding rate is so chosen as to satisfy the
quality of service requirement when all users have bits and
thus this is a worst case design. For such a physical layer
design, a MAC protocol is not needed and indeed this is an
information theoretic approach to multiple access. The idea
is that multiuser interference is tackled through coding and
there is no need for transmission control. It is intuitively clear
that for a given ε and SNR, the maximum stable throughput
is given by (1 − ε)NR1(ε, SNR). We denote the maximum
stable throughput of this scheme by ρ1(SNR).

Proposition 1:

ρ1(SNR) = max
ε∈[0,1]

(1 − ε)NR1(ε, SNR).

Proof: Refer to the appendix.

B. Single User Coding With ALOHA

In this scheme, given an outage requirement ε, every user
transmits at the highest possible rate R2(ε, SNR) to meet the
outage requirement assuming that no other user has bits to
send. In this case, it is easy to see that R2(ε, SNR) satisfies

Pr

{
R2(ε, SNR) ≤ 1

2
log(1 + |h1|2SNR)

}
= 1 − ε.

In this scheme, the encoding rate is chosen so as to meet
the outage requirement assuming the best case scenario viz.,
no other user has information bits to transmit. Consequently,
the need for transmission control arises and for this scheme
we assume a symmetric ALOHA protocol with transmission
probability p = 1/N . For this scheme, we denotee the
maximum stable throughput to be ρ2(SNR).

Proposition 2:

ρ2(SNR) = max
ε∈[0,1]

(1 − ε)R2(ε, SNR)
(

1 − 1
N

)N−1

.

Proof: Follows by arguments similar to the one used in the
proof of Proposition 1.

Note that with TDMA, the maximum stable throughput is
simply given by maxε∈[0,1](1 − ε)R2(ε, SNR).
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IV. CROSS-LAYER APPROACHES

In this section, we investigate cross-layer design as an
alternative to the layered strategies discussed in the previous
section. By “cross-layer” design we mean that parameters
used in the design of PHY and MAC layers are exchanged
to optimize performance jointly. In order to see how this is
done, first observe that when k users transmit in a slot, nR
bits from any particular user (say user 1) get through with
probability (denoted by pk

n)

pk
n = Pr

{
R ≤ 1

2
log

(
1 +

|h1|2SNR∑k
i=2 |hi|2SNR + 1

)}
.

Proposition 3: When the fading coefficients are i.i.d.
Rayleigh with unit variance (so that |hi|2 has a unit mean
exponential distribution), then

pk
n = exp

(
− (e2R − 1)

SNR

)
1

e2R(k−1)
. (2)

Proof: Refer to the appendix.
By symmetry, the average number of bits that get through

per slot when k users transmit is

k(nR) exp
(
− (e2R − 1)

SNR

)
1

e2R(k−1)
,

and hence, the average number of bits that get through per
channel use when k users transmit is

Ck(R, SNR) � kR exp
(
− (e2R − 1)

SNR

)
1

e2R(k−1)
. (3)

Here, we note the difference of our formulation with that of
Ghez, Verdu and Schwartz [12]. In [12], in a corresponding
“packet” model, Ck is defined to be the average number of
“packets” that get through per slot when k users transmit. In
contrast, equation 3 captures the essence of the cross-layer
approach: the dependence of Ck on physical layer parameters
such as R, SNR is seen explicitly and since Ck determines
MAC layer performance, throughput maximization involves
both physical and MAC layer parameters.

Now we turn our attention to two cross-layer schemes.

A. Joint Coding and Scheduling

In this scheme, in every slot the receiver schedules a subset
of users to transmit in order to maximize the stable throughput.
By definition, scheduling is the best MAC protocol in the
sense that for a given encoding rate R and SNR, it achieves
the maximum stable throughput. Since we are considering
a symmetric system, it follows that the optimal scheduling
scheme will be of the following form: in every slot, a certain
number of users (kopt) will be scheduled to transmit in a cyclic
manner to guarantee fairness. In order to choose kopt, the
receiver uses the physical layer parameters (i) encoding rate
R and (ii) the transmit SNR. For a given SNR and encoding
rate R, let ρ∗(R, SNR, N) be the maximum stable throughput
with scheduling and let kopt(R, SNR, N) be the optimal size
of the subset of users scheduled.

Lemma 1: For a fixed SNR and encoding rate R, the
maximum stable throughput with scheduling is given by

ρ∗(R, SNR, N) = max
{
C1(R, SNR), C2(R, SNR),

· · · , CN (R, SNR)
}
.

Proof: Refer to the appendix.
Intuitively, it is clear that if all users had infinite bits in their

queue then indeed ρ∗(R, SNR, N) would be the maximum
throughput. However, the result implies that even with random
arrivals of bits, ρ∗(R, SNR, N) is the maximum stable arrival
rate. This result is a recurring theme in symmetric finite
user multiple access systems—the maximum stable throughput
with i.i.d random arrivals is the throughput as if the system
is infinitely backlogged [9], [10], [14]. The next theorem pro-
vides us with an analytical characterization of ρ∗(R, SNR, N).

Theorem 1:

ρ∗(R, SNR, N) = CN (R, SNR)1R∈[0, 0.5 log(N/N−1)]

+C1(R, SNR)1R∈(0.5 log 2, ∞)

+
N−1∑
i=2

Ci(R, SNR)1R∈(0.5 log(i+1/i), 0.5 log(i/i−1)].

where 1R∈[a,b] is the indicator function of R over the interval
[a, b].

Proof: Refer to the appendix.
From Theorem 1, we can infer that the optimal size of

the set of scheduled users is a monotonically decreasing
step function of the rate R. Thus, for small rates (R ≤
0.5 log(N/N − 1)), the optimal set size is N and throughput
is CN (R, SNR). As the rate increases, the optimal set size
decreases monotonically and once R > 0.5 log 2, the optimal
set size is 1.

Next, we optimize the PHY layer parameter R i.e., we
choose the best encoding rate R to optimize the maximum
stable throughput. Let ρ(SNR, N) be the maximum stable
throughput with scheduling for a given SNR,

ρSCH(SNR, N) � sup
R

ρ∗(R, SNR, N).

Note that joint coding with scheduling is optimal amongst all
MAC protocols for a fixed SNR and thus ρ(SNR, N) is an
upper bound to the maximum stable throughput of any MAC
protocol. Note that although it is not easy to find closed form
expressions for ρ(SNR, N), it is easy to do so numerically.

B. Joint Coding with ALOHA

We consider a symmetric ALOHA MAC protocol where
every user independently decides to transmit in a slot with
probability p provided he has bits in his queue. In this
scheme, first for a given SNR and encoding rate R, we
choose the optimal transmission probability p to maximize
the stable throughput of ALOHA. For a given SNR and R,
let ρALOHA(R, SNR, N) be the maximum stable throughput
of ALOHA and p∗(R, SNR, N) be the optimal transmission
probability.

Theorem 2: For a fixed SNR and encoding rate R, the
maximum stable throughput of ALOHA is given by
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Fig. 1. Comparison of layered and cross-layer approaches with N =
100, SNR = 20dB.

ρ∗ALOHA =⎧⎨
⎩

NR
e2R(N−1) exp

(
− (e2R−1)

SNR

)
if R ≤ 1

2 log( N
N−1 )

R
1−e−2R exp

(
− (e2R−1)

SNR

) (
1 − 1

N

)N−1
otherwise.

(4)

and the optimal transmission probability is given by

p∗(R, SNR, N) =
{ 1

N(1−e−2R)
if R > 1

2 log( N
N−1 )

1 otherwise.

Proof: Refer to the appendix.
Note that as long as the encoding rate R is less than

1
2 log( N

N−1 ), the optimal transmission probability is 1 and
the corresponding maximum stable throughput is actually
CN (R, SNR). From Theorem 1 and Theorem 2, it follows
that for a given R and SNR, ALOHA with p = 1 is optimal
if R ≤ 1

2 log( N
N−1 ). It is also interesting to note that in this

regime, the optimal transmission probability is not a function
of SNR.

Next, we optimize R to get the best possible stable through-
put with ALOHA for a fixed SNR. Let ρALOHA(SNR, N) be
the maximum stable throughput with ALOHA for a fixed SNR.
Thus,

ρALOHA(SNR, N) � sup
R

ρ∗ALOHA(R, SNR, N).

Unfortunately, both ρALOHA(SNR, N) and ρ(SNR, N) can-
not be computed in closed form and so we have to resort to
numerical evaluations of these functions.

V. COMPARISON OF LAYERED AND CROSS-LAYER

APPROACHES

In this section, we compare the maximum stable throughput
provided by all the schemes described in the previous sections
for a fixed SNR.

Fig. 1 compares the four different schemes in terms of their
maximum stable throughput at high SNR (20 dB). We see that
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Fig. 2. Comparison of layered and cross-layer approaches with N =
100, SNR = 10dB.

optimal cross-layer scheduling provides the maximum stable
throughput and all other schemes are sub-optimal. Since the
optimal R achieving maximum stable throughput with cross-
layer scheduling is greater than 0.5 log 2, it follows that exactly
one user is scheduled to transmit in each slot. However, it
is interesting to note that the maximum stable throughput
of single user coding with ALOHA is almost the same as
that of cross-layer ALOHA. Further, the ratio of maximum
stable throughput of these schemes to optimal cross-layer
scheduling is approximately e−1. This suggests that (i) the loss
in throughput is only due to non-coordination among users’
transmissions and (ii) the layered single user approach is close
to optimal since the maximum stable throughput with TDMA
would be close to that of cross-layer scheduling. However,
the no MAC with single user decoding approach is clearly
sub-optimal.

Fig. 2 compares the four different schemes at medium
SNR (10 dB). Here, we see that both layered approaches are
sub-optimal. The cross-layer ALOHA scheme offers higher
throughput than the corresponding single user coding with
ALOHA scheme.

Fig. 3 shows the stable throughput in the low SNR regime
(−20 dB). Note that the range of R shown in Fig. 3 is much
smaller than that in Figs. 1 and 2. In the low SNR regime,
the single user coding with ALOHA strategy is sub-optimal.
On the other hand, the stable throughput of both cross-layer
schemes is almost the same. For R ≤ 0.5 log(100/99), they
are identical and thereafter the difference is marginal. The
interesting observation is that the no MAC with single user de-
coding strategy is optimal. Since the optimal encoding rate for
cross-layer scheduling/ALOHA is less than 0.5 log(100/99),
it follows that both schemes correspond to allowing all users
to transmit whenever they have bits. This is exactly the
information theoretic approach to multiple access.

To summarize, we see that in both the high and low SNR
regimes, one of the two layered approaches is optimal: In
the high SNR regime, single user coding with TDMA is
optimal whereas in the low SNR regime, no MAC with single
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Fig. 3. Comparison of layered and cross-layer approaches with N =
100, SNR = −20dB.

user decoding is optimal. Intuitively, this can be explained as
follows. In the high SNR regime, the system is interference
limited due to sub-optimal single user decoding and hence
medium access control is necessary. So, the optimal strategy
is to encode at a high rate and schedule every user to
transmit once in every N slots. On the other hand in the low
SNR regime, the dominant interference term is noise and not
multiuser interference. Hence, the optimal scheme corresponds
to no transmission control with low rate encoding.

Next, we show that there is actually a sharp transition to the
“low” SNR regime asymptotically as N → ∞ and that this
transition occurs between −1.76 to 1.98 dB with scheduling.
Precisely,

Theorem 3: If SNR < 2
3 , then ∀N ,

arg max
R

(
ρ∗(R, SNR, N)

) ≤ 0.5 log
(

N

N − 1

)
.

If SNR > 1
1+log(log(2)) , then ∃ N∗

1 such that ∀N > N∗
1 ,

arg max
R

(
ρ∗(R, SNR, N)

)
> 0.5 log

(
N

N − 1

)
.

Proof: Refer to [17].
Theorem 3 says that as long as the transmit SNR is less than

2/3, scheduling all users to transmit simultaneously is optimal
or in other words, ALOHA with transmission probability
one is optimal. On the other hand, if the transmit SNR is
greater than approximately 1.54, for a large enough network
scheduling all users to transmit is suboptimal. Note that
although the optimal rate cannot be expressed in closed form,
it can be computed numerically. From numerical calculations
we conjecture that this phase transition actually occurs at 0 dB
asymptotically in N . This is quite surprising since for any
fixed SNR, we expect medium access control to be necessary
as the number of users increases. The reason for this behavior
when SNR < 2

3 is that the optimal rate goes to zero as
N → ∞ as well.

−4 −3 −2 −1 0 1 2 3 4
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10
−1
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0
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R

optimal R, ALOHA
optimal R, SCH
Rate threshold

Fig. 4. Comparision of optimal encoding rates with cross-layer schemes.
N = 10

Next, we restrict ourselves to using ALOHA as the MAC
protocol. Here, again we find a sharp phase transition in the
point at which ALOHA with transmission probability p = 1
ceases to be optimal asymptotically as N → ∞.

Theorem 4: If SNR < 2, then ∀N ,

arg max
R

(
ρ∗ALOHA(R, SNR, N)

) ≤ 0.5 log
(

N

N − 1

)
.

If SNR > 2, then ∃ N∗
2 such that ∀N > N∗

2 ,

arg max
R

(
ρ∗ALOHA(R, SNR, N)

)
> 0.5 log

(
N

N − 1

)
.

Proof: Refer to [17].
Theorem 4 says that as long as the transmit SNR is less

than 3 dB, no transmission control is optimal (p∗ = 1) and
above 3 dB, for a large enough network, transmission control
is necessary (p∗ < 1). This result, similar to Theorem 4, is
also rather counter-intuitive. It is still not clear to us why the
thresholds for the “low” SNR regime with both scheduling
and ALOHA are in the 0 to 5 dB range.

Figs. 4, 5, 6, 7 show the numerically computed optimal
encoding rates vs. SNR for (i) cross-layer scheduling and
(ii) cross-layer ALOHA with N = 10, 20, 30, 60. The black
horizontal line marks 0.5 log(N/N − 1), the encoding rate
below which transmission control is not necessary. These
figures illustrate Theorem 3 and Theorem 4 quantitatively. We
see that as N increases, with scheduling, the optimal encoding
rate crosses the black line around 0 dB whereas with ALOHA,
the crossover happens around 3 dB. We also notice that the
scheduling curve has several kinks. Each kink corresponds to
a change in the optimal scheduling set size. Since, we do not
have closed form expressions for the optimal encoding rates,
it is difficult to infer if the kinks are actually discontinuities
in the curve. To summarize, we have shown that with both
scheduling and ALOHA, as long as the SNR is below a fixed
threshold, there is no need for transmission control regardless
of the number of users in the system. Conversely, if the SNR
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Fig. 5. Comparision of optimal encoding rates with cross-layer schemes.
N = 20
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Fig. 6. Comparision of optimal encoding rates with cross-layer schemes.
N = 30

exceeds a fixed threshold and if the number of users in the
system is large enough, transmission control is necessary.

Next, we characterize the maximum stable throughput in
the low SNR regime.

Theorem 5: For SNR < 2
3 ,

lim
N→∞

ρ(SNR, N) =
1
2e

,

and for SNR < 2,

lim
N→∞

ρALOHA(SNR, N) =
1
2e

.

Proof: Refer to [17].
From Theorems 3 and 4, note that in the low SNR regime,

the optimal encoding rate goes to zero with both ALOHA and
scheduling. However, Theorem 5 implies that as N → ∞,
in the low SNR regime, even though the maximum stable
throughput per user with both scheduling and ALOHA goes
to zero, the total maximum stable throughput converges to
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Fig. 7. Comparision of optimal encoding rates with cross-layer schemes.
N = 60

(2e)−1. In general, it is difficult to give closed form charac-
terizations of the asymptotic performance of these cross-layer
schemes in the “high” SNR regime.

VI. CONCLUSIONS

In this work, we proposed a model for multi-access com-
munication that combines ideas from information theory and
queueing theory. In this symmetric N user model, we defined
the notion of stability and characterized the maximum stable
throughput of the system under scheduling and ALOHA MAC
schemes. These schemes included layered as well as cross
layer schemes. We compared these schemes and showed that
in low SNR regimes, a layered scheme based on information
theoretic ideas is optimal whereas in high SNR regimes,
a layered scheme based on network theoretic principles is
optimal. Thus, one of our main finding is that it is not always
necessary to take a cross-layer approach—layered strategies
can indeed be optimal in certain regimes. However, in the
moderate SNR regime, we showed that cross layer strategies
outperform layered strategies. We also showed that ALOHA
with transmission probability one is optimal in the low SNR
regime. Future work would be directed along two lines: (i)
generalizing results to other common fading distributions and
(ii) incorporating optimal multiuser detection strategies based
on rate splitting and successive decoding in the model.

APPENDIX

A. Proof of Proposition 1

Note that for a fixed ε and SNR, the maximum stable
throughput of the no MAC with single user decoding (denote
by ρ1(ε, SNR)) is given by equation (14) with p = 1 and
R = R1(ε, SNR). Thus,

ρ1(ε, SNR) = CN (R1(ε, SNR), SNR),
= (1 − ε)NR1(ε, SNR), (5)

where, (5) follows from equation (3) and the definition of no
MAC with single user decoding scheme. Finally, the maximum
stable throughput of this scheme is achieved by taking the
supremum over the outage probability ε. �
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B. Proof of Proposition 3

We proceed step by step. Denote the left hand side of
equation (2) by LHS. Then,

LHS

=Pr

{
|h1|2 ≥ (

k∑
i=2

|hi|2)(e2R − 1) +
(e2R − 1)

SNR

}
,

=
∫ ∞

0

Pr

{
|h1|2 ≥ t(e2R − 1) +

(e2R − 1)
SNR

}
tk−2e−t

(k − 2)!
dt,(6)

=
∫ ∞

0

exp
(
− t(e2R − 1) − (e2R − 1)

SNR

)
tk−2e−t

(k − 2)!
dt, (7)

=exp
(
− (e2R − 1)

SNR

)∫ ∞

0

exp (−te2R)tk−2

(k − 2)!
dt,

=exp
(
− (e2R − 1)

SNR

)
1

e2R(k−1)
, (8)

where, we get equations (6), (7) since
∑k

i=2 |hi|2 has a gamma
distribution (sum of unit mean i.i.d. exponential distributions).
�

C. Proof of Lemma 1

We sketch an outline of the proof. By Corollary 1 in [10],
it follows that the maximum stable throughput of any MAC
protocol is less than max

{
C1(R, SNR), · · · , CN (R, SNR)

}
.

Thus, it follows that

ρ∗(R, SNR, N) ≤ max
{
C1(R, SNR), · · · , CN (R, SNR)

}
.

On the other hand, note that
max

{
C1(R, SNR), · · · , CN (R, SNR)

}
is the maximum

stable throughput with scheduling assuming all users have
infinite bits to begin with. Note also that

C1(R, SNR) ≥ C2(R, SNR)
2

≥ · · · ≥ CN (R, SNR)
N

, (9)

and hence the probability of success for a user increases as
the number of transmitting users decreases. This implies that
the assumption that all users have infinite bits to begin with
gives the worst case stability analysis and hence

ρ∗(R, SNR, N) ≥ max
{
C1(R, SNR), · · · , CN (R, SNR)

}
.

(10)
For technical details regarding equation (10) which use the
concept of stochastic dominance, refer to [18]. �

D. Proof of Theorem 1

Define a function gx(R) for x ∈ R as

gx(R) = xe−2R(x−1). (11)

Note that this function attains its supremum at x = 1/2R.
Also note that gx(R) is strictly increasing for x < 1/2R and
strictly decreasing for x > 1/2R. Now, note that

Ck(R, SNR) = gk(R) exp
(
− (e2R − 1)

SNR

)
, (12)

and hence (13) (see top of next page). Next, since gx(R) is
strictly increasing for x < 1/2R and strictly decreasing for
x > 1/2R, it follows that for any R, max1≤k≤N{gk(R)}
occurs at k = 	1/2R
 or k = 	1/2R
+ 1 where 	r
 denotes
the smallest integer less than or equal to r. Thus, it follows
that it suffices to compare g�1/2R�(R) and g�1/2R�+1(R) for
a given R. Now, gk(R) ≥ gk+1(R) if and only if R ≥
0.5 log(k + 1/k). Also note that at R = 1/2, the optimal
k equals 1. But, g1(R) ≥ g2(R) if R ≥ 0.5 log 2 and so
the optimal k equals 1 for R ≥ 0.5 log(2). After that point
g2(R) is the maximum and continuing this argument we see
that the optimal k equals n for 0.5 log(n + 1/n) ≤ R ≤
0.5 log(n/n − 1). Thus, it follows that

ρ∗(R, SNR, N) = CN (R, SNR)1R∈[0, 0.5 log(N/N−1)]

+C1(R, SNR)1R∈(0.5 log 2, ∞)

+
N−1∑
i=2

Ci(R, SNR)1R∈(0.5 log(i+1/i), 0.5 log(i/i−1)],

and we are done. �

E. Proof of Theorem 2

Note that with ALOHA, the joint queue lengths Q(t) is
a countable state space Markov chain. Further, under loose
conditions (for eg. Pr

{
Ai(t) = 1

}
> 0), it is irreducible

and aperiodic. Then, from [19], it can be shown as a special
case that for a finite user symmetric system with transmission
probability p satisfying the condition (9), the maximum stable
throughput of ALOHA is given by

ρALOHA(p,R, SNR, N) =
N∑

k=1

(
N

k

)
pk(1−p)N−kCk(R, SNR).

(14)
Then, by definition,

ρ∗ALOHA(R, SNR, N) = max
p∈[0,1]

ρALOHA(p,R, SNR, N). (15)

Substituting Ck(R, SNR) using equation (3) in equation (14),
we get

ρALOHA =
N∑

k=1

(
N

k

)
pk(1 − p)N−kkR

1
e2R(k−1)

× exp
(
− (e2R − 1)

SNR

)
,

=
( N∑

k=1

(
N

k

)
k

(
p

e2R

)k

(1 − p)N−k

)

× Re2R exp
(
− (e2R − 1)

SNR

)
,

=
( N∑

k=1

(N − 1)!
(k − 1)!(N − k)!

(
p

e2R

)k

(1 − p)N−k

)

× NRe2R exp
(
− (e2R − 1)

SNR

)
,

=
( N∑

k=1

(N − 1)!
(k − 1)!(N − k)!

(
p

e2R

)k−1

(1 − p)N−k

)
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max
{
C1(R, SNR), · · · , CN (R, SNR)

}
= max

{
g1(R), · · · , gN (R)

} · exp
(
− (e2R − 1)

SNR

)
. (13)

× NR exp
(
− (e2R − 1)

SNR

)
p,

= NR exp
(
− (e2R − 1)

SNR

)

× p(1 − p + pe−2R)N−1. (16)

From equation (16), it can be easily shown that the optimal p
for maximizing the stable throughput of ALOHA is

p∗(R, SNR, N) =
{ 1

N(1−e−2R)
if R > 1

2 log( N
N−1 )

1 otherwise.

Substituting p∗(R, SNR, N) back in equation (16), gives (4)
and we are done. �
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