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ABSTRACT

The problem of combining task performance and routing for the detec-
tion of correlated random fields using multi-hop wireless sensor networks
is considered. Under the assumption of Gauss-Markov structure along a
given route, a link metric that captures the detection performance associ-
ated with a route is derived. Under Bayesian formulation Chernoff infor-
mation is used as a performance criterion. It is shown that at high SNR
Chernoff information is approximately given by a sum of the logarithm
of the innovation variance at each link, which thus provides a link metric
to determine the optimal route for the detection application. The value of
the proposed metric is equivalent to the mutual information for Gaussian
channel with signal power defined as the variance of signal innovation. The
properties of the proposed metric are also investigated. It is shown that for
SNR > 1, as a function of link length, the metric is 1) strictly increasing,
2) strictly concave, 3) bounded from above and the maximum information
that a link can provide is 1

2
log(1 + SNR) achieved by independent and

identically distributed samples. It is also shown that the proposed link met-
ric is well approximated by a function of the length of the corresponding
link only.

1. INTRODUCTION

Many criteria have been proposed to select the optimal route in
multi-hop wireless networks. Typical link metric includes the hop
count, minimum delay, traffic amount, etc. For energy-limited
wireless networks different metric such as the battery power of
nodes, necessary transmission power between neighboring nodes,
has also been considered to maximize the network lifetime by dis-
tributing routes evenly over the network [1, 2, 3, 4]. However, the
main purpose of sensor networks lies in specific applications such
as detection, monitoring, estimation, etc., using collaborative pro-
cessing between sensor nodes, whereas conventional wireless ad
hoc networks focus on the communication between nodes. Hence,
it is desirable to incorporate the application performance into rout-
ing in sensor networks. Examples of such cross-layer approach are
found in [5, 6, 7, 8, 9].

In this paper, we consider a cross-layer approach to combine
the detection performance with routing to a gateway node in large
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sensor networks. We consider a specific application, that is, de-
tection of spatially correlated random fields using networked sen-
sors deployed over a geographical region, where each sensor on
a route to the gateway node receives the data from a neighboring
sensor and also makes its own measurement of a phenomenon at
its location. The assumption of spatial correlation is proper for
large sensor networks, especially for densely deployed networks.
While the geometry of a route to the gateway node is irrelevant for
commonly assumed independent and identically distributed (i.i.d.)
signal fields, the spatial correlation affects the performance of de-
tection based on different routes even if the number of sensors on
routes are the same. In [10], we have proposed a new link metric
that captures the detection performance along a fusion route based
on the innovations approach [11] to calculation of Chernoff infor-
mation associated with a fusion route under state-space signal and
observation model. Here, we further investigate the properties of
the proposed link metric and provide some simulation results.

First, we show that the new link metric, logarithm of the vari-
ance of innovation of observation sequence, is equivalent to the
capacity for Gaussian channel with signal power defined as the
variance of signal innovation. Second, we show that for SNR >
1, as a function of link length, the metric is 1) strictly increas-
ing, 2) strictly concave, 3) bounded from above and converging to
1
2

log(1 + SNR) as the link length increases unboundedly. Thus,
the maximum performance gain per link is achieved by i.i.d. ob-
servations for SNR > 1. Third, we also show that the performance
difference by route geometry is not significant when SNR is very
low.

The remainder of the paper is organized as follows. In Sec-
tion 2 we describe the data model. In Section 3 we investigate the
properties of the proposed metric for the detection performance.
Simulation results are given in Section 4, followed by conclusion
in Section 5.

2. SYSTEM MODEL

We consider the detection of a correlated random field S over a
two-dimensional space X using wireless networked sensors de-
ployed over the space under the Bayesian formulation, where the
hypotheses H1 and H0 represent the presence of signal S and the
event of no signal over X, respectively. We assume that the signal
field is static during the period of observation and processing. We
also assume that each sensor knows its own location and sensor
observations are delivered via multi-hop routes to a gateway node



where the final decision is made. Since sensors are located within
the signal field (if H1 would occur), each sensor on a route to the
gateway node not only transfers data from the previous sensor but
also makes its own observation (corrupted by measurement noise)
and delivers the aggregated data to the next sensor on the route.
Thus, data fusion occurs along the route to the gateway node.
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Fig. 1. Detection along a fusion route.

Consider a fusion route traversing sensor nodes N1, N2, · · · ,
Nn, as shown in Fig. 1, where Nn is the gateway node and N1

is the node starting the fusion process. Let R(N1, · · · , Nn) de-
note this fusion route. We make the following assumption on the
correlation structure of the random field S.

A 1 For any open simple route R traversing an arbitrary set of
nodes contained in X, the signal along the route forms an one-
dimensional stationary Gauss-Markov process and the signal model
is given by

ds(l)

dl
= −As(l) + Bu(l), 0 ≤ l ≤ |R|, (1)

where |R| denotes the length of the route R, A ≥ 0 and B are
known, and the initial condition is given by s(0) which has Gaus-

sian distribution N (0, Π0) with Π0 = B2

2A
. The process noise

u(l) is zero-mean white Gaussian with unit variance, independent
of both s(0) and the measurement noise of sensor.

Here, A represents the diffusion rate of the signal field with respect
to distance. Assumption 1 may be an oversimplification for gen-
eral correlation and curve shapes. However, it makes analytic de-
velopment tractable, and is reasonable for a class of curves that are
almost straight contained in a homogeneous Gauss-Markov ran-
dom field.

Since each sensor makes an observation of the signal process
at its location, the observation along R(N1, · · · , Nn) is given by

H0 : yi = wi,
H1 : yi = si + wi, i = 1, 2, · · · , n,

(2)

where yi is the observation at node Ni located at xi, si
∆
= s(xi),

and wi are i.i.d. sensor measurement noises from N (0, σ2) with a
known variance σ2. The prior probabilities of H0 and H1 are given
by π0 and π1, respectively. Under Assumption 1 the dynamics of
signal sample si at node Ni is described by the following state-
space model:

si+1 = aisi + ui, (3)

ai = e−A∆i ,

ui ∼ N (0, Π0(1 − a2
i )),

where the distance between two neighboring sensors on the route
∆i = ||xi+1 − xi||.

3. PERFORMANCE METRIC AND PROPERTIES

Since we are interested in the detection performance, we consider
as a figure of merit the average error probability of optimal de-
tection based on a fusion route. However, the exact calculation
of error probability is not available for general Gauss-Markov sig-
nals [12]. Thus, a link metric has been derived based on Chernoff
bound [13] on the error probability based on the model (2, 3) in
[10]. The derived performance metric is designed to minimize the
Chernoff (upper) bound on the average error probability satisfying
additivity condition1 using the innovations approach [11] to log-
likelihood calculation.

3.1. Background

Here, we summarize the results in [10]. (For detailed derivation,
see the reference.) Consider a fusion route R(N1, · · · , Nn). The
Chernoff bound on the average error probability of the MAP de-
tector is given by [12]

Pe = π0P (E|H0) + π1P (E|H1) ≤ π1−s
0 πs

1e
µT,0(s), (4)

where 0 ≤ s ≤ 1 and µT,0 is the cumulant generating function of

the log-likelihood ratio T
∆
= log

p1(yn
1 )

p0(yn
1 )

under H0, i.e.,

µT,0(s) = log E0

{

e
s log

p1(yn
1 )

p0(yn
1 )

}

, yn
1

∆
= {y1, · · · , yn}. (5)

Chernoff information between p0(y
n
1 ) and p1(y

n
1 ) is defined as the

exponent in (4) yielding the tightest bound, i.e.,

C (p0(y
n
1 ), p1(y

n
1 ))

∆
= sup

0≤s≤1
{−µT,0(s)} (6)

Using the innovations representation for log p1(y
n
1 ) and log p0(y

n
1 )

[10, 11], we have

µT,0(s) = log E0

{

exp

[

s

(

−1

2

n
∑

i=1

log Re,i − 1

2

n
∑

i=1

e2
i

Re,i

+
n

2
log σ2 +

1

2σ2

n
∑

i=1

y2
i

)]}

. (7)

Since the variance Re,i of innovation of observation is determinis-
tic, 1

n

∑n

i=1 y2
i converges almost surely to its mean σ2(= E0{y2

i })
under H0 by the strong law of large numbers (SLLN) as n in-

creases, and e2
i

Re,i
converges to zero in mean square sense as SNR

increases, the Chernoff information at high SNR is attained at
s∗ ≈ 1 and is given by

C
(

p0(y
n

1 ), p1(y
n

1 )
)

≈

1

2

{

n−1
∑

i=0

log Re,i − n(log σ
2

+ 1)

}

=
1

2

{

n−1
∑

i=0

(

log
Re,i

σ2
− 1

)

}

, (8)

for sufficiently largen n. Since the constant term does not depend
on link length, at high SNR a link metric that captures Chernoff
information at link i is given by

Ci
∆
=

1

2
log

Re,i

σ2
. (9)

1The overall metric is decomposed as a sum of contribution of each link
to the performance.



Thus, Chernoff information provided by a fusion route is approx-
imated by the sum of the logarithm of the innovation variance at
each link, and the logarithm of the variance of normalized inno-
vation (of observation) can be used as a link metric. Since ei has
Gaussian distribution N (0, Re,i), the entropy of the innovation ei

at link i is given by 1
2

log(2πeRe,i). Hence, the optimal route in
our metric maximizes the accumulated entropy of the innovation
process along the route.

3.2. Properties of the link metric

First, it is straightforward to see that the link metric Ci is equiv-
alent to the channel capacity of Gaussian channel with modified
signal power, i.e.,

Ci =
1

2
log

Re,i

σ2
=

1

2
log

(

1 +
Pi|i−1

σ2

)

, (10)

since Re,i = σ2 + Pi|i−1 [14], where the variance of signal inno-

vation Pi|i−1
∆
= E(si − ŝi|i−1)

2 and ŝi|i−1 is the minimum mean
square estimate of si given {y1, · · · , yi−1}. The relationship be-
tween Chernoff information per link and Gaussian channel capac-
ity is clear; at high SNR Chernoff information per link is equiva-
lent to the Gaussian channel capacity with signal power defined by
the variance Pi|i−1 of signal innovation. Since 0 ≤ Pi|i−1 ≤ Π0

and the maximum Π0(= E{s2
i }) is attained by independent signal

samples, we can see that the correlation always reduces Chernoff
information at high SNR. PSfrag replacements
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Fig. 2. Link i.

Now, we investigate the properties of the proposed metric as
a function of link length. An explicit formula for the link met-
ric Ci as function of link length ∆i−1 is obtained using Kalman
recursion.

Proposition 1 The link metric Ci as a function of link length ∆i−1

is given by

Ci(∆i−1) =
1

2
log
{

1 + SNR − (SNR − Ki−1)e
−2A∆i−1

}

,

(11)

where Ki−1
∆
=

Pi−1|i−2

Pi−1|i−2+σ2 (0 ≤ Ki−1 ≤ 1) is a constant with

respect to the current link length ∆i−1.

Proof: A recursion for the signal innovation variance (MMSE pre-
diction error) is given by

Pi|i−1 =
σ2a2

i−1Pi−1|i−2

Pi−1|i−2 + σ2
+ Qi−1, (12)

where Qi−1 = Π0(1 − a2
i−1) and Pi−1|i−2 depends only on the

previous links {∆1, · · · , ∆i−2}. Thus, we have

Re,i = σ2 + Pi|i−1 = σ2 + σ2a2
i−1

Pi−1|i−2

Pi−1|i−2 + σ2
+ Qi−1,

= σ2 + Π0 − (Π0 − σ2Ki−1)e
−2A∆i−1 , (13)

where (13) is obtained by substituting ai−1 = e−A∆i−1 . Hence,
from (10) the metric for link i is given by (11). �

Furthermore, at high SNR we have Ki−1 ≈ 1, and the pro-
posed metric is approximated by

Ci ≈ Ĉi
∆
=

1

2
log
{

1 + SNR − (SNR − 1)e−2A∆i−1

}

. (14)

Notice that Ĉi depends only on the current link length ∆i−1, which
makes the calculation of accumulated metric simple. Numerical
results show that the exact metric is well approximated by Ĉi at
reasonably high SNR. Figure 3 shows the value of Ci as a func-
tion of link length. It is seen that Ci increases monotonically as
∆i−1 increases and converges eventually. The properties of Ci as
a function of link length is summarized in the following theorem.
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Fig. 3. Ci versus ∆i−1 (A = 1, Ki−1 = 1).

Theorem 1 For a given set {∆1, · · · , ∆i−2} of previous link lengths
and SNR > 1, the link metric Ci has the following properties:

(i) It is nonnegative and a strictly increasing function of ∆i−1,

(ii) converges to 1
2

log(1 + SNR) exponentially as ∆i−1 in-
creases,

(iii) and the function is strictly concave.

The approximated metric Ĉi has the same properties.

Proof: From (11) the convergence to 1
2

log(1 + SNR) regard-
less of the value of Ki−1 and its rate are straightforward since

limx→∞
log c1−log(c1−c2e−x)

e−x = c2/c1 for c1 > c2 > 0. The
partial derivative of Ci with respect to ∆i−1 is given by

∂Ci

∂∆i−1
=

A(SNR − Ki−1)e
−2A∆i−1

SNR + 1 − (SNR − Ki−1)e−2A∆i−1
. (15)

Since 0 ≤ Ki−1 ≤ 1, SNR > 1 implies ∂Ci

∂∆i−1
> 0 and the link

metric is a strict increasing function of ∆i−1. The second partial
derivative is given by

∂2Ci

∂∆2
i−1

=
−2A2(SNR + 1)(SNR − Ki−1)e

−2A∆i−1

(SNR + 1 − (SNR − Ki−1)e−2A∆i−1)
2 . (16)

Therefore, for SNR > 1, ∂2Ci

∂∆2
i−1

< 0 and the metric is a strictly

concave function of ∆i−1. For Ĉi, Ki−1 ≡ 1, and the claim
follows. �



The strict concavity of the metric Ci and Ĉi as a function of
link length is important, and makes the optimization problem sim-
ple. For example, consider sensor placement problem where we
want to optimize sensor spacing to maximize the detection per-
formance over some feasible set {(∆1, · · · , ∆n−1) : f(∆1, · · · ,
∆n−1) ≤ c}. (For example, total transmission energy constraint
is represented by f(∆1, · · · , ∆n−1) =

∑n−1
i=1 ∆2

i .) In particular,
if we use Ĉi, this problem reduces to a separable convex opti-
mization problem due to the concavity of Ĉi from Theorem 1 and
convexity of the feasible set satisfying total energy or length con-
straint. It is easy to show that uniform spacing results in maximal
total Chernoff information. One can argue that uniform placement
is also optimal using the exact metric Ci at high SNR since Ci

converges to Ĉi as SNR increases. (However, uniform placement
is not optimal when SNR is very low or the field correlation is very
strong.)

The maximal information that a link can provide is given by

Cmax =
1

2
log(1 + SNR), (17)

achieved at ∆i−1 = ∞ (i.e., the next sample is independent of
all the previous samples) regardless of the value of Ki−1. For a
finite ∆i−1 with SNR > 1 the information is reduced from Cmax

due to the correlation between two samples at neighboring sensors.
However, with a finite ∆i−1 we can achieve most of Cmax due to
the exponential convergence. It is worth noting that the maximal
information that a link can provide is the same as the capacity of
the Gaussian channel with i.i.d. channel uses at high SNR, which
is dealt with in more detail in Section 3.3.

When the link length ∆i−1 approaches zero, on the other hand,
the information for the link converges to 1

2
log(1 + Ki−1). Note

that Ki−1 > 0 if Pi−1|i−2 > 0, i.e., the estimation for si−1 given
{y1, · · · , yi−2} is not perfect. However, the accumulated infor-
mation does not increases linearly with n.

Theorem 2 If ∆i−1 = 0 for all i, the total information increases
at the rate of log

√
n as n increases and the average information

per observation converges to zero.

Proof: See [15] �

Now we define the detection efficiency η of a link as the infor-
mation per unit energy, i.e.,

η
∆
=

Ci

Ei

, (18)

where Ei is the required energy per link consisting of processing
and transmission energy. Figure 4 shows the detection efficiency
as a function of the link length ∆i−1 for Ki−1 = 1 and several
values of the processing energy Ep. Here, the inverse square law is
used for wireless propagation, i.e., Ei = Ep+∆2

i−1. It is seen that
the information per unit energy initially increases as the link length
increases, reaches a maximum, and then decreases to zero as the
link length further increases. It is also seen that the most energy-
efficient spacing ∆∗

i−1 in terms of the detection performance is
dependent on Ep, and is given by solving

∂

∂∆i−1

(

log
{

1 + SNR − (SNR − Ki−1)e
−2A∆i−1

}

Ep + ∆ν
i−1

)

= 0,

(19)
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where ν is the attenuation coefficient for wireless propagation.
Note that ∆∗

i−1 can be used to determine the sensor density over
space at the initial deployment phase to provide the sensor spacing
that is most efficient in per-link detection performance in terms of
energy consumption.

3.3. I.i.d. case

Now we consider the i.i.d. case to make a connection to the ap-
proximation at high SNR in the previous section. In the i.i.d. case
( ai = 0, ∀ i), the exact computation of the Chernoff information
is available. The Chernoff information between two joint distribu-
tions is given by

C(p0(y1, · · · , yn), p1(y1, · · · , yn)) = nC(p0, p1), (20)

where
p0 = N (0, σ2) and p1 = N (0, Π0 + σ2), (21)

C(p0, p1) = −1

2
log

[

1 + SNR
SNR

log(1 + SNR)

]

+

1 + SNR
2SNR

log(1 + SNR) − 1

2
, (22)

and the optimal s∗ for the tightest bound is given by

s∗ = 1 +
1

SNR
− 1

log(1 + SNR)
. (23)

Fig. 5 shows s∗ as a function of SNR. As expected, it is seen from
(23) that the optimal s∗ converges to one as SNR increases. On
the other hand, s∗ converges to 1

2
as the SNR decreases to zero.

Thus, Bhattacharyya bound gives a tight upper bound at low SNR
regime. The asymptotic (in SNR) behavior of Chernoff informa-
tion is given by the following theorem.

Theorem 3 The Chernoff information for the binary MAP detec-
tion for the null and alternative distributions (21) is equivalent to
the Gaussian channel capacity 1

2
log(1 + SNR) asymptotically (in

SNR), i.e.,

lim
SNR→∞

C(p0, p1)
1
2

log(1 + SNR)
= 1. (24)
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First, Theorem 3 establishes a relationship between the Cher-
noff information for the binary MAP detection of i.i.d. Gaus-
sian signals in Gaussian noise and the Gaussian channel capacity.
These two information measures are equivalent at high SNR. Sec-
ond, comparing (8,10) and (22), we recognize what is involved in
the approximation in the previous section. From the high SNR
assumption, we have approximated s∗ ≈ 1 and neglected the
term that increases with order of − 1

2
log[log(1+SNR)], which in-

creases with slower rate than the dominant term 1
2

log(1 + SNR).
Surprisingly, this approximation well predicts the relative detec-
tion performance based on different routes even when the SNR is
not so high, as seen in Section 4. Theorem 3 provides a rationale
for using (10) as a link metric at high SNR. The difference is that
in the correlated case the signal power is defined by the variance of
the signal innovation not by the variance of the signal itself. The
information per link reduces to 1

2
log(1 + SNR) in the i.i.d. case

since we have ŝi|i−1 = 0 and

E{s2
i } = Π0 = Pi|i−1

∆
= E{(si − ŝi|i−1)

2}, (25)

in this case.

3.4. Low SNR case

Up to now, we have shown that the logarithm of innovation vari-

ance Re,i at link i or equivalently 1
2

log
(

1 +
Pi|i−1

σ2

)

can be used

as a link metric that captures detection performance at high SNR
and investigated its properties. The optimal selection of a route
based on the proposed metric can significantly improve detection
performance at high SNR, as shown in Section 4. However, at low
SNR the performance difference among different routes with the
same number of nodes is not as significant as in high SNR since
the noise factor is dominant in the low SNR regime. We can see
this easily by the Kalman recursion (26-29) for the innovation vari-
ance Re,i. In the exponent of the cumulant generating function (7)
we see that there are two terms depending on the route geometry:

log Re,i and e2
i

Re,i
.

P1|0 = Π0, (26)

Re,i = σ2 + Pi|i−1, (27)

Kp,i = aiPi|i−1R
−1
e,i , ai = e−A∆i , (28)

Pi+1|i = a2
i Pi|i−1 + Π2

0(1 − a2
i ) − a2

i P
2
i|i−1R

−1
e,i . (29)

Consider the asymptotic case that SNR (= Π0
σ2 ) decreases to zero

for a fixed large n. Here, we fix σ2 > 0 and decrease the signal
process variance Π0 to zero. It is seen from (26-29) that Pi|i−1 →
0 for all i = 1, · · · , n, as Π0 → 0. When Pi|i−1 becomes so small
that the noise variance σ2 in (27) is dominant, the change of Pi|i−1

due to the variation of link length is insignificant compared with
σ2 and consequently the change in log Re,i is not as significant as

in high SNR case. For the other term e2
i

Re,i
, consider the following

recursive filtering for ei:

ei = yi − Kp,i−1yi−1 − (ai−1 − Kp,i−1)Kp,i−2yi−2 − · · ·
− (ai−1 − Kp,i−1) · · · (a2 − Kp,2)Kp,1y1. (30)

From (26-29) we have that Kp,i → 0 as Π0 → 0. Thus, at low
SNR yi is the dominant factor in the right-hand side of (30). Since
the cumulant generating function (7) is calculated under the null
hypothesis H0, yi is given by measurement noise wi which is as-
sumed to be i.i.d. over samples. Thus, at low SNR the distribution
ei under H0 is determined by that of yi and does not depend on
the route geometry significantly.

4. NUMERICAL RESULT

In this section, we present some numerical results to validate our
performance metric. We considered Bayesian detection of a ran-
dom field satisfying Assumption 1. We used equal prior probabil-
ities for H0 and H1, and set the diffusion rate A of the field to
be one. Due to Assumption 1 we considered the relative distance
between nodes along routes for the route geometry. We considered
the on-demand detection initiated by the gateway node described
described in [10]. We considered 50 possible routes all with 20
sensor nodes (19 hops). Assuming spatial Poisson sensor loca-
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tions, we generated link lengths using the exponential distribution
with unit mean independently over hops and different routes. From
these 50 route realizations we selected three routes: the short-
est path requiring minimum energy, the longest path consuming
maximum energy, and the optimal path that maximized our per-
formance metric.

Figure 6 shows the simulated error probability of the MAP
detector based on the three different routes with respect to SNR.
It is seen that at low SNR the difference among three routes is
not significant as expected. Nevertheless, the relative performance



among the three routes is well preserved at low SNR according to
the order predicted by our analysis based on high SNR. At high
SNR, on the other hand, the performance difference is large. Note
that the performance gain by the optimal metric is approximately
2 dB over the shortest route detection at high SNR, and this gain
increases when the number of hops increases further. As expected,
the performance of the optimal route in our metric provides the
best performance. The longest route provided a better performance
than the shortest since the expected innovation is large at links.
However, the longest route does not necessarily provide the best
performance since the performance also depends on the relative
length among hops. Notice that our analysis based on large sam-
ples is valid only with 20 samples in this case.
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Fig. 7. Simulated average error probability Pe of three different
routes

Figure 7 shows the total transmission energy required for the
three routes without taking the processing energy into account. As-
suming the inverse square law, we used ∆2

i as transmission energy.
In the realization of 50 routes, we observed that one specific route
remains as the optimal route for all the considered SNR values
so that the curve corresponding to the optimal route is a straight
line over the SNR. It is seen that the optimal route requires much
less energy than the longest path (almost one third in this case).
Hence, we can improve the detection performance by choosing
the path wisely, saving transmission energy significantly over the
simple longest route approach which naively tries to maximize the
expected innovation at each link.

5. CONCLUSIONS

We have considered a cross-layer approach to combine the network-
layer routing with application performance directly for the detec-
tion of correlated random fields in multi-hop wireless sensor net-
works. We have proposed a link metric that captures the detec-
tion performance, and investigated its properties. Under the as-
sumption of Gauss-Markov structure along a fusion route, we have
shown that at high SNR the logarithm of innovation variance can
be used as a link metric and the value of this metric is equivalent
to the mutual information for Gaussian channel with signal power
defined as the variance of signal innovation. We have also inves-
tigated the properties of the proposed metric. We have shown that
for SNR > 1 the metric as a function of link length is strictly in-
creasing, strictly concave, bounded from above and converging to
1
2

log(1+SNR) as the link length increases unboundedly. We have
also shown that the performance difference by the route shape is

not significant when SNR is very low2.
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