
© IMAGESTATE

IEEE SIGNAL PROCESSING MAGAZINE [74] SEPTEMBER 2006 1053-5888/06/$20.00©2006IEEE

[Youngchul Sung, Saswat Misra, Lang Tong, 

and Anthony Ephremides]

Signal Processing 
for Application-Specific 
Ad Hoc Networks
[The role of signal processing in protocol design]

T
he layered architecture used in large data communi-
cation networks provides modularity at the expense
of efficiency. This paradigm has been successful in
wired and many wireless networks. Modularity sim-
plifies the design of large heterogenous and complex

networks via a “divide-and-conquer” approach, decoupling an
enormously difficult problem into tasks that can be pursued
independently. Because of this, new applications can be devel-
oped independently of the medium access and routing strategies
specified at lower layers, and new physical layer techniques can
be implemented without changing upper layer implementa-
tions. Perhaps the most remarkable feature of the layered archi-
tecture is that it makes the network design scalable. A prime
example is the Internet, which has grown from a hand full of
nodes in the ARPAnet [3] to hundreds of millions of nodes today.

But there is a different kind of network, one that is designed
for specific applications. In contrast to the design of the

Internet, serving individual nodes is not always the ultimate
objective. Consider, for example, a sensor network deployed for
target detection and tracking, environmental monitoring, or
the detection of a specific chemical compound. In these appli-
cations, network performance should not be measured by gen-
eral purpose metrics such as the data rate at the link level or by
the throughput over the network. Conventional performance
metrics such as throughput and delay do not necessarily trans-
late to a performance measure suitable for signal detection and
estimation applications. For application-specific networks, and
sensor networks in particular, performance should be measured
instead by application-defined metrics such as the miss detec-
tion and false alarm rates, the network lifetime for performing
these tasks, and the energy efficiency of target detection, track-
ing, and estimation.

If an application-specific metric is to be optimized, signal
processing may have a role in defining network architectures



and protocols. A signal processing perspective may change the
way protocols are designed by shifting design from the user-cen-
tric view (as in the Internet) to an application- or data-centric
viewpoint. Illustrated in Figure 1 is a schematic which shows
that signal processing can be part of the protocol design. For
example, to design a medium access control (MAC) scheme to
collect data from distributed sensors that have correlated meas-
urements, we may not want to allocate resources such as band-
width and power among sensor nodes, as the classical layered
architecture dictates. Instead, we may choose to allocate
resources among the possible data types, minimizing the inter-
ference among transmissions of different measured phenomena,
rather than among different nodes. Type-based multiple access
(TBMA) [18] is an example of such a data-centric approach.

In this article, we examine the role of signal processing in
protocol design for application-specific ad hoc networks. Our
goal is to illustrate, using routing as an example, that a detec-
tion theoretic approach may suggest a different link metric, and
that optimization of this link metric can provide superior appli-
cation performance (for a fixed energy consumed) when com-
pared to traditional approaches. It is our hope to demonstrate
that time-honored signal processing concepts such as the inno-
vations representation of the log-likelihood function have the
potential to find their way into the design of application-specific
network protocols.

APPLICATION SPECIFIC ROUTING:
AN ILLUSTRATIVE EXAMPLE
As an illustrative example, we show how to design application-
specific routing to maximize the detection performance of an ad
hoc network. Shown in Figure 2 is a large network with geo-
graphically distributed sensors, each taking measurements of a
certain phenomenon. We assume that there is a fusion center
(or gateway node) that is responsible for collecting data from
sensors and drawing inferences from that data. We are inter-
ested in the detection of a spatially correlated random signal
field. We assume that the field is a Gaussian field for which the
two hypothesis are






H0 : IID Gaussian noise,
H1 : correlated Gaussian random field

observed in IID Gaussian noise,
(1)

where IID refers to independent and identically distributed. We
assume that the sensors have already been placed in an arbitrary
configuration (consistent with the notion of an ad hoc network)
and that the correlation structure of the Gaussian signal field is
known. Later we will impose a specific structure on the correla-
tion to facilitate aspects of the analysis.

Sensors have limited transmission range, and they have to
deliver their data to the fusion center cooperatively over certain
routes. Obviously, the more data that is collected, the more accu-
rate the inferences drawn about the phenomenon at the fusion
center. What makes the problem interesting and practically rele-
vant is that wireless sensors are subject to severe power and ener-

gy constraints. Each transmission will cost a certain amount of
energy that will depend on the distance between the transmitter
and the receiver and also on the amount of data that needs to be
delivered. It is this tradeoff between performance and energy con-
sumption that demands a different kind of design methodology.

There are several practical scenarios that present interesting
design challenges. The first is related to the event-driven appli-
cations in which some sensor is alarmed by its observation and
initiates a data collection by selecting the best possible route to
the fusion center. The sensor may or may not know the location
of the the fusion center, or, perhaps, there are several fusion
centers to choose from. The other is related to the clock-driven
applications in which the fusion center issues regularly sched-
uled (possibly random) data collections. The fusion center may
or may not know the specific sensor locations.

We are interested in determining the route over which data
collection should be performed. The problem would not be
interesting if, under hypothesis H1, the sensor measurements
of the signal field were independent, i.e., the conditionally IID
model. In this case, each sensor provides equally valuable

IEEE SIGNAL PROCESSING MAGAZINE [75] SEPTEMBER 2006

[FIG2]  Routing for a detection application.
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[FIG1] Application-based cross-layer design.
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information conditioned on the observations of previously sam-
pled sensors, and the “optimal” routing strategy would be to sim-
ply collect data from sensors closest to the fusion center to save
transmission energy. However, routing becomes a nontrivial issue
when sensor measurements
are not IID under H1. In this
case, sensors further away
from previously sampled sen-
sors may have more valuable
(i.e., less correlated) observa-
tions of the signal field.
However, this data can only be
collected at the expense of
using more transmission ener-
gy. Hence, a tradeoff emerges
between detection perform-
ance and energy consumption.
Furthermore, the measure-
ments of sensor nodes are
imperfect, and it is necessary
to consider this measurement inaccuracy and aggregate the
measurements of multiple sensors for the final decision.

Consider a clock-driven application in which the fusion
center initiates data collection as depicted in in Figure 2. For
any fixed route, we will assume that data is collected along all
nodes along the route. (In the sequel we will propose a coop-
erative transmission scheme for routing data from a given
source node to the fusion center. It will be seen that the trans-
mission energy consumed in collecting data from all nodes en
route is identical to that needed to simply relay a message
from the source node to the fusion center. Therefore, for a
fixed route, we assume that data is collected from all nodes
along the route.) We highlight three potential routes R1,R2,
and R3, and ask which route is preferred for detection. There
are eight potential observations along R1 and six along R2.
But measurements along R1 are more correlated than those
along R2 because nodes are closer to each other. Thus the
“information” content through R1 may not be as great as that
through R2. Now R3 has the same number of nodes as R2,
but the route length is shorter. The energy consumed in the
collection through R3 , conceivably, is lower than that
through R2. But the limited coverage of R3 may result in a
significant loss of performance. In an event-driven applica-
tion, the argument above remains valid, but we should con-
sider only those routes which originate from a common
sensor, e.g., R1 and R2 above.

Intuitive concepts alone, e.g., “closely spaced nodes provide
less information” and “collections over widely separated dis-
tances require more energy,” will not carry us far in determin-
ing the optimal routes for the tradeoffs described above. To
develop optimized strategies for application-specific routing, we
will need an analytical characterization of performance, even if
it is nonuniversal. It is only through such a characterization
that we can hope to achieve the right tradeoff between detection
performance and energy consumption.

CHERNOFF ROUTING, SCHWEPPE’S RECURSION, 
AND KALMAN AGGREGATION
Unfortunately, there is no general analytical form that
describes detection performance along a given route. We can,

of course, perform simula-
tions. But simulations will
not give us a way to develop a
routing protocol that can be
implemented in a distributed
fashion at individual nodes.
For this, we will need a link
metric that accumulates the
contributions of each link to
detection performance in
such a way that the total
accumulation of a route is
related to the overall detec-
tion performance of that
route. If we can obtain such a
measure, routing will be

greatly simplified using the shortest path methodology [3]. To
begin such an analysis, we will use performance bounds that
are functions of network parameters such as distances
between a pair of nodes and signal parameters such as signal-
to-noise ratio (SNR) and correlation strength. The bound that
we use to derive optimized routing is tight as the number of
nodes in the route increases.

CHERNOFF ROUTING
To find a suitable bound, we digress briefly into the theory of
large deviations [6]. In doing so, we will describe the tools that
are needed to form a theoretical basis for Chernoff routing.

The Chernoff bound [25] is a well-known tool that can be
used to provide an upper bound on the probability of detection
error. Consider the simple binary hypotheses
Hi : Yk ∼ pi(y), i ∈ {0, 1} , for k = 1, 2, . . . , n. Define
Y �= [Y1, . . . Yn], and let Pi(Y) denote the probability distribu-
tion of Y under Hi, i ∈ {0, 1}. The optimal detector for this test
(under either the Bayesian or Neyman-Pearson formulation)
compares the log-likelihood ratio

l(Y)
�= log

P1(Y)

P0(Y)

≥H1

<H0

τ

to some choice of threshold τ . The false alarm probability can be
upper bounded by

Pr(l(Y) > τ |H0) < exp{−�(τ)},

where the so-called error exponent �(τ) is the Fenchel-
Legendre transform of the cumulant generating function
µ(s) �= log E{esl(Y)|H0)}:

�(τ)
�= sup

s>0
{sτ − µ(s)}.
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There are two valuable features of the Chernoff bound when we
have IID measurements. First, the error exponent �(τ) is addi-
tive. Specifically, when we have Yk ∼ pi(y), k = 1, . . . , n, the
log-likelihood ratio is additive

l(Y1, . . . , Yn) =
∑

k

l(Yk),

and the corresponding Chernoff bound on the false-alarm prob-
ability has the form

Pr(l(Y) > τ |H0) < exp{−n�1(τ)},

where �1(τ) is the Fenchel-Legendre transform of
log E{es l(Y1)|H0)}. It is this additivity that makes it possible to
obtain an additive link metric. Second, the Chernoff bound is
tight when n is large. In addition to this upper bound, we have a
similar lower bound on the false alarm probability that states

Pr(l(Y1, . . . , Yn) > τ |H0) = exp{−n�1(τ) + o(n)},

where o(n) is such that limn→∞ o(n)/n = 0. Here, we interpret
�1(τ) as the decay rate of the false alarm probability. In fact,
�1(τ) can be shown to be the largest possible decay rate

�1(τ) = lim
n→∞

1
n

log Pr(l(Y1, . . . , Yn) > τ |H0).

Under the Bayesian setup, the two types of detection error
probabilities, false alarm and miss detection, are balanced by
the priors of the two hypotheses. However, the largest decay
rate for the average error probability, Pe = Pr(H0) Pr(Error
|H0) + Pr(H1) Pr(Error |H1), does not depend on prior prob-
abilities, and is given by the Chernoff information defined as

C �= �1(0) = sup
s>0

{−µ(s)} . (2)

This concludes our digression.
By Chernoff routing we mean routing where the Chernoff

information is used as a route metric. For a fixed route, say R1

in Figure 2, we have a set of measurements {yi}. Note, however,
that yis are not IID, the Chernoff information for such a case is
a function of the distribution of l(y1, · · · , yn), which, in turn, is
a function of the route. Denoting the Chernoff information asso-
ciated with a specific route R as C(R), Chernoff routing aims to
select a route that maximizes C(R). Denoting E(R) as the ener-
gy consumed when data are routed through route R, we obtain
an energy constrained form of Chernoff routing

max
R

C(R) subject to E(R) ≤ ε . (3)

LINK METRIC VIA INNOVATIONS REPRESENTATION
Although (3) captures the essence of optimal routing subject to
an energy constraint, it does not provide a practical scalable pro-
tocol that can be implemented in a distributed fashion. To be

able to use well-established techniques such as shortest path
routing (i.e., Bellman-Ford optimization), we need to have an
additive link metric such that the accumulated value of the link
costs on R is proportional to the value of C(R). Unfortunately,
the standard expression of the Chernoff information for the
Gaussian hypotheses is given in terms of the eigenvalues of the
covariance matrix of signal samples [25] and does not allow the
decomposition of the overall performance into a sum of the
incremental performance gains at each link.

The key to obtaining an additive link metric, as proposed in
[29] and [30] by Sung et al., is the use of the innovations repre-
sentation of the log-likelihood function [26]. To understand this
crucial step, we note that the Chernoff information associated
with yi is not additive because the log-likelihood function under
H1 is not additive. It is thus natural to seek independent inno-
vations. In the context of signal processing, this can often be
achieved using recursive techniques. The idea of using the inno-
vations representation to obtain the likelihood function recur-
sively was first proposed by Schweppe [26], and the Schweppe’s
recursion leads to the decomposition of Chernoff information
into an additive link metric.

For a fixed route R, assuming a Gaussian signal along the
route, Sung et al. show in [29] and [30] that the Chernoff infor-
mation C(R) is approximately equal to the sum of the loga-
rithm of the innovations variance Re,i (normalized by the
measurement noise variance) at each link, i.e.,

C(R) ≈
∑

i

Ci, Ci = 1
2

log
Re,i

σ 2
w

, (4)

at high SNR, where SNR is defined as the observational SNR
at each sensor, σ 2

w is the variance of measurement noise at each
sensor, ŷi|i−1

�= E{yi|y0, . . . , yi−1} is the minimum mean
square error (MMSE) estimate of yi given all upstream measure-
ments, and Re,i

�= E{|yi − ŷi|i−1|2} is the MMSE of the estima-
tion process. When the random process is Markovian, the link
metric is almost memoryless. This crucial property makes it
possible to apply Bellman-Ford and similar routing algorithms.

A comment on the form of the link metric Ci is in order. A
simple derivation shows that

Ci = 1
2

log
(

1 + Pi |i−1

σ 2
w

)

,

where Pi |i−1 is the variance of signal innovation at node i with
respect to all its upstream nodes. This provides an intuitively
satisfying interpretation: an appropriate link metric is the mutu-
al information between a node and its neighbor. Hence, the opti-
mal route is the one that has the maximal accumulated
innovations entropy.

Next, we need to connect the innovation variance Pi |i−1 to
physical parameters such as the distance and signal field corre-
lation between two nodes and the SNR of each sensor observa-
tion. For the Gauss-Markov random field, this connection is
easily obtained as



Ci ≈ 1
2

log
{

SNR + 1 − (SNR − 1)e−2A�i

}
, (5)

where �i > 0 is the link length, and A > 0 describes the cor-
relation strength and is the diffusion constant of the first order
stochastic differential equation of the Gauss-Markov model.
Note that as A → ∞ the sensor observations approach statisti-
cal independence and that A → 0 corresponds to the fully cor-
related case.

A numerical evaluation of Ci as a function of link length �i

provides useful insights. Figure 3(a) shows the link metric as a
function of link length �i. For SNR ≥ 1, the metric is strictly
increasing, strictly concave, bounded from above, and achieves a
maximum value of (1/2) log(1 + SNR). Thus, this value repre-
sents the maximum information that a link can provide, and it
is attained if the two sensors at each end of the link have inde-
pendent observations of the signal field (such may be the case if
the sensor are spaced far enough apart, or if the field is suffi-
ciently weak in correlation).

We can now bring energy consumption into the framework.
The energy used by a particular node en route can represented
by the sum of the processing energy Ep ≥ 0 and transmission
energy to the next node, i.e.,

Ei = Ep + Et,0�
ν
i , ν ≥ 2, (6)

where Et,0 ≥ 0 is a constant. Thus, the link efficiency can be
defined as

η
�= Ci

Ei
. (7)

Now, the tradeoff between having large Ci and low Ei

emerges. Figure 3(b) shows the detection efficiency for several

values of processing energy Ep at each sensor. The transmis-
sion energy at each link increases without bound as the link
length is increased. However, note that the link efficiency
peaks before decreasing with increasing link length. Hence,
we conclude that there is an optimal link length for optimal
detection efficiency.

KALMAN AGGREGATION
We wish to perform cumulative data aggregation along each
route, so that all sensor observations are delivered to the
fusion center. Many such data aggregation methods are avail-
able based on, e.g., taking a minimum number of observations,
a maximum number of observations, and the most recent
observations. However, for the detection of a Gaussian random
field, the optimal data aggregation can be implemented easily
using a recursion based on the innovations representation of
the log-likelihood function, as discussed previously. Suppose
that we have observations {y1, y2, . . . , yn} at n sensor nodes
along a fusion route. Consider the observations under H1.
(The case when H0 is given by a simplified version of the fol-
lowing derivation.) In this case, the log-likelihood can be
rewritten in a recursive fashion:

log p1(y1, y2, . . . , yi) = log p1(y1, y2, . . . , yi−1)

+ log p1(yi|y1, . . . , yi−1) . (8)

The conditional distribution p1(yi|y1, . . . , yi−1) is Gaussian
with mean E{yi|y1, . . . , yi−1} and variance Re,i (this recurrence
of notation will be resolved shortly). Thus, the log-likelihood li up
to the ith observation along the route can be expressed

li = li−1 − 1
2

log(2π Re,i) − 1
2

e2
i

Re,i
, (9)
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[FIG3]  Detection-based link metric: (a) link metric Ci as a function of link length (A = 1) and (b) link efficiency as a function of length
link (A = 1, SNR = 10 dB, ν = 2, and Et,0 = 1).
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where the innovation is given by ei
�= yi − ŷi |i−1 , where

ŷi |i−1 = E{yi |y1, . . . , yi−1} is the MMSE prediction of yi given
the previous observations, as defined previously. Now, note that
Re,i = E{e2

i } which is consistent with its previous definition.
The update terms in the recursion can be easily calculated

using Kalman filter theory under the Makovian assumption
[16]. Suppose that each sensor knows its own location. Then,
the only other necessary location information for sensor Ni is
that of the next sensor for the prediction step in the Kalman
recursion. The information flow between nodes along the route
is illustrated in Figure 4. Node Ni needs to receive the log-like-
lihood li−1, the prediction for its observation ŷi |i−1, and the
error variance Pi |i−1 from node Ni−1, and the location infor-
mation xi+1 from Ni+1 so that it may predict the observation to
be made at node Ni+1. Note that the aggregation via Kalman
recursion eliminates the need to deliver all the observations
and sensor locations to the fusion center. In case of non-
Markovian signals, a similar calculation is possible but requires
more computation [16].

BELLMAN-FORD IMPLEMENTATION
We now consider a routing protocol that incorporates the pro-
posed link metric Ci. The optimal fusion algorithm can be eas-
ily derived using the Kalman filter with the knowledge of the
field correlation and sensor locations. Each sensor is then
required to transmit the aggregated sufficient statistic (accu-
mulated log-likelihood) to its neighboring sensor on the route
[29]. When a certain sensor in the field observes the signal to
be above its local threshold, it initiates the fusion process
along the predetermined route to the fusion center. The route
from each sensor to the fusion center is typically determined
using a shortest path algorithm based on some link metric.
Here, we simply use a suitably modified version of Ci as a new
link metric for shortest path routing.

Typically in shortest path routing algorithms, each link
in the network, say the one connecting node i to node j, is
assigned a nonnegative link cost γi, j. The shortest path algo-

rithm then finds an optimal route (path) from each source
node to the destination (in our case, the fusion center),
where an optimal route is defined such that the sum of all
link costs along the optimal route is no larger than that of
any other route from the same source to the destination. To
apply the shortest path routing algorithm a suitable modifi-
cation to the metric (5) is necessary. To see this, suppose
that we use Ci in a shortest path routing algorithm without
any additional criteria (i.e., actually, a function such as 1/Ci

would be used since using Ci directly would minimize the
accumulated Chernoff information, which the exact opposite
effect we seek). Then, the algorithm would try to accumulate
as much innovation entropy as possible. Since this quantity
is a strictly increasing function of the number of links, the
algorithm would only converge after visiting every node in
the network, a paradigm which is unsuitable for very large
networks. Furthermore, detection performance saturates
after a certain number of observations even in moderately
sized networks, and this makes visiting every node extremely
detection inefficient. That is, after a certain number of links,
each additional link will consume additional energy while
providing little detection benefit.

We now propose a solution that addresses the energy con-
strained version of Chernoff routing as described in (3).
Although the solution to (3) is desirable, it is not readily avail-
able in a closed form that is also amenable to implementation.
As an alternative, we propose to balance the detection perform-
ance with the energy consumed through the following simple
link metric

γi, j =
{

(Ei − λCi)
+
ε if nodes i and j are connected,

∞ otherwise,
(10)

where

(x)+ε �
{

x x > 0,

ε x ≤ 0,

[FIG4]  Data aggregation using Kalman recursion.
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and ε > 0 is a constant. Note that the cases λ → ∞ and λ → 0
correspond to the well-known minimum-hop and minimum-
energy routing strategies, respectively.

We are now ready to provide some numerical insights by
considering a sensor network with 100 sensors placed on a cir-
cular field with radius one. Figure 5 shows the shortest-path
route from each node to the fusion center, which is located at
the center of the field and denoted S, for each of the routing
strategies: minimum-hop routing, minimum-energy routing,
and Chernoff routing (i.e., shortest path routing based on the
metric (10) with a nontrivial value of λ, i.e., 0 < λ < ∞). (For
simplicity, the Gauss-Markov model with diffusion constant A
is used to describe the signal evolution along the route.) The
differences in the route topology for these schemes is evident.
While minimum-hop routing results in a few, large, well-
directed hops to the fusion center, minimum energy and
Chernoff routing take smaller and more scattered steps. This is
because the transmission energy is a convex function of link
length. The nodes that lead to major topological differences
between the two latter strategies are circled in the figure. As
expected, Chernoff routing produces routes that deviate from
those of minimum-energy routing and for which the detection
performance is presumably better. Figure 6 is a plot of the
probability of detection error PDE for the topology shown in
the previous figure averaged over all N routes (i.e.,
PDE = (1/N)

∑N
n=1 Pe(Rn) where Rn is the optimal route

from node n to the fusion center, determined separately for
each routing scheme). The probability that the signal field is
absent is Pr(H0) = 0.75. Here, we used a more realistic signal
correlation for the detection, i.e., the actual correlation
between two sensors is a function of their Euclidean distance.
That is, while the Chernoff routes are assigned assuming the
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[FIG6]  Probability of detection error PDE averaged over all
routes for the network topology of Figure 5 under three
different routing strategies (Pr(H0) = 0.75 and all other
parameters are the same as in Figure 5).
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Gauss-Markov model, the PDE is determined assuming the
more realistic model. Note that Chernoff-routing provides
about a 40% reduction in the PDE compared to minimum
energy routing.

Figure 7 shows the average routing characteristics when
SNR = 15 dB. Here, for each value of the network size, the per-
formance is averaged over realizations of the network topology,
(i.e., the sensor locations) to extract the fundamental network
behavior. Figure 7(a) shows the average number of hops from all
potential sources to the fusion center. As expected, the mini-
mum-hop routing gives the smallest number of hops while
Chernoff routing provides the largest. Figure 7(b) shows the
average energy required by each scheme. It is seen that Chernoff
routing requires almost the same as the minimum-energy rout-
ing, providing the largest accumulated Chernoff information as
shown in Figure 7(c). In Figure 7(d) it is seen that Chernoff
routing results in the maximum detection efficiency as expect-
ed. Finally, Figure 8 shows the average detection error probabili-
ty as a function of the network size. Note that the network size
can be reduced significantly in the same area for the same error
rate when we use Chernoff routing over the conventional rout-
ing methods.

Finally, we describe a modification to Chernoff routing that
can provide an additional several orders of magnitude reduc-
tion in the PDE compared to the conventional schemes. The
idea is to tune the value of the weighing parameter λ for each
pairwise link in the network as a function of parameters that
are known at each sensor: the SNR, the correlation parameter,
and the link distance of the next hop. Figure 9 provides some
insight into the potential gains of such an approach.
Specifically, we have plotted the PDE for a fixed route (the one
originating at coordinates ≈ (4.25,−4.50) in the topology
graph of Figure 5) versus λ for several values of the correlation
parameter A. It is seen that performance is highly sensitive to λ
and that choosing λ suboptimally can result in a loss of several
orders of magnitude in PDE performance, particularly when the
field is weakly correlated. This effect has been observed to be
more severe for routes containing more hops and less severe
for routes with fewer hops. Therefore, it is expected that analyt-
ic approaches to choosing λ optimally, either on a per-link basis
or as a single value chosen for all network links, can further
boost the performance of Chernoff routing beyond the results
we have detailed in this work. Analytic approaches to this prob-
lem are an interesting avenue of future research.

[FIG7] Performance analysis of the three routing strategies in terms of the: (a) average number of hops, (b) total energy consumed,
(c) accumulated Chernoff information, and (d) average Chernoff (detection) efficiency.
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CONCLUSIONS AND RELATED WORK
In this article, we have applied classical signal processing tools
to illustrate how application-specific design can provide signif-
icant performance gains in wireless ad hoc sensor networks. As
an illustrative example, we have presented a new approach to
routing that maximizes detection performance in such a net-
work. By considering a well-specified application (rather than
general characteristics of a set of applications), we were able to
develop new protocols that depend explicitly on the application
parameters and hence outperform conventional approaches.
Although we considered one specific example of application-
dependent design, we believe that it exemplifies many of the

defining characteristics of the application-specific approach to
protocol design.

The literature on routing for ad hoc network is vast.
Common route metrics include the hop count [14], [20], [23],
traffic level and corresponding delay [1], [2], [35], packet suc-
cess rate [12], and interference level [11], [33], [34]. There is a
growing body of work on routing for sensor networks. The
idea of cross-layer design has been explored by many in recent
years; see, e.g., [8], [13], [17], and [22]. Energy is a particular-
ly well-studied metric, and approaches based on required
communications energy, processing energy, system lifetime,
and/or residual battery energy have been given in [4], [5], [9],
[10], [19], [21], [27], [28], and [32]. Each of these metrics is
justifiably popular for an application or set of applications in
traditional wireless networks, and it would be easy to assume
that similar conclusions carry over to the ad hoc wireless sen-
sor network setting.

Application-based protocol design for wireless ad hoc sen-
sor networks is a promising and largely unexplored research
area. We hope that we have impressed upon the reader that
there exist many critical applications for which the strategies
developed for conventional wireless networks can be improved
upon. The authors hope to stimulate interest of the readers
through the discussion in this article.

Finally, we note that we have not addressed several issues,
such as the effect of transmission interference, the potential
for frequency reuse, and the design of a carefully constructed
MAC and PHY layer, that would be fundamental to a real-
world implementation of the proposed design. Also of practi-
cal and perhaps theoretical interest is the effect of
quantization both the real-valued observations at each sensor
and the scalar quantities used for prediction and propagation
in the Kalman filter implementation of the proposed routing
algorithm. Although some partial results exist for general
models, they have not yet been applied to the specific model
used in the current work. Such issues present an open avenue
of further research.
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