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Abstract

We consider distributed detection with a large number of identical binary sensors deployed over

a region where the phenomenon of interest (POI) has spatially varying signal strength. Each sensor

makes a decision based on its own measurement, and the local decision of each sensor is sent to a fusion

center using a random access protocol. The fusion center decides whether the POI has occurred under a

global size constraint in the Neyman-Pearson formulation. Assuming a homogeneous Poisson distributed

sensors, we show that the distribution of ‘alarmed’ sensors satisfies the locally asymptotically normal

(LAN) condition. We then derive an asymptotically locally most powerful (ALMP) detector optimized

jointly over the fusion form and local sensor threshold. Sufficient conditions on the spatial signal shape for

the existence of ALMP detector are established. We show that the ALMP test statistic is a weighted sum

of local decisions with the optimal weight function as the shape of the spatial signal, and the exact value

of the signal strength is not required. We also derive the optimal threshold for each sensor. For the case

of independent, identical distributed (i.i.d.) sensor observation, we show that the counting-based detector

is also ALMP under the Poisson regime. The performance of the proposed detector is evaluated through

analytic results and Monte-Carlo simulations, and compared with that of the counting-based detector for

spatially-varying signals. The effect of mismatched signal shapes is also investigated.

Index Terms— Distributed detection, Spatially-varying signal, Spatial Poisson process, Locally asymp-

totically normal (LAN), Asymptotically locally most powerful (ALMP), Neyman-Pearson criterion, Fusion

rule.

EDICS: 1-DRUS (Data fusion from multiple sensor types), 2-DETC (Detection theory

and applications).

I. Introduction

A. Detection in Large Scale Sensor Field

We consider the detection of deterministic phenomena in a field of a large number of

densely deployed microsensors. The sensors measure the phenomenon of interest (POI)

and transmit their local data (decision) via wireless channels to a central site for global

processing. A specific implementation is Sensor Networks with Mobile Access (SENMA)

[33] where a mobile access point collects local decisions from sensors using random access

schemes such as ALOHA as shown in Fig. 1. We assume that the number of sensors in

the field is large, which makes it necessary that each sensor is inexpensive and has limited

computation and communication capability.

Detection in a large scale sensor network faces several challenges not encountered in the

November 24, 2003 DRAFT



3

PSfrag replacements

Mobile Access Points

Sensor Network

Fig. 1. Sensor Network with Mobile Access Points

classical distributed detection problem. First, inexpensive sensors are not reliable; they

have low duty cycles and severe energy constraints. The communication link between a

sensor and the central unit is specially weak due to a variety of implementation difficulties

such as synchronization, fading, and interference from other sensors. The probability

that the local decision at a particular sensor can be successfully delivered to the central

unit can be very low. Second, POI in a wide geographic area generates spatially varying

signals, which makes the observation at each sensor location dependent and not identically

distributed. Furthermore, the strength of POI is unknown for many applications such as

the detection of NBC activities. Third, the scale of the network makes it more practical to

deploy sensors randomly without careful network layout. It is thus not possible to predict

whether data from a particular sensor can be retrieved by the the central processing unit,

especially when random access protocols are used. Consequently, the decision rule for

each sensor should be optimized before deployment without knowing its exact location.

In addition, because sensors may expire and the collection process random, the optimal

decision should not critically depend on the number of available sensors and the collection

process.
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B. The Approach and Summary of Results

For large scale sensor networks, it is natural to consider asymptotic techniques, and

one expects that central limit theorem will lead to the design under Gaussian statistics.

For example, if the measurements at sensors are conditionally independent and identically

distributed, it is well known that the global decision is made by counting the number of

alarmed sensors collected from the sensor field, and the decision statistics will converge

to a Gaussian random variable. When the measurements are not identically distributed

across sensors, it is reasonable that the global detector should weight the decision of each

sensor appropriately since sensors closer to the source produce more reliable decisions.

But, what should be the optimal weighting when the local detection probability for each

sensor is unknown beforehand? What are the factors affecting the weighting? Is there an

assurance of asymptotic optimality?

Our approach is based on the Locally Asymptotically Normal (LAN) theory of Le Cam

[1] [2]. (A brief summary of results of LAN related to our work is given in the Appendix.)

Our goal is to find decision rules for sensors and the central unit that are asymptotically

most powerful. Specifically, we find local and global decision rules that, for a given false

alarm rate for the global decision, maximizes the the probability of detection as the number

of sensors goes to infinity.

We model the POI over the region as a deterministic spatial signal with known shape

but unknown signal strength. While the assumption of known signal shape is restrictive

for it requires prior knowledge of POI, the model of unknown signal strength is almost

necessary in practice because it is unreasonable to assume that POI can be calibrated.

From a theoretical point of view, not knowing the signal strength makes the detection

problem more difficult and also more interesting in the asymptotic regime. For example,

the direct use of error exponent to characterize performance [30] [31] is no longer valid

since the number of alternative hypothesis is uncountable. Indeed, had the signal strength

is known, the error probability of any reasonable detector always decays to zero as the

number of collected sensor detections increases.

We assume a Medium Access Control (MAC) protocol (such as ALOHA) is used to

collect local decisions where each sensor has a probability pm to transmit its decision
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successfully to the central unit. In order to exploit spatial correlation of the POI, it is

necessary, as we will assume, that each sensor knows its location through the use of a

certain geolocation device.

We make the assumption that randomly deployed sensors form a homogeneous spatial

Poisson process with certain intensity. For the model of independent additive noise at

each sensor, the marking by the local decision of each sensor is equivalent to a location-

dependent thinning of the initial Poisson process; the alarmed sensors form a nonhomo-

geneous Poisson process. The process of retrieving sensor decisions from the sensor field

is another thinning of the alarmed sensors. The Poisson assumption allows us to com-

bine the two thinning processes at the MAC layer and the physical layer and model the

alarmed sensors at the central unit as a nonhomogeneous Poisson field with an intensity

as a function of the POI. Hence, the distributed detection problem is converted to the

detection based on the intensity of the observed alarmed sensors.

To apply LAN theory of Le Cam, we derived (1) the sufficient conditions for the spatial

signal shape that guarantees the existence of asymptotically locally most power (ALMP)

detector; (2) the asymptotic local upper bound of power for any detector, and (3) an

asymptotically locally jointly optimal rule over the fusion scheme and the single sensor

threshold. For the special case that the power function of a single sensor is linear, the

proposed detector is also asymptotically uniformly most powerful (AUMP).

Our numerical results are designed to answer a number of practical questions. Since the

detector is based on asymptotic techniques, one questions what the size of the network is

for which the asymptotic analysis is accurate. The simulations showed that the perfor-

mance of the network of size 1000 matches well with the theoretic prediction. We showed

that the ALMP detector proposed in this paper offers a significant gain over simplistic

counting schemes. Since we assume the knowledge of signal waveform in the detector

design, we considered the case of waveform mismatch in our simulation. The sensitivity

of the mismatch of course depends on the specific shape of the signal waveform. For the

class of symmetric exponentially decaying waveforms, we found that a simple step function

approximation offers a graceful degradation. We also did not observe severe performance

loss correspond to source location uncertainty.
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C. Related Work

Distributed detection using multiple sensors and optimal fusion rules have been exten-

sively investigated, see [14] [15] [16]. Many authors have derived optimal local detector

and fusion rules under various situations based on different sets of assumptions, e.g., [17]

[20] [19] [21]. For the fusion scheme, Chair and Varshney [18] showed that the optimal

fusion rule is a likelihood ratio test on the decisions from sensors and becomes a threshold

detector on the weighted sum of binary sensor decisions and the weight is obtained us-

ing the local detection and false alarm probability at each sensor under each hypothesis.

However, the optimal criteria are obtained under the assumption that the hypotheses of

the underlying phenomenon are simple, i.e., discrete and finite. These approaches require

the knowledge of the detection probability as well as the false alarm probability at each

sensor under each possible hypothesis, which is not proper for the detection of unknown

signals that is the main interest in this paper.

The detection of unknown signal or signal of unknown amplitude was considered by sev-

eral authors under the composite hypothesis formulation. The derivation of locally optimal

detector for centralized scheme is known [23] [24]. Poor and Thomas considered the locally

optimal detector for stochastic signals and compared the asymptotic relative performance

between detectors using asymptotic relative efficiency (ARE) in the centralized detection

scheme [25]. For the distributed or decentralized case, Aalo and Viswanathan considered

the detection of an unknown signal via multilevel quantization and simple fusion rules [27].

However, no optimality for the fusion rule was considered. The works of Fedele, Izzo, and

Paura [28] and Srinivasan [29] are perhaps the closest to our approach. In both cases, the

authors considered the distributed scheme where multiple peripheral detectors or sensors

are combined to a fusion center and the number of observations per each sensor goes to

infinity. These assumptions are reasonable for the classical radar problem. For large scale

microsensor networks, however, it is reasonable to assume that each sensor has only a few

chances for observations and transmissions due to the limited power and to consider the

asymptotic case where the number of sensors goes to infinity with a limited number of

observations per each sensor as in this paper. Srinivasan derived the optimal local rule

and fusion rule based on Bayes rule and summation over all realizations of sensor decisions
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[29]. However, these approach is difficult to apply to get an explicit form of fusion rule and

the local threshold beyond the case of several sensors with many observations per sensor.

The asymptotic case where the number of sensors goes to infinity was also considered

by several authors from different perspectives. For example, the authors used the error

exponent as the asymptotic performance measure to show the optimality of identical sensor

for i.i.d. observations [30], [31]. In [32], the authors considered the optimality of identical

binary sensors under the capacity limited reachback channel.

D. Notation

We denote a statistical model1 by (Ω,X ,P) where Ω is the sample space and X is

the σ-field defined on Ω. P is a class of parametric distributions {Pθ, θ ∈ Θ} defined

on X for some parameter space Θ. The sequence of statistical models is denoted by

(Ω(n),X (n),P (n)) where P (n) = {P (n)
θ , θ ∈ Θ}. Notice that the parameter space Θ doesn’t

change with the sequence index in our formulation and the superscript (n) does not denote

the product space or measure in general. It can be an arbitrary sequence of measurable

spaces and probability measures. For the product distribution of n i.i.d. Pθ, we use the

notation P⊗n
θ . For a sequence of random vectors xn defined on Ω(n), En,θxn is the statistical

expectation of xn under probability distribution P
(n)
θ . The notation x ∼ N (µ,Σ) means

that x is Gaussian with mean µ and covariance Σ. The set of real numbers is denoted

by R. Vectors and matrices are written in boldface. Operation (·)T indicates the matrix

transpose.

II. System Model

We consider a large scale sensor network with identical binary sensors deployed over a

wide area; we want to decide whether the POI has occurred in the area. We assume that

each sensor makes a decision based on its own observation and that the local decisions

are collected through a MAC at a central unit or fusion center where the global decision

is made under a size (probability of false alarm) constraint. The POI is spatially varying,

with a known shape function and an unknown magnitude. As an example, in the case of

NBC activity, the signal strength is expected to be largest at the origin of the phenomenon,

1For more description, see Appendix I.
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and decays away from the origin. We assume that the spatial signal is deterministic and

denote the signal strength by

γ(x) = θs(x), (1)

where x denotes the location, θ ∈ Θ
∆
= [0,∞) is an unknown amplitude, and s(x) is a

known2 function which incorporates the information about the spatial variation of the

underlying phenomenon.

A. Single Sensor

We assume that sensors make their local decisions independently without collaborating

with other sensors. Since the exact value of the signal strength is unknown, we design

each sensor to decide between the following hypotheses

H0 : γ(x) = 0 (null hypothesis),

H1 : γ(x) > 0 (alternative hypothesis),
(2)

with local size constraint of α0. Using the amplitude parameter θ, the hypotheses (2) is

equivalently expressed by

H0 : θ = 0,

H1 : θ > 0.
(3)

The local decision of sensor Si located at xi is denoted by

ui =







1 if H0 rejected,

0 otherwise.
(4)

One possible sensor observation model is the additive Gaussian noise model as shown

in Fig. 2, where the sensor observation Yi is given by

Yi = γ(xi) + Ni, Ni ∼ N (0, σ0), (5)

where Ni is the sensor noise, assumed across sensors. For the additive Gaussian noise

model, the local decision rule for (3) at each sensor is the uniformly most powerful (UMP)

detector given by

Yi
>H1

<H0

τ0, (6)

2We do not assume that s(x) is known a priori before sensor deployment or at the data retrieval period. See

Section III-E for the estimation of s(x) from collected binary sensor decisions. This includes the case where the

shape function is parameterized, with unknown parameters that must be estimated.
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Fig. 2. Gaussian noise observation model at location x

where τ0 = σ0Q
−1(α0)

3. We define the following probability

p(xi)
∆
= Pr{ui = 1}. (7)

That is, p(x) is the probability that a sensor located at x declares its decision as H1. The

probability p(x) is a function of the local threshold and the signal strength at x and is

given by

p(x) = βτ0(γ(x)). (8)

For the additive Gaussian observation model in (5), βτ0(γ(x)) is expressed as Q
(

τ0−γ(x)
σ0

)

.

B. Parametric Poisson Model

Consider that a large number of identical sensors designed in II-A are deployed ran-

domly and uniformly over a region A as shown in Fig. 3 (a). We assume that the initial

distribution of sensors over the region is a homogeneous spatial Poisson process with lo-

cal intensity λh. This is a reasonable model when the random location of each sensor is

uniformly distributed over A. After deployment, each sensor makes a local decision about

the underlying phenomenon. Specifically, sensor Si located at xi makes a binary decision

ui based on its observation, encodes its decision, and then sends its packet over MAC to

the central unit.

Since we assume that each sensor makes the decision by itself and the sensor noise

is independent, the local decision ui is independent conditioned on the signal strength

γ(x). By the Poisson assumption on the initial sensor locations, the marking by the local

decision of each sensor is equivalent to a location-dependent thinning of the original sensor

distribution with thinning probability p(x). Hence, the distribution of the alarmed sensors,

i.e., sensors with ui = 1, forms a nonhomogeneous spatial Poisson process [10].

3Q(x) denotes the tail probability Q(x) = 1√
2π

∫∞
x

e−
1
2

t2dt.
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Fig. 3. (a) Initial sensor deployment over space (b) Signal strength of underlying phenomenon (c)Local

decisions of sensors

During the data retrieval period, the local decisions of sensors are collected through

a wireless channel. Sensor data can be lost during the transmission through MAC due

to fading as well as collisions. We model this probabilistic loss as another thinning of

the Poisson process of alarmed sensors. We assume that the probability that each sensor

data is transmitted successfully through MAC is the same for all sensors, and denote

it by pm. Then, the second thinning is uniform over the region with probability pm.

So, the distribution of alarmed sensors at the fusion center or final data collector is a

nonhomogeneous spatial Poisson process whose local intensity is given by

λ(x) = λhpmp(x) = λhpmβτ0(θs(x)), (9)

= λhpm[βτ0(0) + β ′
τ0

(0)θs(x) + o(θ)],

where β ′
τ0

(γ(x)) = ∂
∂γ(x)

βτ0(γ(x)). When the function βτ0(·) is linear or θ is in a small

neighborhood of θ = 0, the Poisson process of alarmed sensors is described by a nonho-

mogeneous intensity model parameterized by amplitude θ and is given by

λ(θ,x) = θf̄(x) + λ̄, θ ∈ Θ, (10)
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where

f̄(x) = λhpmβ′
τ0

(0)s(x), λ̄ = λhpmβτ0(0), (11)

for a given τ0. Note that the intensity variation f̄(x) of alarmed sensors is a scaled version

of the spatial signal shape s(x).

The Poisson assumption on the initial sensor distribution converts the global detection of

a spatially-varying signal to the detection of spatial Poisson processes based on the inten-

sity of observed alarmed sensors; the spatial signal is mapped to the underlying intensity

of the Poisson process of alarmed sensors. (This is what we mean by ‘Poisson regime’ in

this paper.) As we will show later, the asymptotic detector requires knowledge of the

signal s(x), and hence of the location of the reporting sensors; however, the asymptotic

detector will be shown to be surprisingly robust both with respect to the shape function

s(x) as well as its ‘origin’. Also, the problem becomes simplified for incorporating data

loss via the MAC.

C. Review of Poisson Process

The Poisson process XA in a metric space A with a σ-field B is expressed in a simple

manner by a counting measure notation as [11]

XA(B) =
∑

i: xi∈A

εxi
(B), ∀B ∈ B, (12)

where xi’s are random points in A and

εxi
(B)

∆
=







1, xi ∈ B

0, xi /∈ B
. (13)

The Poisson process has the following properties.

(i) for every B ∈ B, XA(B) is a Poisson random variable with mean Λ(B) < ∞,

(ii) for every finite disjoint sets B1, . . . , Bk ∈ B, the random variables XA(B1), . . . , XA(Bk)

are independent.
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Here, Λ(·) is called the intensity measure and its density4 λ(x), i.e., Λ(dx) = λ(x)dx, is

called the (local) intensity. We define the stochastic integral for a given function g as [7]

I(g)
∆
=

∫

A

g(x)XA(dx) =
∑

i: xi∈A

g(xi). (14)

The probability distribution of Poisson process XA is determined by the local intensity.

For the case of parametric family of intensities like (10), the probability distribution is

also parametrized with the same parameter and given by [12]

dPθ(XA) = exp

(
∫

A

log λ(θ,x)XA(dx) −
∫

A

λ(θ,x)dx

)

,

=
∏

i:xi∈A

λ(θ,xi) exp

(

−
∫

A

λ(θ,x)dx

)

. (15)

The likelihood ratio between two distributions Pθ0 and Pθ1 is given by [7]

dPθ1

dPθ0

(XA) = exp(

∫

A

log
λ(θ1,x)

λ(θ0,x)
XA(dx)

−
∫

A

[λ(θ1,x) − λ(θ0,x)]dx). (16)

III. Detection of Spatially-varying Signal

In Section II-B, we assumed that the initial sensor distribution is Poisson, and showed

that the original detection problem using identical binary sensors is converted to the

problem (10, 11, 3) of detecting Poisson processes with different intensities.

Under the asymptotic local optimality, we focus on the detection of the alternative which

converges to the null θ = 0 where the distributions of the null and alternative hypothesis

are asymptotically nonseparable. The existence of asymptotic locally optimal detection

requires some conditions on the underlying statistical models. Le Cam’s theory provides an

analytic framework for such detection problems and gives an asymptotic optimal criterion.

When a statistical model satisfies the locally asymptotically normal (LAN) condition, (See

Appendix I.) we can construct an asymptotic local upper bound for the power for any

sequence of detectors with a given asymptotic size, and we can construct a sequence of

detectors that achieves this bound.
4For convenience, we assume that Λ(·) is differentiable.
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In this section, we construct a sequence of statistical models for the Poisson process

of the alarmed sensors and show that it satisfies the LAN condition. We also derive the

asymptotic local upper bound for the power of any detector with a given size and the

asymptotically locally most powerful (ALMP) detector for the model (10, 11, 3) under the

Poisson regime.

A. Construction of Sequence of Statistical Models

We construct a sequence of statistical models (Ω(n),X (n),P (n)) where (Ω(n),X (n)) is the

measurable space of all possible realizations of the Poisson process X
(n)
An

of the alarmed

sensors on space An and P (n) is the corresponding family of probability distributions.

Let λ(n)(θ,x) be the local intensity of the Poisson process X
(n)
An

. Then, the family of

probability distributions P (n) = {P (n)
θ (X

(n)
An

), θ ∈ Θ} is given by (15). We are interested

in the asymptotic scenario where the number of sensors deployed over a finite area goes

to infinity. The model of increasing sensors in a finite area is described by increasing the

initial intensity λh of sensor deployment.

Model 1 (Finite area and infinite sensor model) We initially distribute sensors over space

An according to a homogeneous Poisson process with intensity λ
(n)
h independently for each

n ≥ 1. We set

An = A, such that |A| < ∞, for all n = 1, 2, . . . , (17)

and choose the local intensity of initial sensor distribution over the space A as

λ
(n)
h = nλh0. (18)

Then, we collect the local decision of each sensor and observe the realization X
(n)
A of the

alarmed sensor distribution. For each n ≥ 1, the local intensity of X
(n)
A is given, using (10,

11), by

λ(n)(θ,x) = θnf(x) + nλ0, θ ∈ Θ (19)

where

f(x) = λh0pmβ′
τ0

(0)s(x), λ0 = λh0pmβτ0(0), (20)

and the sequence of probability distributions {P (n)
θ , θ ∈ Θ} is given, using (15), by

dP
(n)
θ

(X
(n)
A

) = exp

(
∫

A

log λ(n)(θ,x)X
(n)
A

(dx) −
∫

A

λ(n)(θ,x)dx

)

. (21)
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The LAN property of distributions of Poisson processes has been investigated by several

authors [6], [7], [8], who derived the conditions in terms of the local intensity for LAN.

However, the authors considered a sequence of models where the observation area An(⊂
An+1) goes to infinity for a fixed local intensity for all n, which is different from Model 1.

We derive new conditions in terms of the spatial signal shape for the LAN property of the

model with increasing sensors in a finite area.

Theorem 1: For Model 1, suppose that f(x) satisfies the following conditions

(C.1) f(x) ≥ 0, x ∈ A.

(C.2) sup
x∈A f(x) < ∞.

(C.3)
∫

A
f(x)dx > 0.

Then, the statistical model {P (n)
θ , θ ∈ Θ} of the alarmed sensor distribution X

(n)
A is LAN

at θ = 0; i.e., for every h ≥ 0,

log
dP

(n)
rn(0)h

dP
(n)
0

(X
(n)
A ) = h∆n,0 −

1

2
h2 + o

P
(n)
0

(1), (22)

where the central sequence ∆n,0 and normalizing sequence rn(0) are given by

∆n,0 =

∫

An

rn(0)

(

λ̇(n)(0,x)

λ(n)(0,x)

)

[

X
(n)
A (dx) − Λ

(n)
0 (dx)

]

, (23)

rn(0) = Jn(0)−1/2, Jn(0) =

∫

A

(

λ̇(n)(0,x)

λ(n)(0,x)

)2

Λ
(n)
0 (dx), (24)

λ̇(n)(θ,x) =
∂

∂θ
λ(n)(θ,x), Λ

(n)
0 (dx) = λ(n)(0,x)dx = nλh0dx,

and L(∆n,0|P (n)
0 ) ⇒ N (0, 1).

Proof: See Appendix II.

Here, the integration with random point measure in (23) is defined in (14). Condition

(C.1) requires that the single sensor power function βτ0(·) must be a nondecreasing function

at the origin θ = 0 for a given τ0 and s(x) is nonnegative; (C.2) is satisfied by any bounded

s(x), and (C.3) says that s(x) is not identically zero over the sensor field. The conditions

(C.1)-(C.3) are general enough to include most interesting cases. Examples of allowed
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2-D signal shapes for any region with a finite area include: constant f(x) or s(x), a step

function, Gaussian, or exponentially decaying as

s(x, y) = e−ηr, r =
√

x2 + y2, (25)

with some η > 0 ; indeed, any bounded non-negative function.

B. ALMP detector under the Poisson regime

In the previous section, we showed that the Poisson process of alarmed sensors, with

increasing initial sensor density, admits the LAN property for general spatial signal shapes.

Once the LAN property is verified, the construction of an ALMP detector is straightfor-

ward using the central sequence ∆n,0.(See Appendix I.)

Theorem 2: For model 1, let the conditions (C.1)-(C.3) be satisfied. Then, an asymp-

totic upper bound of power for any sequence of detectors φn with size α, i.e., lim supn→∞ En,0φn

≤ α, is given by

lim sup
n→∞

sup
0<rn(0)−1θ≤M

[

En,θφn − Q(Q−1(α) − r−1
n (0)θ)

]

≤ 0, (26)

where

rn(0) =

(

nλh0pm

(β′
τ0

(0))2

βτ0(0)

∫

A

s2(x)dx

)−1/2

. (27)

Furthermore, the following sequence of (nonrandomized) detectors is asymptotically locally

most powerful (ALMP) with size α for (10, 11, 3).

φn,opt =







Decide H0 if ∆n,0 ≤ Q−1(α),

Decide H1 if ∆n,0 > Q−1(α),
(28)

where

∆n,0 = n−1/2λ
−1/2
0

(
∫

A

s2(x)dx

)−1/2

(

∑

xi∈A

s(xi) − nλ0

∫

A

s(x)dx

)

, (29)

where xi’s are the random locations of alarmed sensors in A.

Proof: See Appendix II.
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(26, 27) reveals how the various factors such as sensor density, probability of successful

transmission through MAC, the spatial signal shape, and the single sensor threshold affect

the asymptotic global power. Note that as expected, the power of the detector increases

monotonically with sensor density, signal strength, and MAC transmission success rate.

We observe that if the signal strength is halved, sensor density must be quadrupled in

order to maintain the asymptotic performance. This is consistent with the notion of fusing

independent signal decisions. Since the ALMP test statistic, the central sequence ∆n,0,

has a limit distribution N (0, 1) under the null distribution P
(n)
0 by the LAN condition, it

is easy to see that the detector (28) has an asymptotic size of α. Notice that the ALMP

test statistic consists of a weighted sum of binary sensor decisions. Theorem 2 describes

how to optimally use the knowledge of the signal shape and the locations of the sensors.

Each sensor decision is to be weighted and summed for global decision and the optimal

weight is s(x), the shape of underlying spatial signal γ(x). In other words, the confidence

for each sensor decision is proportional to the strength of the signal at the sensor location.

This can be considered as a matched filtering in the spatial domain even though it is

different from the conventional matched filtering since the received signal is ‘sampled’ at

random points, with an input signal as the intensity function rather than the distorted

version of the transmitted signal. The use of intensity function in the detection of Poisson

processes has been investigated. In [13], the author considered a binary on-off detection

problem in optical transmissions. The author assumed that the photon generation epochs

were Poisson process and showed that the optimal weight is the intensity of input light

under a Bayesian formulation of two simple hypotheses. However, the exact knowledge

of the intensity of light is required rather than just the relative shape. For the proposed

method, the optimal test can be implemented without obtaining the exact value of γ(x)

since the optimal weight requires only the local intensity variation s(x) of alarmed sensors

and any scaling of s(x) is irrelevant in forming the statistic (29).

An intuitive interpretation is given by a step function which is given by

s(x) =







1 x ∈ A1(∈ A),

0 x ∈ A\A1,
(30)
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where A\A1 is the difference set. In this case, only the local decisions from the sensors

located at the region A1 where the phenomenon would occur are counted discarding the

false alarms from the regions of no event. For more complicated signal shapes such as

(25), the local decisions from sensors are weighted according to the relative strength of

the underlying signal.

C. Optimization of Threshold for a Single Sensor

In Section III-B, we derived the ALMP detector for the global detection of a spatially-

varying signal with an unknown amplitude under the Poisson regime assuming that iden-

tical binary sensors are deployed and that the signal shape, but not strength, is known.

The conversion into the Poisson regime gives another simplification; The optimal local

threshold for a single sensor described in Section II-A is obtained through the asymptotic

(local) upper bound (26, 27). Since the bound is a function of the local threshold and

achieved by the proposed ALMP detector with a reasonable number of sensors as shown

in Section IV, the optimal threshold for a single sensor is the one that maximizes the

asymptotic upper bound.

Theorem 3: Suppose that the power function βτ0(γ(x)) for a single sensor is continuous

and piecewise differentiable in the second variable. Under the Poisson regime, the following

threshold for a single sensor maximizes the global power for a fixed and sufficiently large

number of sensors in the region.

τopt = arg max
τ0

β′
τ0

(0)2

βτ0(0)
, (31)

where β ′
τ0

(γ(x)) = ∂
∂γ(x)

βτ0(γ(x)).

Proof: See Appendix II.

For the Gaussian noise model, we have βτ0(γ(x)) = Q( τ0−γ(x)
σ0

), βτ0(0) = Q(τ0/σ0) and

β′
τ0

(0) = 1√
2πσ0

exp(−1
2

(

τ0
σ0

)2

). The optimal local size is α0 = 0.27, and the corresponding

local threshold τo = 0.612σo (we verify this via simulations in IV). This threshold sur-

prisingly coincides with the one that the authors obtained for nonparametric detection of

symmetric distribution using i.i.d. observations [26]. This implies that we should design

the single sensor assuming the signal shape is uniform over the area if the information of
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the signal shape is not available before sensor deployment and identical sensors are to be

deployed over the field. (This is the case that we consider in Section II-B.) Notice that

under the assumption of binary decisions and Poisson distributed sensors, the individual

sensors need not be very good; a design with a PFA of 0.27 is optimal! We also note that

for the AWGN model,
β′

τ0
(0)2

βτ0 (0)
is fairly flat around its maximum so that it is not critical to

use the optimal τo and αo values.

Notice that the optimal fusion rule (29) and the local threshold (31) do not depend on

the parameter θ. Hence, the optimal rule is actually an asymptotically uniformly most

powerful detector when the model (10) is true, for example, when the power function for

a single sensor is linear, or the signal is weak. However, in general, our conversion to the

Poisson regime is only valid in the local neighborhood of θ = 0 for a typical power function

βτ0(·).

D. Independent and Identically Distributed Observations

If the signal is constant,

s(x) ≡ 1, x ∈ A, (32)

then the sensor observations, for the model described in Section II, will be i.i.d. Optimality

of the counting-based detector is given by the following corollary of Theorem 2.

Corollary 1: For i.i.d. sensor observations over A, the counting-based detector is ALMP

with size α under the Poisson regime.

Proof: In this case, the central sequence is given by (see eq. 29)

∆n,0 = (nλ0|A|)−1/2(N (n)(A) − nλ0|A|), (33)

where N (n)(A) is the number of alarmed sensors in space A and |A| is the area of A. �

Note that N (n)(A) is a Poisson random variable with mean nλ0|A| under the null hy-

pothesis. Since the mean and variance are equal for Poisson random variables, ∆n,0 is

centered and normalized to have variance one. The Gaussian limit distribution of ∆n,0

under the null hypothesis is explained as follows. Suppose that we partition A into n

subregions with an equal area for the nth experiment. Under the null hypothesis, we

have λ(n)(0,x) = nλ0 from (19). So, the number of alarmed sensors in each subregion is
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Poisson random variable with mean λ0|A| regardless of n and is i.i.d. over subregions by

the Poisson assumption. Since N (n)(A) is the sum of number of points in each subregion,

it is a sum of n i.i.d. random variables and ∆n,0 converges in distribution to N (0, 1) as n

goes to infinity by the classical central limit theorem (CLT).

A different counting-based detector can be constructed for the i.i.d. case based on the

Binomial distribution [22]. Let the number of sensors in A be K. Assuming all sensor

observations are i.i.d., a detector of size α based on counting is given by

Reject H0 if TK
∆
= u1 + u2 + . . . + uK > τα. (34)

Under H0, γ(x) = 0 for all x and

ui
i.i.d.∼ B(1, p0), p0 = Pr{ui = 1|γ(x) = 0} = βτ0(0). (35)

Recall that the ui are the binary sensor decisions. Using the CLT, the asymptotic distri-

bution of TK is given by

1
√

Kp0(1 − p0)

(

K
∑

i=1

ui − Kp0

)

D⇒ N (0, 1), (36)

as the number of sensors K goes to infinity. Hence, the detector (34) is explicitly given by

Reject H0 if
K
∑

i=1

ui > Kp0 + Q−1(α)
√

Kp0(1 − p0). (37)

The distributions for the number of alarmed sensors in (33) and (36) have different vari-

ances for the same mean, i.e., nλ0|A| = Kp0, under two different models. It is well known

that the binomial distribution converges to Poisson distribution with mean Λ when K goes

to infinity with constraint Kp0 = Λ. So, when p0 is small, two distributions are almost

equivalent.

E. Discussion

The construction of ALMP test statistic ∆n,0 in (29) requires the knowledge of several

values such as the null intensity λ0, the sensor locations, and the shape of the underlying

spatial signal. But the null intensity can be obtained by the known or controllable param-

eters such as the density of the initial sensor distribution, the local false alarm probability
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α0, and the probability of successful transmission through MAC, pm. In this section, we

briefly discuss the estimation of s(x).

As shown in Theorem 2, the ALMP weight is the spatial signal shape s(x) under the

Poisson regime. We consider an estimation method based on the collected sensor data.

One simple way is to utilize the Poisson assumption itself. (10) reveals that the f(x) is

the local intensity variation of alarmed sensor distribution over space. Hence, the weight

can be estimated from the alarmed sensors and their location directly. For example, we

can use a nonparametric intensity model

f(x) =
∑

j

fjIAj
,
⋃

j

Aj = A. (38)

Assuming that λ0 is known, the maximum likelihood estimator of θf(x) for the model

(38) is given by

θ̂f(x) =
∑

j

N(Aj)

|Aj|
IAj

− λ0. (39)

Since any scaling of s(x) doesn’t matter for obtaining ∆n,0, θ̂f(x) can be used as an

estimate for the optimal weight function. However, for this estimation method, several

independent measurements by sensors are required for the purposes of estimating weight

and providing test statistics and also this method is useful only when θ is fairly large. We

are currently investigating more efficient methods to estimate the signal variation from

the sensor decisions. The performance degradation due to the mismatched signal shape is

investigated in Section IV-B.

IV. Numerical Results

In this section, we present some simulation results. We used the receiver operating

characteristics (ROC) as the performance criterion. The power of the proposed ALMP

detector was evaluated by the analytic bound (26, 27) and also using Monte Carlo runs.

The false alarm probability was also simulated to check the validity of detector design

in the Neyman-Pearson context. The power of the proposed detector (Theorem 2) was

compared with that of the counting-based detector (37) which has also an asymptotic size

of α and neglects the spatial information. The performance degradation by mismatched

signal shapes was also investigated.
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A. Setup

We considered a two dimensional space A which is circular with radius one. The spatial

signal shape was the symmetric exponential in (25) with different decay rates. The average

number of sensors in A was chosen to be 1,000. For the local sensor function, we used the

additive Gaussian noise model and the UMP detector with several local sizes described in

Section II-A.

For the simulation of power and false alarm probability, 10,000 Monte Carlos runs were

executed. For each run, the following procedures were performed. The locations of sen-

sors were randomly generated according to a homogeneous Poisson process with the given

mean intensity [9]. The local threshold for a single sensor was calculated from the local

size constraint and set to be the same for all sensors, σ0Q
−1(α0). Zero-mean Gaussian

noise with variance σ2
0 = 1 was generated independently for each sensor and added to

the signal strength calculated from the sensor location and the amplitude parameter θ.

Threshold detection was made based on the sum of the signal and noise for the local deci-

sion. Finally, the global decision was made based on the test statistic ∆n,0 and the number

of alarmed sensors for the ALMP detector and the counting-based detector, respectively.

The global thresholds for both detectors were determined via the Gaussian limit distribu-

tion. Throughout the simulations, the probability of successful data collection from each

sensor was set to pm = 0.9. The initial homogeneous density λh and the local false alarm

probability were assumed to be known and the true values were used for the simulation.

B. Receiver Operating Characteristics

Fig. 4, 5 show the analytic results. For both plots, the decay rate η for the exponential

signal was 3. Fig. 4 shows the analytic upperbound for power for global size 0.1 with

respect to the number of sensors for fixed signal amplitudes. It also depicts the expected

behavior, that if the signal strength θ decreases, we need more sensors to achieve the same

performance. Fig. 5 shows the analytic bound and simulated power with respect to the

false alarm probability. For the simulation curve, the actual false alarm probability was

used rather than the designed size. As shown in the figure, the power of ALMP detector

achieves the asymptotic upper bound with the network size of 1000.
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Fig. 6. Actual false alarm probability with respect to the designed size.

One important feature of the proposed detector is that ∆n,0 has a Gaussian limit dis-

tribution and the global threshold is based on it. Fig. 6 shows the actual false alarm

probability obtained by simulation versus the designed size for the additive Gaussian noise

model with local size 0.1 and verifies the convergence in distribution of the test statistic

with a network size of 1000 sensors. As shown, the actual false alarm probabilities closely

follow the designed size. Notice that the actual false alarm probability of the ALMP de-

tector for the decay rate η = 6 deviates more than that for the case of η = 3 whereas the

deviations are almost the same for the counting-based detector. This is because the test

statistic ∆n,0 for the ALMP detector is the sum of local decisions weighted by the spatial

signal shape while the weight is uniform over the space for the counting-based detector.

For the exponential with a large decay rate, the sensor decisions around the origin dom-

inate the overall distribution. Hence, the distribution is concentrated around the mean

and deviates more from the Gaussian, which is clearly seen by the maximum deviation

around α = 0.5. This effect is more severe with a larger decay rate such as η = 6.

Fig. 7 shows the ROC of the ALMP detector using different local thresholds for a single

sensor. The additive Gaussian input model was used and the average number of sensors
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in A was kept the same at 1000 for all four cases in the figure. As shown, the global power

changes with the local size of each sensor and the maximum is achieved between the local

sizes of 0.2 and 0.3 as predicted in Section III-C
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Fig. 7. ROC with different local sizes(θ = 0.5)

Fig. 8, 9 show the ROC’s of the proposed ALMP and counting-based detector for the

additive Gaussian sensor model with local size 0.1. Fig. 8 shows the case where the

spatial signal changes quickly within the region A. The ALMP detector utilizing the

spatial information drastically improves the detector performance over the counting-based

approach. Fig. 9 show the ROC’s for a different decay rate with the same setup as in Fig.

8. As the decay rate becomes small or the signal becomes more uniform over the space,

the performance gained by utilizing the spatial information becomes less significant. The

meaning of asymptotic local optimality is clearly evident from Fig. 9. In this case, we have

a larger overall power in the space than the cases in Fig.8, since the signal decays slowly

over the space with the same peak at the origin. Since the peak value of s(x) in (25) is one

and the variance for sensor input noise is chosen to be one, the maximum signal-to-noise

ratio (SNR) for a sensor located at the origin is 0 dB when the amplitude parameter θ

is one in the figure. Even though the SNR of 0 dB is very small for a single sensor, we
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Fig. 8. ROC - additive Gaussian sensor model and η = 6 (solid line: ALMP detector, dashed line:
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have a large number of observations for the entire sensor field (the average number is 1000

sensors). Hence, the global power for θ = 1 already reaches almost unity for both the

ALMP and counting-based detector and the comparison above θ = 1 is less meaningful in

this case. However, the performance within the local neighborhood of the null hypothesis

is clearly distinguishable in all the figures.
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Fig. 10. ROC with mismatched signal shapes (α0 = 0.27, θ = 0.75)

Up to now, the true signal shape was used to obtain the ROC of ALMP detectors. Fig.

10 shows the ROC of the proposed detector with mismatched signal shapes. The true

signal shape of POI was the symmetric exponential with η = 6. We used two mismatched

shapes as the weighting function to construct the central sequence. First, we considered

the symmetric exponential s1(x, y) with a different decay rate η = 9. As expected, the

proposed detector with the mismatched shape performs worse than the true ALMP de-

tector. However, for the case of s1(x, y), the performance almost approaches the ALMP

detector since s1(x, y) is quite similar to the original shape. So, we further approximated

the signal shape by a step function
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s2(x, y) =







1
√

x2 + y2 ≤ r0

0 otherwise
, (40)

where r0 was determined such that the spatial ‘power’ of s2(x, y) covers 90 % of that of

the original signal, i.e.,
∫

A
s2
2(x, y)dxdy = 0.9

∫

A
s2(x, y)dxdy. In this case, even though

the degradation from the true ALMP becomes larger, it still shows good performance

compared with the true ALMP detector. It is shown that the rough knowledge of the

signal shape is enough to get most of the advantage of the ALMP detector for the spatially-

varying signal. Fig. 11 shows the ROC of the ALMP detector using the same signal shape
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Fig. 11. ROC with mismatched centers (α0 = 0.27, θ = 0.75)

with mismatched centers. The same parameters were used as Fig.10 for the true signal. For

the mismatched signal, we used the symmetric exponential with the same decay rate but

different centers. The displacements of center correspond to the positions of 80, 60, 40%

from the amplitude of the true center. As shown, even with a rough estimation of the

center, the performance degradation is not severe compared with the perfectly matched

case.

Finally, the effect of inaccurate sensor locations was investigated. Fig. 12 shows the
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performance of the perturbed sensor locations. The same signal shape with η = 6 was

used for all ALMP detectors but the perturbed location of sensor were used at the fusion,

i.e., ŝ(x) = s(x + ∆x) where the perturbation ∆x was generated independently for each

sensor with Gaussian distribution of standard deviations 1 %, 5 %, 10 % with respect to

the radius of the total space. As shown, the ALMP detector is robust with respect to the

sensor location error and a rough estimation of sensor location after deployment is enough.
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Fig. 12. ROC with inaccurate sensor locations (α0 = 0.27, θ = 0.75)

V. Conclusion

We considered a global detection problem based on (inaccurate) binary decisions from

local threshold sensors. The local ‘alarm’ probability is described by a generic function

βτ0(θs(x)), where τ0 is the local threshold, s(x) is the known underlying signal shape,

and θ is the unknown amplitude. By assuming a homogeneous Poisson distribution of

the sensors, we mapped the global detection problem to one of detecting Poisson process

with different intensity. Under a small signal strength assumption, asymptotically (in the

number of sensors in a fixed area) locally most powerful (AMLP) detector was derived

using Locally Asymptotic Normal (LAN) theory. It was shown that the conditions for
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applying LAN theory lead to reasonable assumptions on the underlying spatial signal. The

AMLP fusion rule is a threshold detector for the weighted sum of local decisions, where

the weight is proportional to the signal strength. The AMLP detector requires knowledge

of the sensor locations, the signal shape, and a parameter which is the product of the

local detector function βτ0(0), the MAC success probability, and the average density of

the sensor locations. We have also shown (Theorem 3) how to optimize the local threshold

so as to maximize the global power function. The asymptotic local optimality of the

counting-based detector was established for the case of constant spatial signals. Numerical

examples were provided to verify the theoretical results. Several of these examples also

demonstrate that the proposed detector is robust under conditions of signal mismatch,

including wrong signal shape, translated signal shape, and location calibration errors.

Efficient estimators of s(x), or its parameters, based on the binary sensor decisions, is

currently under investigation.

Appendix I: Locally Asymptotically Normal (LAN) Theory

The theory of LAN was first proposed by Le Cam [1] [2]. In this section, we briefly in-

troduce the LAN theory. The LAN theory provides simplifications of asymptotic statistics

via the existence of a randomized statistic in a limit Gaussian model using convergence in

distribution of loglikelihood ratios. It makes it possible to establish a minimax bound for

the risk of arbitrary estimators and to construct the asymptotically locally most powerful

(ALMP) detector for composite hypothesis test which we use in this paper [1] [3] [4].

A. Sequence of Statistical Experiments and LAN

The statistical experiment or model (Ω,X ,P) is described as follows. An event X ∈ X
is observed such that the probability distribution of X is from a parametric family of

probability measures P = {Pθ, θ ∈ Θ}, all defined on the same measurable space (Ω,X );

the true parameter θ is unknown. The statistical experiment or model is simply denoted

by {Pθ, θ ∈ Θ}. We consider a sequence of statistical experiments (Ω(n),X (n),P (n)) where

P (n) = {P (n)
θ , θ ∈ Θ}. For example, we can construct a sequence of statistical experiments

with a location parameter.

Example 1 (Gaussian location model) The random variables X1, . . . , Xn are i.i.d. with
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X1 ∼ Pθ
∆
= N (θ, 1), θ ∈ R. We set the sequence of probability spaces as the product

space

(Ω(n),X (n)) = (Ω⊗n,X⊗n), P
(n)
θ = P⊗n

θ , n = 1, 2, . . . .

Here, we consider X (n) ∆
= (X1, . . . , Xn) as a single observation in X (n).

Definition 1 (LAN) [4] The sequence of statistical models {P (n)
θ , θ ∈ Θ} is LAN at

θ0 ∈ Θ if there exist matrices rn(θ0) and Iθ0 and random vectors ∆n,θ0 such that L(∆n,θ0 |θ0)
⇒ N (0, Iθ0) and for every h

log
dP

(n)

θ0+rn(θ0)h

dP
(n)
θ0

(X(n)) = h
T ∆n,θ0(X

(n)) −
1

2
h

T
Iθ0h + o

P
(n)
θ0

(1), (41)

where L(∆n,θ0 |θ0) ⇒ N (0, Iθ0) denotes that ∆n,θ0 converges in distribution to N (0, Iθ0)

under P
(n)
θ0

probability and o
P

(n)
θ0

(1) represents a term that converges to zero in P
(n)
θ0

prob-

ability.

Here, θ0 is called the base parameter, ∆n,θ0 the central sequence, and Iθ0 the Fisher

information matrix which actually coincides with the conventional definition of Fisher

information for smooth parametric families. The experiment {P (n)
θ0+rn(θ0)h} is called the

local experiment with local parameter h. LAN is a property of a (parametric) statistical

model itself and implies that the loglikelihood ratio between the experiment based on θ0

and local experiment admits a pointwise quadratic approximation in the neighborhood

of θ0 with a Gaussian linear term and a deterministic quadratic term (Not all statistical

models satisfy the LAN condition). The statistical model in Example 1 is a good example

of LAN family. It is LAN for all θ ∈ R with rn(θ) = 1√
n
, ∆n,θ = 1√

n

∑n
i=1 (Xi − θ), and

Iθ = 1.

Now consider two sequences of probability distributions {P (n)} and {P̃ (n)} defined on

the same measurable space (Ω(n),X (n)). As n goes to infinity, the relation between two

sequences of distributions can be classified in several cases.

Definition 2 (Entire Asymptotic Separation) [5] The sequences {P (n)} and {P̃ (n)} are

entirely asymptotically separated if there is a subsequence nk → ∞, k → ∞ and sets

Ank
∈ X (n) such that

P (nk)(Ank
) → 1 and P̃ (nk)(Ank

) → 0 as k → ∞. (42)
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For the i.i.d. Gaussian model in Example 1, if we choose P (n) = P⊗n
θ=1 and P̃ (n) = P⊗n

θ=−1,

two sequences are entirely asymptotically separated. In this case, we can set An =

{(X1, . . . , Xn) :
∑n

i=1 Xn > 0}. The distributions of
∑n

i=1 Xn under two sequences are

Gaussian with mean n and −n, respectively with an equal standard deviation
√

n. Hence,

the distance between two distributions becomes unbounded as n goes to infinity and (42) is

satisfied. Another extreme case in asymptotic relation is given by the following definition.

Definition 3 (Contiguity) [5] The sequence {P̃ (n)} is contiguous to the sequence {P (n)}
if for all An ∈ X (n),

P (n)(An) → 0 implies P̃ (n)(An) → 0. (43)

The concept of contiguity and entire asymptotic separation can be considered as asymp-

totic versions of absolute continuity and singularity between two probability measures,

respectively. Note that the entire asymptotic separation is symmetric whereas the conti-

guity is not. If the contiguity condition also holds in the other direction, two sequences of

probability measures are called mutually contiguous. It is also possible that the asymp-

totic relation between two sequences of probability distributions does not fall into either

case in the above.

The simplification of asymptotics by the LAN theory comes from the relations between

two experiments {P (n)
θ0

} and {P (n)
θ0+rn(θ0)h}. When a statistical model satisfies the LAN con-

dition, two sequences of distributions {P (n)
θ0

} and {P (n)
θ0+rn(θ0)h} are mutually contiguous and

in limit these two experiments are represented by Gaussian location models {N (0, I−1
θ0

)}
and {N (h, I−1

θ0
)} as n goes to infinity. Hence, the asymptotic analysis of detection be-

tween the null hypothesis and contiguous alternative can be based on these limit Gaussian

experiments that we can handle easily.

B. Asymptotically Locally Most Powerful Detector

The detection in the asymptotic situation, i.e., with infinite number of samples or ob-

servations has been well investigated for M -ary hypothesis testing or channel capacity

problems. In the formulation of M -ary hypothesis testing, the number of hypotheses is

fixed regardless of the sample size whereas the number of hypotheses increases with a

certain ratio to the sample size or the codeblock length for channel capacity. The asymp-
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totic analysis in these formulations is based on the entire asymptotic separation between

discrete hypotheses. It is well known that the error probability converges to zero expo-

nentially for M -ary hypothesis testing or for the case that the data rate is less than the

channel capacity as the sample size goes to infinity. In this case, the rate of convergence or

error exponent usually serves as a criterion for the asymptotic performance. However, the

detection problem of signal with a continuous and unknown strength such as the model

in (1, 3) does not lend itself to the error exponent approach easily due to the uncountable

nature of the alternative hypothesis.

Moreover, for the test of the hypothesis (1, 3) with a good separation of parameters

between the null and alternative hypothesis, the error exponent may not be a proper

criterion in asymptotic situations where a sufficiently large number of observation samples

are already available. Specifically, suppose that the alternative hypothesis is bounded

away from the null. That is,

H0 : θ = 0

H1 : θ > θ1,
(44)

where θ1 > 0 is some constant. As the sample size goes to infinity, two sequences of distri-

butions {P (n)
0 } and {P (n)

θ1
} becomes entirely asymptotically separated for most interesting

cases and the power (probability of detection) of any reasonable detector approaches unity

as the sample size becomes large (with possibly different convergence rate). Suppose that

we have two such detectors and a sufficiently large number of samples. Then, the powers

of two detectors are already very close to unity, and the convergence rate is no longer

a proper measure for assessing the performance of a detector in the asymptotic regime5.

The asymptotic local optimality is another choice for such an asymptotic scheme. The

detection is focused on the alternative which is close to the null θ = 0 where the distribu-

tions of the null and alternative hypothesis are still nonseparable or mutually contiguous.

In our case, the asymptotic criteria focus on the low signal-to-noise (SNR) range as in [25]

[28] [29] since the parameter θ represents the amplitude of the spatial signal.

The LAN theory provides an analytic framework for such detection problems and gives

5The error exponent or convergence rate can be considered as an approach to the case that each observation

sample has a fixed SNR. It can be used to determine a detector requiring the minimum number of samples for a

given error probability.
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an asymptotic optimality criterion. When a statistical model satisfies the LAN condition,

we can construct an asymptotic local upper bound of the power for any sequence of

detectors with a given asymptotic size and a sequence of detectors that achieves this

bound.

Theorem 4 (Asymptotic local upper bound) [1], [4] Let {φn} be any sequence of asymp-

totic α-tests for hypothesis (3). That is,

lim sup
n→∞

En,0φn ≤ α.

Suppose that the sequence of statistical models {P (n)
θ , θ ∈ Θ = [0,∞)} is LAN at θ = 0

with normalizing sequence rn(0) (→ 0), central sequence ∆n,0, and FIM I0. Then, for any

M > 0,

lim sup
n→∞

sup
0<rn(0)−1θ≤M

[

En,θφn − Q(Q−1(α) − r−1
n (0)θI

1/2
0 )
]

≤ 0. (45)

Furthermore, the following procedure is an asymptotic α-test for the hypotheses (3) that

achieves the bound

Take H0 if I
−1/2
0 ∆n,0 ≤ Q−1(α),

Take H1 if I
−1/2
0 ∆n,0 > Q−1(α),

(46)

where ∆n,0 is the central sequence.

Here, θ ∈ (0, rn(0)M) is the local neighborhood of the null hypothesis depending on

the sample size where two hypotheses are still not separable. A detector that achieves the

asymptotic local upper bound with asymptotic size α is called the asymptotically locally

most powerful (ALMP) detector with size α. The detector (46) is known as the score test

and is an ALMP detector. Furthermore, for the one-sided detection problem, the ALMP

detector is most powerful not only in the local neighborhood of null parameter but also in

the entire parameter space Θ = (0,∞) asymptotically [3].

Appendix II: Proofs

Lemma 1: Let X
(n)
An

be the sequence of Poisson processes (or corresponding statistical

model) with probability distribution {P (n)
θ , θ ∈ Θ = [0,∞)} induced by intensity measure

Λ
(n)
θ (dx)

∆
= λ(n)(θ,x)dx, x ∈ An. Let the conditions (B.1)-(B.3) below be satisfied. Then,
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the statistical model {P (n)
θ , θ ∈ Θ} is LAN at θ0 ∈ Θ with central sequence ∆n,θ0 and

normalizing sequence rn(θ0) defined as (23) and (24), respectively.

(B.1) All intensity measures {Λ(n)
θ (dx), θ ∈ Θ}, n = 1, 2, . . . are equivalent or mutually

absolutely continuous for all θ ∈ Θ and Λ
(n)
θ (An) < ∞ for all n. We define

Sn(θ, θ0;x)
∆
=

Λ
(n)
θ (dx)

Λ
(n)
θ0

(dx)
=

λ(n)(θ,x)

λ(n)(θ0,x)
.

(B.2) The function Sn(θ, θ0;x), θ, θ0 ∈ Θ, x ∈ An is continuously differentiable with

respect to θ at θ0. We define

Ψn(θ, θ0;x)
∆
= 2
√

Sn(θ, θ0;x), Ψ̇n(θ, θ0;x)
∆
=

∂

∂θ
Ψn(θ, θ0;x)

Ψ̇n(θ0, θ0; x) =
λ̇(n)(θ0,x)

λ(n)(θ0,x)

Then, the quantity

Jn(θ0)
∆
=

∫

An

|Ψ̇n(θ0, θ0;x)|2Λ(n)
θ0

(dx) (47)

is positive ( > 0) at θ0 ∈ Θ and

rn(θ0)
∆
= Jn(θ0)

−1/2 → 0 as n → ∞. (48)

(B.3)

lim
n→∞

∫

An

|rn(θ0)Ψ̇n(θ0, θ0;x)|3Λ(n)
θ0

(dx) → 0, (49)

and for every C > 0,

lim
n→∞

r2
n(θ0) sup

|θ−y|+|θ−z|<rn(θ0)C

∫

An

[ λ̇(n)(z,x)

λ(n)(y,x)

− λ̇(n)(θ0,x)

λ(n)(θ0,x)

]2

Λ
(n)
θ0

(dx) = 0. (50)

Proof: In Appendix III.

Proof of Theorem 1

Since

λ(n)(θ,x) = θnf(x) + nλ0, x ∈ A, λ0 > 0
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for Model 1 and f(x) ≥ 0, x ∈ A by the condition (C.1), the family of intensity measures

{Λ(n)
θ (dx)} are equivalent for θ ≥ 0 and all n. Hence, (B.1) is satisfied and Ψn(θ, θ0;x) is

well defined and its derivative is given by

Ψ̇n(θ, θ0;x) =
nf(x)

θnf(x) + nλ0

/

√

θnf(x) + nλ0

θ0nf(x) + nλ0

and at θ0 = 0,

Ψ̇n(0, 0;x) = λ−1
0 f(x).

Jn(0) =

∫

An

|Ψ̇n(0, 0;x)|2Λ(n)
0 (dx),

=

∫

A

λ−2
0 f 2(x)nλ0dx,

= nλ−1
0

∫

A

f 2(x)dx, (51)

since

An = A for all n, |A| < ∞.

By (C.2) and (C.3),

0 < C0 :=

∫

A

f 2(x)dx < ∞ ⇒ 0 < Jn(0) < ∞ for all n,

and

lim
n→∞

Jn(0) = ∞.

Hence, (B.2) is satisfied.

Define

rn(0)
∆
= Jn(0)−1/2

= n−1/2λ
1/2
0

[
∫

A

f 2(x)dx

]−1/2

= n−1/2λ
1/2
0 C

−1/2
0 .

Now check (49).
∫

An

|rn(0)Ψ̇n(0, 0;x)|3Λ(n)
0 (dx)

=

∫

A

n−3/2λ
3/2
0 [

∫

A

f 2(x)dx]−3/2λ−3
0 f 3(x)nλ0dx

= n−1/2λ
−1/2
0 [

∫

A

f 2(x)dx]−3/2

∫

A

f 3(x)dx .
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Since f(x) ≥ 0,
∫

A
f(x) > 0, and sup

x∈A f(x) = M < ∞,

0 <

∫

A

f 3(x)dx < ∞.

We have
∫

An

|rn(0)Ψ̇n(0, 0;x)|3Λ0(dx) → 0 as n → ∞.

Hence, the Lindeberg condition (49) is satisfied.

For given C > 0,

sup
|y|+|z|<rn(0)C

∫

An

r2
n(0)

[

λ̇(n)(z,x)

λ(n)(y,x)
− λ̇(n)(0,x)

λ(n)(0,x)

]2

Λ
(n)
0 (dx)

= sup
0≤y<n−1/2C′

∫

A

n−1λ2
0C

−1
0

[

f(x)

yf(x) + λ0

− f(x)

λ0

]2

nλ0dx

= sup
0≤y<n−1/2C′

λ3
0C

−1
0

∫

A

[

f(x)

yf(x) + λ0

− f(x)

λ0

]2

dx

= sup
0≤y<n−1/2C′

λ3
0C

−1
0

∫

A

[

f(x)

λ0

]2 [
1

yf(x)/λ0 + 1
− 1

]2

dx

≤ sup
0≤y<n−1/2C′

λ3
0C

−1
0

[

1

yM/λ0 + 1
− 1

]2 ∫

A

[

f(x)

λ0

]2

dx

≤ λ3
0C

−1
0

[

1

n−1/2C ′M/λ0 + 1
− 1

]2 ∫

A

[

f(x)

λ0

]2

dx

→ 0 as n → ∞.

where C ′ = λ
1/2
0 C

−1/2
0 C. Here, we used the fact that h(x) defined in (52) is monotone

increasing for x ≥ 0.

h(x) =

(

1

ax + 1
− 1

)2

, for any a > 0. (52)

Hence, (B.3) is satisfied. �

Proof of Theorem 2

λ̇(n)(0,x)

λ(n)(0,x)
=

nf(x)

θnf(x) + nλ0

|θ=0 = λ−1
0 f(x),

rn(0) =





∫

A

(

λ̇(n)(0,x)

λ(n)(0,x)

)2

λ(n)(0,x)dx





−1/2

,
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= n−1/2λ
1/2
0

(
∫

A

f 2(x)dx

)−1/2

,

∆n,0 = rn(0)

∫

A

f(x)[X (n)(dx) − Λ
(n)
0 (dx)],

= n−1/2λ
−1/2
0

(
∫

A

c2s2(x)dx

)−1/2

(
∫

A

cs(x)X(n)(dx) − nλ0

∫

A

cs(x)dx

)

,

= n−1/2λ
−1/2
0

(
∫

A

s2(x)dx

)−1/2

(
∑

i: xi∈A

s(xi) − nλ0

∫

A

s(x)dx ). (53)

Here, we used the fact that f(x) is a scaled version of s(x) (f(x) = cs(x), c > 0). The

last step is by the definition of stochastic integral. The ALMP detector is obtained by

Theorem 4.

�

Proof of Theorem 3

By Theorem 4, the asymptotic local upper bound for the global power is given by

Q(Q−1(α) − r−1
n (0)θ).

Since Q(·) is a monotone decreasing function, the maximum upper bound for a fixed θ is

achieved by maximizing r−1
n (0) for a given n. Since rn(0) is given, using (20), by

rn(0) = n−1/2λ
1/2
0

[
∫

A

f 2(x)dx

]−1/2

=

(

nλh0pm

(β′
τ0

(0))2

βτ0(0)

∫

A

s2(x)dx

)−1/2

,

the theorem follows. �

Appendix III: Proof of Lemma 1

This proof is mostly cited from [6], [7] and more detailed steps are involved.
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Let Ψn(θ, θ0;x) be defined as follows.

Ψn(θ, θ0;x) = 2
√

Sn(θ, θ0;x), x ∈ An, θ, θ0 ∈ Θ,

where

Sn(θ, θ0;x) =
Λ

(n)
θ (dx)

Λ
(n)
θ0

(dx)
=

λ(n)(θ,x)

λ(n)(θ0,x)
, x ∈ An, Λ

(n)
θ (dx) = λ(n)(θ,x)dx.

Then, we have

Ψ̇n(θ, θ0;x)
∆
=

∂

∂θ
Ψn(θ, θ0;x) =

∂

∂θ
2

√

λ(n)(θ,x)

λ(n)(θ0,x)
= 2

1

2

(

λ̇(n)(θ,x)

λ(n)(θ0,x)

)

/

(

√

λ(n)(θ,x)

λ(n)(θ0, x)

)

.

Let’s define the following quantities.

qn(θ0,x)
∆
= Ψ̇n(θ0, θ0;x) = Ψ̇n(θ, θ0;x)|θ=θ0 =

λ̇(n)(θ0,x)

λ(n)(θ0,x)
,

Jn(θ0)
∆
=

∫

An

Ψ̇n(θ0, θ0;x)Ψ̇T
n (θ0, θ0;x)Λ

(n)
θ0

(dx) =

∫

An

λ̇(n)(θ0,x)2

λ(n)(θ0,x)
dx,

rn(θ0)
∆
= J−1/2

n (θ0),

∆n,θ0

∆
=

∫

An

rn(θ0)Ψ̇n(θ0,x)[X(n)(dx)−Λ
(n)
θ0

(dx)] =

∫

An

rn(θ0)
λ̇(n)(θ0,x)

λ(n)(θ0,x)
[X(n)(dx)−Λ

(n)
θ0

(dx)].

Since the probability measures {P (n)
θ , θ ∈ Θ} are equivalent if the corresponding intensity

measure {Λ(n)
θ , θ ∈ Θ} [7], by condition (B.1), all measures {P (n)

θ , θ ∈ Θ} are equivalent

and for every h, the likelihood ratio is well defined and denoted by

Zn(h) =
dP

(n)
θ0+rn(θ0)h

dP
(n)
θ0

(X
(n)
An

). (54)

Denote q̃n = rn(θ0)Ψ̇n(θ0, θ0;x), θh = θ0 + rn(θ0)h, and Sn = Sn(θh, θ0;x). Using (16), the

log-likelihood ratio is explicitly given by

log Zn(h) =

∫

An

log Sn(θh, θ0;x)X(n)(dx) − Λ
(n)
θh

(An) + Λ
(n)
θ0

(An),

=

∫

An

log SnX
(n)(dx) −

∫

An

[Sn − 1]Λ
(n)
θ0

(dx),

=

∫

An

log Sn[X(n)(dx) − Λ
(n)
θ0

(dx)] −
∫

An

[Sn − 1 − log Sn]Λ
(n)
θ0

(dx),
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=

∫

An

(log Sn − hq̃n)[X(n)(dx) − Λ
(n)
θ0

(dx)] +

∫

An

hq̃n[X(n)(dx) − Λ
(n)
θ0

(dx)]

−1

2

∫

An

(hq̃n)2Λ
(n)
θ0

(dx) +
1

2

∫

An

(hq̃n)2Λ
(n)
θ0

(dx) −
∫

An

[Sn − 1 − log Sn]Λ
(n)
θ0

(dx),

= h

∫

An

q̃n[X(n)(dx) − Λ
(n)
θ0

(dx)] − 1

2

∫

An

(hq̃n)2Λ
(n)
θ0

(dx)

+

∫

An

(log Sn − hq̃n)[X(n)(dx) − Λ
(n)
θ0

(dx)]

−
∫

An

[Sn − 1 − log Sn − 1

2
(hq̃n)2]Λ

(n)
θ0

(dx),

= h

∫

An

q̃n[X(n)(dx) − Λ
(n)
θ0

(dx)] − 1

2

∫

An

(hq̃n)2Λ
(n)
θ0

(dx)

+ R
(n)
1 (h, θ0, X

(n)) − R
(n)
2 (h, θ0, X

(n)). (55)

Hence, for the LAN property, we need to show that for every h, the first term converges

in distribution to a Gaussian random variable uder P
(n)
θ0

probability , the sencond term to

a deterministic quantity, and the remaining terms go to zero in P
(n)
θ0

probability.

Consider the following equality. For any fixed h,

∂

∂s
log Sn(θ0 + rnhs, θ0;x) = hrn

∂
∂s

Sn(θ0 + rnhs, θ0;x)

Sn(θ0 + rnhs, θ0;x)
∫ 1

0

∂

∂s
log Sn(θ0 + rnhs, θ0;x)ds =

∫ 1

0

hrn

∂
∂s

Sn(θ0 + rnhs, θ0;x)

Sn(θ0 + rnhs, θ0;x)
ds

log Sn(θ0 + rnh, θ0;x) − log Sn(θ0, θ0;x) =

∫ 1

0

hrn

∂
∂s

Sn(θ0 + rnhs, θ0;x)

Sn(θ0 + rnhs, θ0;x)
ds

log Sn(θ0 + rnh, θ0;x) =

∫ 1

0

hrn

∂
∂s

Sn(θ0 + rnhs, θ0;x)

Sn(θ0 + rnhs, θ0;x)
ds

=

∫ 1

0

hrn

∂
∂s

λ(n)(θ0+rnhs,x)

λ(n)(θ0,x)

λ(n)(θ0+rnhs,x)

λ(n)(θ0,x)

ds

=

∫ 1

0

hrn

∂
∂s

λ(n)(θ0 + rnhs,x)

λ(n)(θ0 + rnhs,x)
ds

=

∫ 1

0

hrnΨ̇n(θ0 + rnhs, θ0 + rnhs;x)ds

(56)

where, rn(θ0) is simply denoted by rn ( and hereafter). We can also denote q̃n as follows.

q̃n = rnΨ̇n(θ0, θ0;x) = rnΨ̇n(θ0, θ0;x)

∫ 1

0

ds =

∫ 1

0

rnΨ̇n(θ0, θ0;x)ds (57)
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Now, consider the first remaining term.

R
(n)
1 (h, θ0,xAn) =

∫

An

(log Sn − hq̃n)[X(n)(dx) − Λ
(n)
θ0

(dx)].

By the property of stochastic integral and Poisson process, E R
(n)
1 (h, θ0,xAn) = 0 under

P
(n)
θ0

probability and the variance under P
(n)
θ0

probability is given by [7]

E|R(n)
1 (h, θ0,xAn)|2 =

∫

An

[log Sn − hq̃n]2 Λ
(n)
θ0

(dx)

= ‖ log Sn − hq̃n‖2
θ0

by Eq.(56) and (57),

= ‖
∫ 1

0

hrnΨ̇n(θ0 + rnhs, θ0 + rnhs;x)ds −
∫ 1

0

hrnΨ̇n(θ0, θ0;x)ds‖2
θ0

= ‖
∫ 1

0

(

hrnΨ̇n(θ0 + rnhs, θ0 + rnhs;x) − hrnΨ̇n(θ0, θ0;x)
)

ds‖2
θ0

= ‖
∫ 1

0

hrn

(

Ψ̇n(θ0 + rnhs, θ0 + rnhs;x) − Ψ̇n(θ0, θ0;x)
)

ds‖2
θ0

≤
∫ 1

0

‖hrn

(

Ψ̇n(θ0 + rnhs, θ0 + rnhs;x) − Ψ̇n(θ0, θ0;x)
)

‖2
θ0

ds

= |h|2
∫ 1

0

‖rn

(

Ψ̇n(θ0 + rnhs, θ0 + rnhs;x) − Ψ̇n(θ0, θ0;x)
)

‖2
θ0

ds

= |h|2 sup
0≤s≤1

‖rn

(

Ψ̇n(θ0 + rnhs, θ0 + rnhs;x) − Ψ̇n(θ0, θ0;x)
)

‖2
θ0

Since rn → 0 and Ψ̇n(θ0, θ0,x) is continous by the condition (B.2), the righthand side term

goes to zero. Since the convergence in L2 implies the convergence in probability, we have

R
(n)
1 (h, θ0, X

(n)) → 0 in P
(n)
θ0

probability.

Next, consider the second term R
(n)
2 (h, θ0, X

(n)) which is deterministic.

R
(n)
2 (h, θ0, X

(n)) =

∫

An

[Sn − 1 − log Sn − 1

2
(hq̃n)2]Λ

(n)
θ0

(dx)

Consider the following equalities. The first part of R
(n)
2 (h, θ0, X

(n)) is expressed by

∫

An

[Sn(θ0 + rnh, θ0;x) − 1 − log Sn(θ0 + rnh, θ0;x)]Λ
(n)
θ0

(dx)

=

∫

An

[Sn(θ0 + rnh, θ0;x) − 1 − log Sn(θ0 + rnh, θ0;x)]λ(n)(θ0,x)dx
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=

∫

An

[

λ(n)(θ0 + rnh,x) − λ(n)(θ0,x) − λ(n)(θ0,x) log
λ(n)(θ0 + rnh,x)

λ(n)(θ0,x)

]

dx

=

∫

An

∫ θ0+rnh

θ0

∫ y

θ0

λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
dzdyλ(n)(θ0,x)dx

For the last step, we used the following.

∫

An

∫ θ0+rnh

θ0

∫ y

θ0

λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
dzdyλ(n)(θ0,x)dx

=

∫

An

∫ θ0+rnh

θ0

∫ y

θ0

λ̇(n)(z,x)

λ(n)(y,x)
λ̇(n)(y,x) dzdydx

=

∫

An

∫ θ0+rnh

θ0

λ̇(n)(y,x)

λ(n)(y,x)

∫ y

θ0

λ̇(n)(z,x) dzdydx

=

∫

An

∫ θ0+rnh

θ0

λ̇(n)(y,x)

λ(n)(y,x)
[λ(n)(y,x) − λ(n)(θ0,x)] dydx

=

∫

An

∫ θ0+rnh

θ0

[λ̇(n)(y,x) − λ(n)(θ0,x)
λ̇(n)(y,x)

λ(n)(y,x)
] dydx

=

∫

An

[λ(n)(y,x) − λ(n)(θ0,x) log λ(n)(y,x)]θ0+rnh
θ0

dx

=

∫

An

[

λ(n)(θ0 + rnh,x) − λ(n)(θ0,x) − λ(n)(θ0,x) log
λ(n)(θ0 + rnh,x)

λ(n)(θ0,x)

]

dx.

The second part of R
(n)
2 (h, θ0,xAn) is now expressed by

1

2
h2 =

1

2
h2r2

n(θ0)Jn(θ0), by def. of rn

=
1

2
h2r2

n(θ0)

∫

An

λ̇(n)(θ0,x)2

λ(n)(θ0,x)2
λ(n)(θ0,x)dx

=

∫

An

∫ θ0+rnh

θ0

∫ y

θ0

λ̇(n)(θ0,x)2

λ(n)(θ0,x)2
dzdyλ(n)(θ0,x)dx,

where we used

∫ y

θ0

dz = y − θ0

∫ θ0+ϕh

θ0

[y − θ0]dy =
1

2
h2r2

n.

So, we express R
(n)
2 (h, θ0, X

(n)) as

R
(n)
2 (h, θ0, , X

(n)) =

∫

An

[Sn − 1 − log Sn − 1

2
(hq̃n)2]Λ

(n)
θ0

(dx)
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=

∫

An

∫ θ0+rnh

θ0

∫ y

θ0

λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
dzdyλ(n)(θ0,x)dx

−
∫

An

∫ θ0+rnh

θ0

∫ y

θ0

λ̇(n)(θ0,x)2

λ(n)(θ0,x)2
dzdyλ(n)(θ0,x)dx

=

∫

An

∫ θ0+rnh

θ0

∫ y

θ0

[

λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2

]

dzdyλ(n)(θ0,x)dx

=

∫ θ0+rnh

θ0

∫ y

θ0

∫

An

[

λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2

]

λ(n)(θ0,x)dxdzdy.

Now the integrand in the above equation is expressed by
∫

An

| λ̇
(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2
| λ(n)(θ0,x)dx (58)

=

∫

An

| λ̇
(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
− λ̇(n)(y,x)2

λ(n)(y,x)2
+

λ̇(n)(y,x)2

λ(n)(y,x)2
− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2
| λ(n)(θ0,x)dx

≤
∫

An

| λ̇
(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
− λ̇(n)(y,x)2

λ(n)(y,x)2
|λ(n)(θ0,x)dx +

∫

An

| λ̇
(n)(y,x)2

λ(n)(y,x)2
− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2
| λ(n)(θ0,x)dx

=

∫

An

| λ̇
(n)(y,x)2

λ(n)(y,x)2
− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2
| λ(n)(θ0,x)dx +

∫

An

| λ̇(n)(z,x)

λ(n)(θ0,x)
− λ̇(n)(y,x)

λ(n)(y,x)
| |λ̇

(n)(y,x)|
λ(n)(y,x)

λ(n)(θ0,x)dx

using a2 − b2 = (a + b)(a − b) and Cauchy-Schwarzt inequality,

≤
√

∫

An

| λ̇
(n)(y,x)

λ(n)(y,x)
− λ̇(n)(θ0,x)

λ(n)(θ0,x)
|2 λ(n)(θ0,x)dx

∫

An

| λ̇
(n)(y,x)

λ(n)(y,x)
+

λ̇(n)(θ0,x)

λ(n)(θ0,x)
|2 λ(n)(θ0,x)dx

+

√

∫

An

| λ̇(n)(z,x)

λ(n)(θ0,x)
− λ̇(n)(y,x)

λ(n)(y,x)
|2λ(n)(θ0,x)dx

∫

An

λ̇(n)(y,x)2

λ(n)(y,x)2
λ(n)(θ0,x)dx. (59)

Check the nondiminishing term in the above equation.

∫

An

λ̇(n)(y,x)2

λ(n)(y,x)2
λ(n)(θ0,x)dx

=

∫

An

| λ̇
(n)(θ0,x)

λ(n)(θ0,x)
+

λ̇(n)(y,x)

λ(n)(y,x)
− λ̇(n)(θ0,x)

λ(n)(θ0,x)
|2λ(n)(θ0,x)dx

≤ 2

∫

An

| λ̇
(n)(θ0,x)

λ(n)(θ0,x)
|2λ(n)(θ0,x)dx + 2

∫

An

| λ̇
(n)(y,x)

λ(n)(y,x)
− λ̇(n)(θ0,x)

λ(n)(θ0,x)
|2λ(n)(θ0,x)dx

= r−2
n (1 + o(1)), by (50). (60)

Hence, (58) is bounded by

∫

An

| λ̇
(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2
| λ(n)(θ0,x)dx

≤
√

∫

An

| λ̇
(n)(y,x)

λ(n)(y,x)
− λ̇(n)(θ0,x)

λ(n)(θ0,x)
|2 λ(n)(θ0,x)dx

∫

An

| λ̇
(n)(y,x)

λ(n)(y,x)
+

λ̇(n)(θ0,x)

λ(n)(θ0,x)
|2 λ(n)(θ0,x)dx
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+

√

∫

An

| λ̇(n)(z,x)

λ(n)(θ0,x)
− λ̇(n)(y,x)

λ(n)(y,x)
|2λ(n)(θ0,x)dx

∫

An

λ̇(n)(y,x)2

λ(n)(y,x)2
λ(n)(θ0,x)dx

using |a + b|2 ≤ 2a2 + 2b2

≤

√

√

√

√

∫

An

| λ̇
(n)(y,x)

λ(n)(y,x)
− λ̇(n)(θ0,x)

λ(n)(θ0,x)
|2 λ(n)(θ0,x)dx

∫

An

(

2
λ̇(n)(y,x)2

λ(n)(y,x)2
+ 2

λ̇(n)(θ0,x)2

λ(n)(θ0,x)2

)

λ(n)(θ0,x)dx

+

√

∫

An

| λ̇(n)(z,x)

λ(n)(θ0,x)
− λ̇(n)(y,x)

λ(n)(y,x)
|2λ(n)(θ0,x)dx

∫

An

λ̇(n)(y,x)2

λ(n)(y,x)2
λ(n)(θ0,x)dx

using (60),(50)

=

√

r−2
n o(1)r−2

n (1 + o(1)) +

√

r−2
n o(1)r−2

n (1 + o(1))

= r−2
n o(1) since

√

o(1) = o(1) (61)

where o(1) is uniform over y, z : |θ0 − y| + |θ0 − z| < Crn(θ0) by (50) in the condition

(B.3). Now the convergence of R
(n)
2 (h, θ0, X

(n)) to zero is established as follows.

R
(n)
2 (h, θ0, X

(n)) =

∫ θ0+rnh

θ0

∫ y

θ0

(

∫

An

[

λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)
− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2

]

λ(n)(θ0,x)dx

)

dzdy

≤
∫ θ0+rnh

θ0

(y − θ0) sup
z:|θ0−z|<Crn(θ0)

(

∫

An

[ λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)

− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2

]

λ(n)(θ0,x)dx
)

dy

≤ sup
y,z:|θ0−z|+|θ0−y|<Crn(θ0)

(

∫

An

[ λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)

− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2

]

λ(n)(θ0,x)dx
)

∫ θ0+rnh

θ0

(y − θ0)dy

= [
1

2
y2 − θ0y]θ0+rnh

θ0
sup

y,z:|θ0−z|+|θ0−y|<Crn(θ0)

(

∫

An

[ λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)

− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2

]

λ(n)(θ0,x)dx
)

=
1

2
h2rn(θ0)

2 sup
y,z:|θ0−z|+|θ0−y|<Crn(θ0)

(

∫

An

[ λ̇(n)(z,x)

λ(n)(y,x)

λ̇(n)(y,x)

λ(n)(θ0,x)

− λ̇(n)(θ0,x)2

λ(n)(θ0,x)2

]

λ(n)(θ0,x)dx
)

by (61)

=
1

2
h2r2

nr−2
n o(1)

= h2o(1).
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Hence, we have

R
(n)
2 (h, θ0,xAn) → 0 as n → ∞. (62)

The quadratic term in (55) is given by

∫

An

(hq̃n)2Λ
(n)
θ0

(dx)

=

∫

An

h2|q̃n|2Λ(n)
θ0

(dx)

= h2

∫

An

|q̃n|2Λ(n)
θ0

(dx)

= h2,

by the definition of q̃n. Hence, the Fisher information Iθ0 is one. Finally, check the

convergence of the central sequence.

∆n,θ0 =

∫

An

q̃n[X(n)(dx) − Λ
(n)
θ0

(dx)]

=

∫

An

rn(θ0)Ψ̇(θ0, θ0;x)[X(n)(dx) − Λ
(n)
θ0

(dx)]

We need to check Lindeberg condition. For any ε > 0,

Ln(ε) =

∫

An

|rn(θ0)Ψ̇n(θ0, θ0;x)|2I{|rn(θ0)Ψ̇n(θ0,θ0;x)|>ε}Λ
(n)
θ0

(dx)

≤
∫

An

|rn(θ0)Ψ̇n(θ0, θ0;x)|2 |rn(θ0)Ψ̇n(θ0, θ0;x)|
ε

I{|rn(θ0)Ψ̇n(θ0,θ0;x)|>ε}Λ
(n)
θ0

(dx)

= ε−1

∫

An

|rn(θ0)Ψ̇n(θ0, θ0;x)|3I{|rn(θ0)Ψ̇n(θ0,θ0;x)|>ε}Λ
(n)
θ0

(dx)

≤ ε−1

∫

An

|rn(θ0)Ψ̇n(θ0, θ0;x)|3Λ(n)
θ0

(dx) → 0,

where the last step is by (49) in the condition (B.3). Hence, we have

∆n,θ0 ⇒ N (0, 1),

under P
(n)
θ0

probability. This concludes the proof. �
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