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Abstract—The problems of sensor configuration and activation for
the detection of correlated random fields using large sensor arrays are
considered. Using results that characterize the large-array performance of
sensor networks in this application, the detection capabilities of different
sensor configurations are analyzed and compared. The dependence of the
optimal choice of configuration on parameters such as sensor signal-to-
noise ratio (SNR), field correlation, etc., is examined, yielding insights into
the most effective choices for sensor selection and activation in various
operating regimes.

I. INTRODUCTION

The main design criteria for sensor networks are the performance
in the specific task and the energy efficiency of the network. In
this paper, we consider optimal sensor configuration and selection
for densely deployed sensor networks for the detection of correlated
random fields. An example in which the problem of such sensor
selection arises is Sensor Network with Mobile Access (SENMA), as
shown in Fig. 1, where a mobile access point collects sensor data con-
trolling sensor transmissions in the reachback channel. To maximize

Access point

Sensor

Fig. 1. Sensor network with mobile access point

the energy efficiency of such a network, one should judiciously select
and activate sensors to satisfy the desired detection performance with
the minimum amount of sensor data since the number of activated
sensors is directly related to the energy consumption of the entire
network.
To simplify the problem for analysis, we focus on a 1-dimensional

space, and investigate how various parameters such as the field
correlation, signal-to-noise ratio (SNR), etc., affect the optimal con-
figuration for different sensor schedules. Specifically, we assume
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that the signal field s(x) is the stationary solution of the stochastic
diffusion equation [3]:

ds(x)

dx
= −As(x) +Bu(x), x ≥ 0, (1)

where A ≥ 0 and B are known, and the initial condition is given
by s(0) ∼ N (0,Π0). Here, x denotes position along the linear axis
of the sensor array. The process noise u(x) is a zero-mean white
Gaussian process, independent of both sensor measurement noises
{wi} and the initial state s(0). We assume that each activated sensor
takes a measurement of the field at its location, and subsequently
transmits the data to the collector or fusion center1. The observation
yi from the activated sensor i located at xi (xi < xi+1) is governed
by the following statistical hypotheses

H0 : yi = wi, i = 1, 2, · · · , n,
H1 : yi = si +wi,

(2)

where {wi} are N (0, σ2) measurement noises, with known σ2 and
independent from sensor to sensor, and the signal sample si

∆
= s(xi).

The dynamics of the collected signal samples {si} are given by
si+1 = aisi + ui, (3)
ai = e−A∆i , (4)

where ∆i
∆
= |xi+1 − xi| and ui ∼ N (0,Π0(1 − a2i )). A similar

model was derived in [4].
Note that 0 ≤ ai ≤ 1 for 0 ≤ A ≤ ∞ and ai determines the

amount of correlation between sample si and si+1; ai = 0 implies
that two samples are independent while for perfectly correlated signal
samples we have ai = 1 . By the stationarity, E{s2i } = Π0 for all i,
and the SNR for the observations is given by Π0/σ2.

A. Summary of Results
We adopt the Neyman-Pearson formulation of fixing the detector

size α and minimizing the miss probability. The miss probability
PM(X, n;α, SNR) is a function of the number, n, and locations,
X

∆
= {x1, · · · , xn}, of the activated sensors as well as detector size

α and SNR. Usually, the miss probability decreases exponentially as
n increases and the error exponent is defined as the decay rate

Kα(X; SNR) = lim
n→∞

1

n
logPM(X, n;α, SNR). (5)

The error exponent is a good performance index since it gives an
estimate of the number of samples required for a given detection
performance; faster decay rate implies that fewer samples are needed

1We will not focus on local quantization of yi at the sensor level here,
nor will we consider the transmission error to the fusion center. These are
important design issues that must be treated separately.

0-7803-9202-7/05/$20.00 (C) 2005 IEEE



for a given miss probability. Hence, the energy efficient configuration
for activation can be formulated to find the optimal X (where data
should be collected) maximizing the error exponent when the sample
size is sufficiently large.
Based on our previous results on the behavior of the error exponent

for the detection of correlated random fields [17], we examine several
strategies for sensor configuration for the testing of H1 versus H0,
and propose guidelines for the optimal configuration for different
operating regimes. Specifically, we consider uniform configuration,
periodic clustering, and periodic configuration with arbitrary sensor
locations within a period. We show that the optimal configuration is
a function of the field correlation and the SNR of the observations.
For uniform configuration, the optimal strategy is to cover the entire
signal field with the activated sensors for SNR > 1. For SNR < 1, on
the other hand, there exists an optimal spacing between the activated
sensors. We also derive the error exponents of periodic clustering and
arbitrary periodic configurations. Depending on the field correlation
and SNR, the periodic clustering outperforms uniform configuration.
Furthermore, there exists an optimal cluster size for intermediate
values of field correlation. The closed-form error exponent obtained
for the vector state-space model explains the transitory error behavior
for different sensor configurations as the field correlation changes.
It is seen that the optimal periodic configuration is either periodic
clustering or uniform configuration for highly correlated or almost
independent signal fields.

B. Related Work
The detection of Gauss-Markov processes in Gaussian noise is a

classical problem. See [5] and references therein. Our work is based
on the large deviations results in [17], where the closed-form error
exponent was derived for the Neyman-Pearson detection, with a fixed
size, of correlated random fields using the innovations approach for
the log-likelihood ratio (LLR) [6]. There is an extensive literature
on the large deviation approach to the detection of Gauss-Markov
processes [8]-[14]. The application of the large deviations principle
(LDP) to sensor networks has been considered by other authors as
well. The sensor configuration problem can be viewed as a sampling
problem. To this end, Bahr and Bucklew [10] optimized the exponent
numerically under a Bayesian formulation. For a specific signal model
(low pass signal in colored noise), they showed that the optimal
sampling depends on SNR, which we also show in this paper in
a different setting. Chamberland and Veeravalli have also considered
the detection of correlated fields in large sensor networks under the
formulation of LDP and a fixed threshold for the LLR test with the
focus on detection performance under power constraint [16].

II. PRELIMINARIES: ERROR EXPONENT AND PROPERTIES
In this section we briefly present previous results [17] relevant

to our sensor configuration problem. The error exponent for the
Neyman-Pearson detection of the hypotheses (2) with a fixed size
α ∈ (0, 1) and uniformly configured sensors with spacing ∆ (i.e.,
X = {(i− 1)∆}ni=1) is given by

Kα(X; SNR) = −1
2
log

σ2

Re
+
1

2

R̃e

Re
− 1

2
, (6)

independently of the value of α, where Re and R̃e are the steady-
state variances of the innovations process of {yi} calculated under
H1 and H0, respectively. The closed-form formula (6) is obtained
via the innovations representation of the log-likelihood ratio [6], and
enables us to further investigate the properties of the error exponent
with respect to (w.r.t.) parameters such as the correlation strength

and SNR. (See [17] for more detail.) Here, we note that the error
exponent for the miss probability with a fixed size does not depend
on the value α of the size. Thus, the error exponent depends only
on X and SNR. (For notational convenience, we use K for the error
exponent unless the arguments are needed.)
We now describe the basic properties of the error exponent starting

from the extreme correlation cases.
Theorem 1 (Extreme correlations): The error exponent K is a

continuous function of the correlation coefficient a ∆
= e−A∆ for a

given SNR. Furthermore,
(i) for i.i.d. observations (a = 0) the error exponent K reduces
to the Kullback-Leibler information D(p0||p1) where p0 ∼
N (0, σ2) and p1 ∼ N (0,Π0 + σ2);

(ii) for the perfectly correlated signal (a = 1) the error exponent K
is zero for any SNR, and the miss probability decays to zero
with Θ( 1√

n
).

The above theorem reduces to the Stein’s lemma for the i.i.d. case.
For the perfectly correlated case (a = 1), on the other hand, the
miss probability does not decay exponentially; rather it decays in
polynomial order n−1/2.
The error behavior for intermediate values of correlation is sum-

marized by the following theorem, and shows distinct characteristics
for different SNR regimes.
Theorem 2 (K vs. correlation): (i) For SNR > 1, K decreases
monotonically as the correlation increases (i.e. a ↑ 1);

(ii) For SNR < 1, there exists a non-zero correlation value a∗ that
achieves the maximal K, and a∗ is given by the solution of the
following equation.

[1 + a2 + Γ(1− a2)]2 − 2(re + a4

re
) = 0, (7)

where re = Re/σ
2. Furthermore, a∗ converges to one as SNR

approaches zero.
Hence, an i.i.d. signal gives the best detection performance for a given
SNR > 1. The intuition behind this result is that the signal component
in the observation is strong at high SNR, and the new information
contained in the observation provides more benefit to the detector
than the noise averaging effect present for correlated observations.
For SNR < 1, on the other hand, the error exponent does not decrease
monotonically as correlation becomes strong, and there exists an
optimal correlation. This is because at low SNR the signal component
is weak in the observation and correlation between signal samples
provides a noise averaging effect. This noise averaging will become
evident in Section III-B. Fig. 2 shows the error exponent as a function
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Fig. 2. K vs. correlation coefficient a: (a) SNR = 10 dB (b) SNR= -3, -6,
-9 dB

of the correlation coefficient a for several values of SNR. Two plots
clearly show the different error behaviors as a function of correlation
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in the high and low SNR regimes. Unit SNR is a transition point
between two different behavioral regimes of the error exponent as a
function of correlation strength.
The error exponent is also a function of SNR. This aspect of the

behavior of the error exponent is given by the following theorem.
Theorem 3 (K vs. SNR): The error exponent K is monotone in-

creasing as SNR increases for a given correlation coefficient 0 ≤ a <
1. Moreover, at high SNR the error exponent K increases linearly
with respect to 1

2 log SNR.

III. SENSOR CONFIGURATION
In this section, we investigate several sensor configurations, and an-

alyze the corresponding detection performance via the error exponent.
We also provide the closed-form error-exponent for several interesting
cases by extending the results in the previous section. Specifically, we
consider uniform configuration, clustering, and periodic configuration
with arbitrary locations within a spatial period as described in Fig.
3. We provide the optimal configuration for uniform configuration
for the detection of stationary correlated fields, and investigate the
benefit of other configurations.

(a)

(b)

(c)

∆

M∆

M∆

X
Sensor

Fig. 3. Configurations for n sensor activations: (a) uniform configuration
(b) periodic clustering (c) arbitrary periodic configuration

A. Uniform Configuration
For uniform configuration with spacing ∆ between neighboring

sensors, the data model is described by the state-space model (3)
with

a1 = · · · = an = a = e−A∆,

and the results in Section II are directly applicable. The key connec-
tion between sensor configuration and detector performance is given
by the correlation coefficient a. First, we consider SNR > 1. In this
case, by Theorem 2 (i), the error exponent decreases monotonically
as a increases, i.e., the spacing∆ decreases for a given field diffusion
rate A. Hence, when the support of the signal field S is finite and n
sensors are planned to be activated in the field, the optimal uniform
scheme is to distribute the n activated sensors to cover all the signal
field, which makes the observations least correlated; localizing all the
scheduled sensors in a subregion of the stationary signal field is not
optimal. For SNR < 1, on the other hand, the optimal spacing ∆∗

for an infinite (in size) signal field is given by

∆∗ = − log a
∗

A
, (8)

where a∗ is given by the solution of (7). ∆∗ is finite for any SNR
strictly less than one since the diffusion coefficient A < 0 and a∗ > 0
for any SNR < 1. The optimal spacing as a function of SNR is shown
for A = 1 in Fig. 4.
For a finite signal field S with n scheduled sensors, ∆∗ is still

optimal among the class of uniform configurations if n∆∗ < |S|,
where |S| is the spatial duration of the signal field. In this case, the
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Fig. 4. Optimal spacing between sensors for infinite signal field ( SNR < 1,
A = 1)

sensor field does not need to cover the entire signal field. However, if
n∆∗ > |S|, ∆∗ may no longer be the optimal spacing. As shown in
Fig. 2, the error exponent decreases when the spacing ∆ deviates
from ∆∗. Hence, activating sensors fewer than n̄

∆
= b |S|

∆∗ c with
spacing larger than ∆∗ always gives a worse performance than n̄
sensors with spacing ∆∗. However, this may not be the case for
activating more sensors than n̄ (up to n) by reducing the spacing
from ∆∗. Even if the error exponent decreases by reducing the
spacing, more sensors are activated over the signal field. Therefore,
better performance is possible for the latter case since the product
of the error exponent and the number of samples determines the
miss probability approximately. Similar situation also occurs at SNR
> 1 for finite signal field. Note that the error exponent increases
as the correlation decreases. (See Fig. 2.) Thus, by spreading the
activated sensors with a reduced number of activated sensors in the
signal field, sensor data become less correlated and the slope of
error decay becomes larger at a cost of reducing the number of
observations. However, the increase in the error exponent is not large
enough to compensate for the loss in the number of sensors in the
field. Fig. 5 shows the error exponent as a function of the number
of scheduled sensors in S ( |S| = 1) at 10 dB SNR for several
different diffusion rates. The dashed line shows the decay of n−1

for which the performance loss by the decrease in the number of
scheduled sensors is exactly balanced. We observe that the decay
of the actual error exponent is slower than n−1. Hence, when the
maximum number of available sensors in a finite signal field case is
n, the optimal configuration is to activate all n sensors covering the
entire field with maximal spacing.
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Fig. 5. Error exponent vs. n for a fixed signal field (|S| = 1)

Another interesting fact about the finite signal field is the asymp-
totic behavior when the number of sensors increases without bound.
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In this case, the correlation coefficient converges to one, i.e.,

a = exp −A |S|
n

→ 1 as n→∞. (9)

By Theorem 1 (ii), the error probability does not decay exponentially,
but decays with polynomial order n−1/2 for any finite A as n→∞.
The exception is the singular case where A = ∞, i.e., the signal is
a white process. Therefore, for the detection of stationary correlated
fields, it is a better strategy to cover a larger area as long as the signal
field extends there than to localize activated sensors more densely in
a subregion.

B. Periodic Clustering
The uniform configuration for a finite signal field reveals that there

is a benefit at high SNR to making sensor spacing large to obtain
less correlated observations, but activating fewer sensors results in a
bigger loss than the gain from being less correlated. This naturally
leads to our second configuration: periodic clustering shown in Fig.
3 (b), aiming at the benefits from both correlation and the number of
scheduled sensors. In this configuration, we activate M sensors very
close in location, and repeat this multiple activation periodically over
signal field so that the number of scheduled sensors is preserved and
the spacing between clusters becomes larger than that of uniform
configuration.
For further analysis, we assume that theM sensors within a cluster

are located at the same position. With the total number of scheduled
sensors n = MN , the observation vector yn = [y1, y2, · · · , yn]T
under H1 is given by

yn = s̃n ⊗ 1M +wn, (10)

where ⊗ is the Kronecker product,
s̃n = [s(0), s(∆̃), · · · , s(N∆̃)]T , (11)

and ∆̃ = |S|/N = M∆. (∆ is the sensor spacing for the uniform
configuration for n sensors in S.) The covariance matrix of yn is
given by

E{ynyTn} = Σs,N(ã)⊗ 1M1TM + σ2I under H1,
σ2I under H0,

(12)

where ã = exp(−A∆̃). The signal covariance matrix has a block
Toeplitz structure due to the perfect correlation of signal samples
within a cluster. Σs,N(ã) in (12) is a positive-semidefinite Toeplitz
matrix where the kth off-diagonal entries are given by rs(k) = Π0ã

k.
For any A > 0, 0 ≤ ã < 1 and rs(·) is an absolutely summable
sequence; the eigenvalues of Σs,n are bounded from above and
below[7]. Using the convergence of the eigenvalues of Σs,N and the
properties of the Kronecker product, we obtain the error exponent
for periodic clustering.
Proposition 1 (Periodic Clustering): For the Neyman-Pearson de-

tector for the hypotheses (2) with level α ∈ (0, 1) and periodically
clustered sensor configuration, the error exponent of the miss prob-
ability is given by

K̃ =
1

M
K(∆̃;M ∗ SNR), (13)

where K(∆̃;M ∗ SNR) is the error exponent for uniform configura-
tion with spacing ∆̃ and M ∗ SNR for each sensor.
Proof: See [18].
The optimal detector for periodic clustering consists of two steps.

We first take an average of the observations within each cluster, and
then apply the optimal detector for a single sample at each location

to the ensemble of N average values. Intuitively, it is reasonable to
average the observations within a cluster since the signal component
is in the same direction and the noise is random. By averaging, the
magnitude of the signal component increases by M times with the
increase in the noise power by the same factor; the SNR within
a cluster increases by the factor M . This is shown in the relation
(13) to uniform configuration. The error exponent (13) shows the
advantage and disadvantage of the periodic clustering over uniform
configuration covering the same signal field. Clustering gives two
benefits. First, the correlation between clusters is reduced for the
same A by making the spacing larger, and the error decay per
cluster increases. Second, the SNR for each cluster also increases
by M times. However, the effective number of signal samples is also
reduced by a factor of M comparing with the uniform configuration.
The performance of clustering is determined by the dominating factor
depending on the diffusion rate of the underlying signal and the
SNR of the observations. Fig. 6 shows exp(−nK̃), which is an
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Fig. 6. exp(−nK̃) vs.M (|S| = 1, SNR = 10 dB): (a) A = 0.1 (b) A = 1
(c) A = 10

approximate miss probability for large samples, for different diffusion
rates at 10 dB SNR. The total number of sensors is fixed at n = 100,
and the cluster size is chosen as M = [1, 2, 4, 5, 10]. For the highly
correlated field (A = 0.1), it is seen that the reduced correlation
between sampled signals is dominant and the periodic clustering gives
better performance than uniform configuration (i.e., M = 1). (See
Fig. 2. The gain in the error exponent due to reducing correlations
is large in the high correlation region.) On the other hand, for the
almost independent signal field (A = 10), clustering gives worse
performance than uniform configuration. In this case, the correlation
between the scheduled samples is already weak, and the increase
in the error exponent due to increased spacing is insignificant as
shown in Fig. 2. Hence, the benefit of clustering results only from
the increase in SNR. By Theorem 3, however, the rate of increase in
the error exponent due to the increased SNR is 1

2
logM at high SNR,

which does not compensate for the loss in the number of effective
samples by the factor 1/M . For the signal field with intermediate
correlation, there is a trade-off between the gain and loss of clustering,
and there exists an optimal clustering as shown in Fig.6 (b). Hence,
one should choose the optimal clustering depending on the diffusion
rate and the size of the underlying signal field. Fig. 7 shows the
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Fig. 7. exp(−nK̃) vs.M (|X | = 1, SNR = -3 dB): (a) A = 0.1 (b) A = 1
(c) A = 10

approximate miss probability of the periodic clustering for -3 dB
SNR with other parameters the same as in the high SNR case. It is
seen that periodic clustering outperforms than uniform configuration
in all considered correlation values since the SNR is the dominant
factor in the detector performance at low SNR.
Clustering also explains the polynomial behavior in asymptotic

error decay for the infinite density model considered in (9). We can
view an increase in the number n of sensors in a finite signal field as
increasing the cluster size M with a fixed number N of clusters. As
n increases, SNR per cluster increases linearly with n, and will be
in the high SNR regime eventually. At high SNR, the error exponent
increases at the rate of 12 log SNR by Theorem 3. Hence, the overall
miss probability is given approximately by

PM ≈ C exp(−NK) = C1 exp(−1
2
N logn) ∼ C2n

−1/2, (14)

for sufficiently large n, which coincides the results in Theorem 1
(ii). Now it is clear that for highly correlated cases the decay in error
probability with an increasing number of sensors is mainly due to the
noise averaging effect rather than the effect of the new information
about the signal in the observations.

C. Arbitrary Periodic Configuration

The previous section shows that periodic clustering outperforms
uniform configuration depending on the field correlation. However,
periodic clustering is limited since all the sensors within a spatial
period are scheduled on the same location. Considering periodic
structure we now generalize the locations of the scheduled sensors
within a period. First, we provide the closed-form error exponent
for the Neyman-Pearson detector for stationary vector Gauss-Markov
signals using noisy sensors. Using the closed-form error exponent, we
investigate the optimal periodic configuration with arbitrary locations
within a period.
We again consider n = MN sensors scheduled over S with M

sensors within a period, and denote the relative distance ofM sensors
within a period as

x1 = 0, x2 − x1 = ∆1, x3 − x2 = ∆2, · · · , xM+1 − xM = ∆M .

Hence, the interval of a period is ∆ = ∆1 + · · ·+∆M . Define the

signal sample and observation vectors for period i as

�si
∆
= [s1i, s2i, · · · , sMi]

T , i = 1, · · · , N, (15)

�yi
∆
= [y1i, y2i, · · · , yMi]

T , (16)

where smi = s(i−1)M+m and ymi = y(i−1)M+m. The hypotheses
(2) can be rewritten in vector form as

H0 : �yi = �wi, i = 1, 2, · · · , N,
H1 : �yi = �si + �wi,

(17)

where the measurement noise �wi ∼ N (0, σ2IM ) independent over
i, and �si satisfies the vector state-space model

�si+1 = A�si +B�ui, (18)

�ui
i.i.d.∼ N (0, Q), Q ≥ 0,

where �ui are defined similarly to the quantities in (15). Specifically,
the feedback and input matrices, A and B, are given from the scalar
state-space model as

A =


0 0 0 e−A∆M
0 0 0 e−A(∆M+∆1)

0 0 0
...

0 0 0 e−A(∆M+∆1+···+∆M−1)

 , (19)

and

B =


1 0 0 0

e−A∆1 1 0 0

... · · ·
. . . 0

e−A(∆1+···+∆M−1) e−A∆M−1 1

 , (20)

and
Q = Π0diag((1− e−2A∆M ), (1− e−2A∆1), · · · , (1− e−2A∆M−1 )).

Notice thatA,B, andQ are not varying with i due to the periodicity.
Only the last column of A is non-zero due to the Markov property of
the scalar process {si}, and the corresponding non-zero eigenvalue
of A is simply given by λ = e−A∆ so that |λ| < 1 for arbitrary
sensor locations within a period for any diffusion rate A > 0. Notice
that the eigenvalue is the same as the correlation coefficient a with
sampling distance ∆, the period of the interval. The initial condition
for the vector model is given by

�s1 ∼ N (0,C0), (21)

where C0 is given by

Π0



1 e−A∆1,2 e−A∆1,3 · · · e−A∆1,M
e−A∆2,1 1 e−A∆2,3 e−A∆2,M

e−A∆3,1 e−A∆3,3 1 e−A∆3,4
...

...
. . . e−A∆1,M−1

e−A∆M,1 · · · e−A∆M−1,1 1


,

and ∆i,j
∆
= |xj − xi|. The initial covariance matrix C0 is derived

from the scalar initial condition s1 ∼ N (0,Π0), and it can be shown
that C0 satisfies the following Lyapunov equation

C0 = AC0A
T +BQBT . (22)

Thus, the vector signal sequence {�si} is a stationary process although
the scalar process is not in general for the arbitrary periodic config-
uration.
For the vector case, the innovations approach [17] to obtain the

error exponent is very useful, and provides a closed-form formula
for the error exponent of the Neyman-Pearson detection of stationary
vector processes in noisy observations.
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Proposition 2 (Arbitrary Periodic Configuration): For the
Neyman-Pearson detector for the hypotheses (17,18) with level
α ∈ (0, 1) (i.e. PF ≤ α), the best error exponent of the miss
probability (per a vector observation) is given by

Kv = −1
2
log

σ2m

det(Re)
+
1

2
tr R−1e R̃e − m

2
, (23)

independently of the value of α. The steady-state covariance matrices
Re and R̃e of the innovation process calculated under H1 and H0,
respectively, are given by

Re = σ2Im +P, (24)

where P is the unique stabilizing solution of the discrete-time Riccati
equation

P = APAT +BQBT −APR−1e PAT , (25)

and
R̃e = σ2(Im + P̃), (26)

where P̃ is the unique positive-semidefinite solution of the following
Lyapunov equation

P̃ = (A−Kp)P̃(A−Kp)
T +KpK

T
p , (27)

and Kp = APR
−1
e .

Proposition 2 is proved by extending the results in [17] with
modification from scalar to vector observations.
Using (23), we now investigate the large sample detection per-

formance for arbitrary periodic configuration. First, we consider
the case of M = 2 in which we have freedom to schedule one
intermediate sensor at an arbitrary location within an interval ∆.
Periodic clustering and uniform configuration are special cases of
this configuration with ∆1 = 0 and ∆1 = ∆/2, respectively. Fig. 8
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Fig. 8. Kv vs. ∆1 (M = 2, ∆ = 0.02, SNR = 10 dB): (a) A = 1 (b)
A = 8 (c) A = 15 (d) A = 100

shows the error exponent for different diffusion rates at high SNR.
We observe an interesting behavior w.r.t. the diffusion rate. For
the highly correlated field (A = 1), periodic clustering (∆1 = 0)
gives the best performance while uniform configuration provides the

worst. However, as the field correlation becomes weak (A = 8),
we observe a second lobe grow at the uniform configuration point
(∆1 = ∆/2). The value of the second lobe becomes larger than
that corresponding clustering as the correlation becomes weaker
(A = 15), and eventually the error exponent decreases monotonically
as the configuration deviates from uniform configuration to periodic
clustering. This behavior of the error exponent clearly shows that
the optimal configuration depends on the field correlation. Consistent
with the results in the previous sections, one should reduce the
correlation between observations for highly correlated fields while
the uniform configuration is best for almost independent signal fields.
Interestingly, the optimal configuration for M = 2 at high SNR is
either the clustering or the uniform configuration depending on the
field correlation; no configuration in-between is optimal! Fig. 9 shows
the error exponent forM = 2 at low SNR. It is seen that clustering is
always the best strategy for all values of field correlation considered
since the increase in the effective SNR due to noise averaging is
the dominant factor in detection performance at low SNR. It is also
seen that the location of the intermediate sensor is not important for
the highly uncorrelated field (A = 1000) unless it is very close to
the first sensor within a period. This is intuitively obvious since the
intermediate sensor provides an almost independent observation (for
which the location does not matter) as it separates from the first and
the noise averaging is not available between the independent samples.
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Fig. 9. Kv vs. ∆1 (M = 2, ∆ = 0.02, SNR = -3 dB): (a) A = 1 (b)
A = 100 (c) A = 1000

For the case of M = 3, due to the periodicity, the location of one
sensor in a period is fixed and we can choose the locations (x2, x3)
of the two other sensors arbitrarily such that 0 ≤ x2 ≤ ∆ and
0 ≤ x3 ≤ ∆. Fig. 10 shows the error exponent as a function of
(x2, x3) for M = 3 at 10 dB SNR. Similar behavior is seen as in
the case of M = 2. For the highly correlated signal (A = 1), we see
the maximal value of the error exponent at (0, 0),(0,∆),(∆, 0), and
(∆,∆), which all correspond to periodic clustering. Hence, periodic
clustering is the best among all configurations. In this case, it is seen
that uniform configuration is the worst configuration. As the field
correlation becomes weak, however, the best configuration moves to
uniform configuration eventually, as seen in Fig 10 (d). It is seen
that placing two sensors clustered and one in the middle of the
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Fig. 10. Kv vs. (x2, x3) (M = 3, ∆ = 0.03, SNR = 10 dB): (a) A = 1
(b) A = 5 (c) A = 6 (d) A = 9 (red:high value, blue:low value)

spatial period is optimal for transitory values of field correlation as
shown in Fig. 10 (b) and (c). Figure 11 summarizes the optimal
configuration for different field correlation. Other results confirm that

Activated sensor

∆

∆/ 2

∆/ 3

Periodic clustering

Uni fo rm con figur at io n

Field c orrelation

St ron g

We a k

Fig. 11. Optimal configuration for M = 3 (SNR = 10 dB)

periodic clustering gives the best configuration for most values of
field correlations at low SNR.

D. Sensor Placement
So far we have assumed that sensors have already been deployed

and considered the activation for sensing and transmissions from the
selected sensors. A related problem is sensor placement. When n
sensors are planned to be deployed over a signal field for the detection
application, how should we place the n sensors in the field? The
results in the previous sections provide the answer for this problem
as well.

IV. CONCLUSION
We have considered energy-efficient sensor activation for large

sensor networks deployed to detect correlated random fields. Using
our results on large-sample error behavior in this application, we have
analyzed and compared the detection capabilities of different sensor
configuration strategies. The optimal configuration is a function
of the field correlation and the SNR of sensor observations. For

uniform configuration, the scheduled sensors should be maximally
separated to cover the entire signal field for SNR > 1. For SNR
< 1, on the other hand, there exists an optimal spacing between
the scheduled sensors. We have also derived the error exponents
of periodic clustering and arbitrary periodic configuration. Periodic
clustering may outperform uniform configuration depending on the
field correlation and SNR. Furthermore, there exists an optimal
cluster size for intermediate values of correlation. The closed-form
error exponent obtained for the vector state-space model explains
the transitory error behavior from periodic clustering to uniform
configuration.
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