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Joint Frequency and Phasor Estimation
Under the KCL Constraint

Tirza Routtenberg and Lang Tong

Abstract—In this letter, we consider the problem of joint
off-nominal frequency and phasor estimation that incorporates
Kirchhoff’s Current Law (KCL) as a constraint. We develop
the constrained maximum likelihood (CML) and constrained
weighted least-squares (CWLS) estimators for this problem and
derive the corresponding constrained Cramér–Rao bound. The
KCL constraint is shown to behave as a noise cancellation factor
for the phasors estimation. We show that the KCL CML is based
on the classical periodogram subtracting the average current
periodogram. The results indicate significant performance im-
provement compared to the unconstrained maximum likelihood
(ML) and unconstrained weighted least-squares (WLS).

Index Terms—Constrained Cramér–Rao bound, constrained
maximum likelihood estimation, frequency estimation, phasor
measurement unit (PMU), power system state estimation.

I. INTRODUCTION

I N this letter we consider a frequency estimation problem in
the context of power system state estimation using phasor

measurement units (PMUs). A key feature of PMU is its ability
to capture frequency and phasor changes at a much higher
resolution than traditional meters period. PMU provides syn-
chronized direct measurements of bus voltages and currents.
Under normal circumstances a power system operates at a
nominal frequency with small, but time varying, frequency-de-
viation [1], [2]. In events when system contingencies arise,
however, substantial frequency-deviation may occur, and the
state of power system can change rapidly. The ability to esti-
mate and track varying frequency-deviation is highly desirable,
and simple techniques based on discrete Fourier transform may
be insufficient. In the literature, various frequency estimation
methods for power system were proposed under both balanced
and unbalanced power systems (e.g., [3], [4]).
Frequency and phasor estimation in power systems, from a

signal processing viewpoint, fall in the category of classical fre-
quency estimation [5]. What differentiates the problem from the
standard formulation is that the current measurements satisfy
Kirchhoff’s Current Law (KCL) at each bus. The KCL con-
straint is used in [6] for correcting current measurements by
employing -norm minimization for nominal-frequency power
systems. However, frequency estimation under such a constraint
has not been previously studied and has the potential of im-
proving estimation accuracy.
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We propose two methods for joint system frequency and
phasor estimation by incorporating KCL in the estimator.
The problem is formulated as one of constrained maximum
likelihood (CML) estimation [7], [8]. The resulting frequency
estimator is similar to the classical periodogram estimator but
with a modification involving periodograms of current and
average current signals. This modification plays the role of
noise cancellation and side lobe attenuation thus, providing
improved estimation performance. In addition, we describe
how any suboptimal method can be improved by enforcing
KCL and we also describe a particular example of constrained
weighted least-squares (CWLS) estimation. We develop the
appropriate constrained Cramér–Rao bound (CCRB) [8] for
this case, and we show that the CCRB of the phasors estimation
is lower than the unconstrained Cramér–Rao bound (CRB)
while the CCRB of the frequency estimation remains the same
as the CRB [5]. The simulation results demonstrate that KCL
information significantly improves the phasors estimation in
terms of mean-square-error (MSE) reduction.

II. PHASOR AND FREQUENCY ESTIMATION WITH KCL

A. Problem Formulation

We consider the voltage and current measurements by a PMU
at a specific bus. In particular, the PMUmeasures synchronously
the voltage at the bus and current flows on lines incident to the
bus, as presented schematically in Fig. 1. The complex repre-
sentation of these signals at off-nominal frequency is
given by [1]:

(1)

where is the (known) nominal frequency ( or ),
is the frequency-deviation from this nominal value, and

and denote the currents and voltage
phasors, respectively, where the phasors belong to the off-nom-
inal frequency, . Using KCL, we have .
Assuming that and are sampled times per

cycle of the nominal frequency to produce the following noisy
discrete time measurements model:

(2)

where are samples corresponding
to the th current signal, , for

are the voltage samples,

is the sampling angle, and
are independent complex circularly

symmetric white Gaussian noise sequences with known
variances . The unknown real parameter vector is

, where
denotes the angle of its argument and ,
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Fig. 1. Single PMU model at one node with currents and voltage measure-
ments.

for any . In order to avoid ambiguities, we
restrict the estimates of to .
In this work, we are interested in the joint estimation of the

phasors and frequency-deviation where KCL enforces the con-
straint

(3)

B. The CML Estimation

The following shows how to include KCL a-priori informa-
tion in the maximum likelihood (ML) estimate in order to im-
prove the estimation and achieve a lowerMSE. For the specified
PMU measurement model in (2), the log-likelihood function is
given by

(4)

where is a constant independent of . Incorporating the KCL
constraint from (3), the CML estimate of is given by

(5)

In the Appendix, it is proved that minimization in (5) results in
the CML estimators described in the following theorem.
Theorem 1: Let the summed current signal be

(6)

the current/voltage and summed current periodograms are

and defined the following current transformation

(7)

. Then, the CML estimators of the frequency-
deviation and phasors of the different currents and voltage are
given by:

(8)

(9)

For the sake of simplicity, we derive the CML estimators of the
complex phasors instead of the real amplitudes and phases in .
However, by using the invariance property of the ML estimator,
the CML estimators of these parameter can be obtain directly
from (9) by taking the magnitudes and the phases of the esti-
mated phasors.
In practice, the maximization in (8) may be approximated by

finding the optimal discrete frequency [5]. This method involves
a quantization error because it only evaluates the objective func-
tion at discrete frequencies.

C. Relation to the Unconstrained ML Estimation

Similar to the derivation in the Appendix, the unconstrained
ML estimators are [5]

(10)

(11)

. Thus, the KCL information adds correction
terms to the frequency-deviation and current phasors estimators
and the phasors estimators are affected by the KCL throughout
. It can be verified that the CML estimators in (8)–(9) can

be obtained directly by using the unconstrained ML estimation
method in (10)–(11) with the transformed measurements in (7).

D. Noise Cancellation

By using the model in (2) and (6), it can be observed that

(12)

Substitution of the KCL constraint from (3) in (12), results in

(13)

Therefore, the summed current signal, , is in fact a noise
signal and is used in (7) as a noise cancellation term. The term

in (7) is the branch phasor minus
the weighted sum of all the branch noises. The weighting is done
according to (known) noise variances.
The frequency-deviation estimator in (8) can be inter-

preted as the frequency that maximizes the weighted av-
erage of the periodograms of the currents and the voltages,

, minus the periodogram of the summed
current signal, . Observing (13), we note that is
a periodogram of the average noise. For low signal-to-noise
ratios (SNR), noise artifacts appear in the ML spectral estimates
based on the periodogram. The CML reduces these artifacts and
improves the estimate. However, the white noise periodogram
is a constant for high SNRs, thus, asymptotically it does not
have an effect on the maximum value.

III. LOW-COMPLEXITY ESTIMATION METHODS

In practice, since the ML estimator of the frequency-devi-
ation in (8) requires search procedure and suffers from high
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complexity, many other low-complexity frequency estimation
methods are used in power systems [1]. In order to enforce the
KCL in these suboptimal methods, one can change the orig-
inal measurements in (2) to the corrected measurements in (7).
Since the corrected measurements have a higher SNR compared
to the original measurements, the suboptimal methods with the
corrected measurements are expected to result in estimators of
greater accuracy with a lower MSE. This procedure is exempli-
fied here on the weighted least-squares (WLS) method.
According to (2), the angle measurements are given by (e.g.,

Chapter 4 in [1]) , where

includes the last elements of , and

...
...

Therefore, the WLS estimator that minimizes , is

(14)

where the wighted matrix is
.

For example, if the estimators in
(14) are reduced to

where . Finally, the mag-
nitudes WLS estimators are calculated by

(15)

.
The CWLS estimation under the KCL constraint is obtained

by substituting the corrected measurements from (7)
in (14) and (15) instead of the original measurements .

IV. CONSTRAINED CRAMÉR–RAO BOUND

In this section we derive the CCRB for jointly frequency and
phasor estimation under the KCL constraint. The elements of the
Fisher information matrix (FIM) for the measurements model in
(2) are [5]

(16)

, where

and . Using (16), and the block-
inverse of matrices, the CRB for this case is

(17)

where is vector of ones,

in which

The KCL constraint in (3) can be rewritten as

(18)

Thus, the gradient matrix, , is given by

(19)

The CCRB for nonsingular FIM is given by [8]

(20)

By substituting (17) and (19) in (20), we obtain the CCRB for
this case.
The last row of the matrix is

which is equal to according to the KCL constraint in (18).
The CCRB in (20) implies that the scalar constrained bound on
the frequency-deviation MSE is

(21)

Thus, the KCL constraint has no influence on the CRB of the
frequency-deviation, which indicates that the asymptotic per-
formance of the ML and CML frequency estimators is iden-
tical. However, in the non-asymptotic region the ML and CML
frequency estimators are different. This phenomenon is also
demonstrated in Subsection II.D and in the simulations.
The block-diagonal structure of the CRB and CCRB in (17)

and (20), respectively, implies that the unconstrained phasors
estimators are decoupled from each other while the constrained
estimators are conjugated. The magnitudes are decoupled from
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Fig. 2. The CRB, CCRB, and the MSE of the ML, CML, WLS, and CWLS
estimators of (a), (b), and (c).

the phases and the frequency-deviation for both the uncon-
strained and unconstrained setting.

V. SIMULATIONS

In this section, we compare the performance of the ML,
CML, WLS, and CWLS methods. We consider single PMU
with branches of equal magnitudes. The frequency-de-
viation is set to be where the nominal-fre-
quency is . The sampling rate is 48 samples
per cycle of the nominal power frequency. The SNRs sat-
isfy

. The performance were evalu-
ated using 5000 Monte-Carlo simulations.
The MSE of the ML, CML, WLS, and CWLS estimators

of the current magnitudes and phases at branch 1,
and , respectively, and the fre-

quency-deviation are presented in Fig. 2 and com-
pared to the CRB and CCRB.
Figs. 2(a) and (b) show that the MSE of the ML (or WLS)

estimator is significantly higher than the MSE of the CML (or
CWLS) estimator for both the magnitude and phase. In addi-
tion, the suboptimal CWLS estimator has a lower MSE than the
ML estimator without constraint. Fig. 2(c) demonstrates that al-
though the KCL constraint has a small effect on the frequency-
deviation in this case, as expected by the CRB and CCRB, it
significantly improves the performance of the suboptimal WLS
estimation.

VI. CONCLUSION

In this letter we have demonstrated the possibility of
achieving parameter estimation of greater accuracy by using
KCL. The CML and suboptimal CWLS are derived for fre-
quency-deviation and phasors estimation based on PMU
measurements and KCL. Topics for future research include
the derivation of estimation methods for multiple frequencies,
estimation with several PMUs in a network, and incorporation
of the positive and negative sequences of three-phase voltage
and currents samples similar to [9].

APPENDIX
PROOF OF THEOREM 1

By using Lagrange multipliers, the CML estimation in (5) is
the minimum of the following Lagrangian

(22)

where is the Lagrange multiplier.
Phasors estimation: For a fixed , by equating the complex

derivatives of (22) with respect to the complex function
, to zero, one obtains

(23)

. By summing (23) over , one
obtains

(24)

Substitution of the constraint from (3) in (24) yields

(25)

Substitution of (25) in (23) and using (7), results in (9)
. Similarly, we obtain (9) for .

Frequency estimation: By substituting and
in (22), one obtains the following cost

(26)

The left term in (26) is independent of , thus, by using (9) it can
be seen that the frequency-deviation estimator can be rewritten
in terms of periodograms as in (8).

REFERENCES
[1] A. Phadke and J. Thorp, Synchronized PhasorMeasurements and Their

Applications. New York, NY, USA: Springer Science, 2008.
[2] A. Abur and M. Celik, “Least absolute value state estimation with

equality and inequality constraints,” IEEE Trans. Power Syst., vol. 8,
no. 2, pp. 680–686, May 1993.

[3] Y. Xia, S. Douglas, and D. Mandic, “Adaptive frequency estimation
in smart grid applications: Exploiting noncircularity and widely linear
adaptive estimators,” IEEE Signal Process. Mag., vol. 29, no. 5, pp.
44–54, Sept. 2012.

[4] J.-Z. Yang and C.-W. Liu, “A precise calculation of power system
frequency and phasor,” IEEE Trans. Power Del., vol. 15, no. 2, pp.
494–499, Apr. 2000.

[5] D. Rife and R. Boorstyn, “Single tone parameter estimation from dis-
cretetime observations,” IEEE Trans. Inf. Theory, vol. 20, no. 5, pp.
591–598, Sept. 1974.

[6] E. O. S. III, D. Whitehead, A. Guzman, Y. Gong, and M. Donolo,
“Advanced real-time synchrophasor applications,” in Proc. 35th Annu.
Western Protective Relay Conf., 2008.

[7] J. Aitchison and S. D. Silvey, “Maximum-likelihood estimation of pa-
rameters subject to restraints,” Ann. Math. Statist., vol. 29, no. 3, pp.
813–828, Sept. 1958.

[8] J. Gorman and A. Hero, “Lower bounds for parametric estimation with
constraints,” IEEE Trans. Inf. Theory, vol. 36, no. 6, pp. 1285–1301,
Nov. 1990.

[9] R. Flores, “Signal Processing Tools for Power Quality Event Classifi-
cation,” Ph.D. Dissertation, Dept. Signals Syst., Dep. Electric Power
Eng., Chalmers Univ. Technol., Goteborg, Sweden, 2003.


