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Abstract—The problem of estimating the parameters of mul-
tiple independent continuous-time Markov on-off processes is
considered. The objective is to minimize the total mean square
error (MSE) under a constraint on the total sensing time. The
Fisher information matrix for the primary traffic model and
the maximum likelihood estimator are obtained. A sequential
estimation strategy is proposed which operates under an epoch
structure with growing epoch length. Specifically, the total sensing
time in the current epoch is allocated among the on-off processes
based on the current estimates of the parameters using observa-
tions obtained in previous epochs. It is shown that this sequential
estimation strategy is asymptotically efficient as the total sensing
time increases. This result finds application in opportunistic spec-
trum access where secondary users need to estimate the channel
occupancy model of the primary system for efficient exploitation
of spectrum opportunities.

Index Terms—Channel estimation, cognitive radio, continuous-
time Markov process, opportunistic spectrum access (OSA), se-
quential estimation.

I. INTRODUCTION

I N opportunistic spectrum access, secondary users sense and
access temporally unused channels in the spectrum without

causing unacceptable interference to primary users [1]. An ac-
curate stochastic modeling of the primary system channel occu-
pancy plays a crucial role in designing the optimal algorithms
for sensing, tracking, and exploiting spectrum opportunities.
For instance, in [2]–[4], the channel occupancy of the primary
system is modeled as a continuous-time Markov on-off process.
Given these parameters, optimal sensing and access strategies of
the secondary users are designed. In practice, however, the sto-
chastic model of the primary traffic may not be known a priori;
such a model must be learned through channel sensing.

Manuscript received September 06, 2011; revised January 09, 2012 and
March 23, 2012; accepted May 30, 2012. Date of publication June 11, 2012;
date of current version September 11, 2012. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof.
Sofiene Affes. The work of P. Tehrani and Q. Zhao was supported by the Army
Research Office by Grant W911NF-08-1-0467 and by the National Science
Foundation by Grant CCF-0830685. The work of L. Tong was supported by
the National Science Foundation by Grant CCF-1018115. Part of this work was
presented at the IEEE SPAWCJune2011.
P. Tehrani and Q. Zhao are with the Department of Electrical and Com-

puter Engineering, University of California, Davis, CA 95616 USA (e-mail:
potehrani@ucdavis.edu; qzhao@ucdavis.edu).
L. Tong is with the School of Electrical and Computer Engineering Cornell

University, Ithaca, NY 15853 USA (e-mail: ltong@ece.cornell.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2012.2204256

In this paper, we consider the problem of estimating the
parameters of multiple independent continuous-time Markov
on-off processes. The objective is to minimize the total mean
squared error (MSE) across all channels under a constraint
on the total sensing time. To this end, we obtain the Fisher
information matrix and the maximum likelihood estimator
(MLE). Given that the optimal allocation of the total sensing
time to multiple channels depends on the unknown parameters,
a sequential estimation strategy is proposed which dynamically
adjusts the allocation of sensing time based on the partial
learning results obtained up to the current time. Referred to as
Sequential Estimation with Increasing Nested Epochs (SEINE),
the proposed sequential estimation policy operates under an
epoch structure. Within each epoch, channels are sensed in
turn, each for a fraction of the epoch length with the fraction
determined by the current estimate of the channel parameters.
The epoch length grows over time to take advantage of the
increasing accuracy of the estimates. It is shown that SEINE is
asymptotically efficient, i.e., it achieves the Cramér-Rao bound
(CRB) as the total sensing time grows.
Learning the stochastic models of primary channel occu-

pancy has received relatively little attention. There exist a few
published results, all focusing on a single channel and discrete
sampling. For example, in [5], [6], Maximum Likelihood and
Bayesian estimation of channel parameters under a uniform
sampling strategy were studied. In [7], relationship between
estimation accuracy, the number of samples taken, and the
channel state transition probabilities was analyzed by using
the sampling and estimation framework proposed in [5]. Park
et al. in [8] proposed a channel state predictor based on the
reinforcement learning techniques where the channel model
is assume to be a hidden Markov process. In [9], a wavelet
transform based channel estimator was proposed. In [10], the
performance of the single channel MLE of the uniform and
random discrete-time sampling strategies were compared. It
is demonstrated that when the samples are sparse enough, the
random sampling outperforms the uniform sampling. The anal-
ysis of [10] assumes that the utilization factor of the channel is
known which reduces the problem to a single (scaler) param-
eter estimation problem. A dynamic programming approach
is proposed to obtain the best and the worst sampling scheme
which can be solved numerically. For the time-varying channel
parameters, an adaptive random sensing scheme is proposed
and shown to outperform its counterpart using uniform sensing.
Another line of related work focuses on the design of channel

access and sharing strategies under unknown primary traffic
model based on the multiarmed bandit theory [11]–[17]. This
line of approach is fundamentally different from this paper in
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Fig. 1. Channel sensing model.

that secondary users’ channel access strategies are designed
without directly estimating the parameters of the primary traffic
model. Such an approach can only handle slotted primary
systems [11]–[16] or a weaker objective of identifying and
utilizing the best channel in an unslotted primary system with
an unknown model [17].

II. PROBLEM STATEMENT AND FUNDAMENTAL STATISTICS

Consider a network that consists of channels. These
channels are licensed to an unslotted primary network. The
spectrum occupancy of channel is modeled as a contin-
uous-time Markov process with two states: (busy)
and (idle). These Markov processes are jointly
independent. In particular, for channel , the sojourn times in
the busy and idle states are exponentially distributed with rates

and , respectively. Theses parameters are unknown
to the secondary system. A secondary user’s objective is to
learn the primary network occupancy model. It aims to estimate
the set of channel parameters by sensing
these channels.
We assume that the secondary user can only sense one

channel at a time, and there is a budget for the total sensing
time. An illustration of a particular sensing scenario is shown in
Fig. 1 where the secondary user monitors a particular channel
continuously for a period of time before switching to a different
channel. It is intuitive that a channel with greater statistical
variance requires longer total sensing time to achieve the same
level of accuracy as that for a channel with smaller variance.
The main challenge here is to design a sensing policy that
allocates time spent on each channel optimally.
While the continuous-time on-off Markovian abstraction of

the primary channels is widely accepted, it has several subtle
modeling complications. Specifically, the transitions of the pri-
mary traffic are instantaneous. From a signal theoretic point of
view, such a process has infinite bandwidth and no discrete-time
sensing can be made without loss of information. In this paper,
we adopt a continuous sensing model where it is assumed that
the secondary user can observe the channel continuously. This
of course can only be an approximation of a practical sensing
mechanism, but it has the significant theoretical benefit that the
sensing process does not lead to information loss.

Fig. 2. Observation model.

We also have to make a few additional assumptions on
sensing. The on-off model requires a hypothesis test to decide
whether a particular channel is idle or busy. When the ob-
servation is noisy, such hypothesis testing suffers from miss
detection and false alarm. The modeling of sensing errors leads
to significant complications and is not considered in this paper.
In addition, switching from one channel to another also takes
time in practice. This too will be ignored in our development.

A. Likelihood Function, Sufficient Statistics, and Fisher
Information: A Single Interval Analysis

In this section we focus on a single interval sensed from a
given channel and derive fundamental statistics. These statistics
are extended to the multiinterval multichannel case in the next
section. In the following, the channel index is dropped for the
ease of presentation.
The information observed in from a given channel

is illustrated in Fig. 2; it consists of the state of the channel
at the beginning of the sensed interval and the realizations of
the consecutive observed idle/busy periods , where
is the number of such periods. Hence the observation model for
the interval will be . Denote by ’s
the exponential random variables where ’s are respective real-
izations of what the secondary user has observed. From Fig. 2,
we have , , and for .
In the following we refer to ’s with as
complete periods since for them which is not true for

.
Now assume that a realization of observation for the

interval is given to be
. Since the state of the channel

during is given to be , the state of channel during will

be . Therefore the likelihood
function given that idle/busy periods for the given channel are
exponentially distributed with parameters , and is

Let , and be the number of complete idle and busy states
(note that are excluded) respectively. Thus we have

(1)
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(2)

Therefore the likelihood function can be rewritten as

(3)

The likelihood function in (3) shows that the sufficient statistics
for a single interval is

(4)

The Fisher information is the negative of the expectation of the
second derivative of the log likelihood function,

, with respect to the unknown parame-
ters, namely

where

(5)

where if and zero otherwise. The Fisher infor-
mation can be expressed in closed form given in the following
Theorem.
Theorem 1: The Fisher information matrix for a single

channel which is sensed for a continuous-time interval
can be written as

Proof: See the Appendix A.
From theorem 1 for the inverse of the Fisher information ma-

trix we get

(6)

B. Likelihood Function and Fisher Information for Multiple
Intervals

Since the channels are independent, the likelihood function
of the network will be the product of the likelihood functions of
each channel. Similarly, the Fisher information of the network
will be the sum of the Fisher information matrices of individual
channels. Therefore without loss of generality, we derive the
likelihood function and the Fisher information matrix for mul-
tiple intervals for a given channel .

Fig. 3. Multiple intervals.

Assume that the secondary user has sensed intervals
where the th and th intervals are

separated by . Fig. 3 shows an example
where .
Using the same notation introduced in Section II-A and

adding index indicating the th interval, the likelihood func-
tion for intervals is . Based
on the Markov property the likelihood function can be reduced
to (derivations for two intervals are given in Appendix B)

(7)

Denote the continuous and discrete parts of the likelihood
function by

The likelihood function can be written as

(8)
Note that (stands for discrete likelihood) only depends on
the state of the channels at two points (end point of the th
interval) and (the starting point of the th interval).
Therefore the term can be regarded as the factor in the like-
lihood function coming from the discrete sampling at single
points , and . (stands for continuous likelihood) is
the likelihood function for the single interval (com-
puted in Section II-A).
Therefore the likelihood function for multiple intervals con-

sists of two type of factors, the likelihood functions of indi-
vidual intervals ( ’s) and the factors from the discrete sam-
pling ( ’s) at the end points of the neighboring intervals. Fig. 4
shows continuous sampling (individual intervals) and discrete
sampling for two intervals. The conditional probability can be
written as

We also know
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Fig. 4. Continuous and discrete sampling.

Therefore the likelihood function is shown in the equation at
bottom of page.
The Fisher information is derived from the logarithm of the

likelihood function. Therefore by the same argument given
for (8), the Fisher information of the multiple intervals will be
the sum of the Fisher information of the individual intervals
plus the sum of the information obtained from the discrete
samplings at the end points of neighboring intervals, ’s
and ’s. Here we have dropped the channel index for the
ease of presentation.

(9)

where

(10)

is the information obtained from the discrete sampling at
and which is a function of (and also the unknown
parameters , and ).
In the following theorem we show the optimality of single in-

terval versus multiple intervals with the same total length under
a sparsity condition.

Theorem 2: There exists a finite value such that the
Fisher information of a single interval is larger than
the Fisher information of intervals where

, and , i.e.

(11)

Proof: See Appendix B.
Therefore if the distance between intervals ( ’s) is quite

large (bigger than a constant ), sensing one big interval with
the length has higher Fisher information. Based
on this theorem, a sensing policy is called sparse if it satisfies
the condition in Theorem 2, namely, .

III. MAXIMUM LIKELIHOOD AND MOMENT ESTIMATORS

A. The Maximum Likelihood Estimator

The MLE (maximum likelihood estimator) is obtained by
, , , where

is the log likelihood function, and
is given in Section II-B. It is

apparent that the MLE depends on the number of intervals
and also ’s and maximizing the likelihood function does
not lead to a convenient form that can be used as a framework
for sensing policy design. It is worth noting, however, that
if there is only a single period , a case that can be
optimal for some cases, the ML estimator can be obtained in a
closed-form as shown in the following Lemma.
Lemma 1: When there is only a single period , the

MLE can be obtained in a closed from (3) in Section II-A to be
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where , and

The MLE is simply obtained by putting the derivatives of the
logarithm of (3) with respect to , and equal to zero and
solving two equations with two unknowns.

B. A Moment Estimator

We propose a simple heuristic estimator and in Section IV we
prove that it is asymptotically efficient. This heuristic estimator
is based on the sample mean of the complete idle and busy pe-
riods and is independent of the sensing structure. It means that
the definition of the estimator does not depend on how many in-
tervals (one single interval or many) are sensed on each channel.
Denote by , and the number of complete idle
and busy periods sensed on channel up to the time instant
(which includes the observed periods from all time intervals up
to time ), and let , and be the duration of th such
periods. Then the estimators are

(12)

(13)

Note that the numerators of the estimators are , and
instead of and . This is to make

sure that these estimators are unbiased.
Lemma 2: The estimators in (12) and (13) are unbiased.

Proof: In general if where s are i.i.d. expo-
nentially distributed random variables with parameter , has
Erlang distribution of degree with parameter . There-
fore for the expectation of we have

where the last integral is equal to 1 since it is the integral of the
pdf of an Erlang distribution of degree with parameter

.
When a limited period of time is given to the secondary

user, it wants to optimally distribute it among the channels to

minimize the total MSE (the sum of the MSE of all parameters).
In the following we show that the heuristic estimators given in
(12), and (13) can achieve optimal efficiency.

IV. SEQUENTIAL POLICY AND ASYMPTOTIC PROPERTIES

A. Optimal Sensing Policy

In this section we consider an optimal sensing policy that dis-
tributes total sensing budget to a set of channels. A sensing
policy is defined by where is the th sensing
interval on channel under policy . Let and the
total sensing time is given by .
We first consider the problem of allocating the total amount

of sensing time to different channels in a single installment, i.e.,
we consider the class of policies where each channel has a
single interval of duration . From (6), we have

Since channels are jointly independent, we have

. . .

Since Cramer-Rao bound (CRB) is a lower bound on the MSE,
first we minimize the lower bound (Cramer-Rao Bound), then
later we show that we can achieve the optimal lower bound.
The total variance (CRB) is given by

(14)

The problem is to minimize (14) under the condition

(15)

This problem can be solved by Lagrangian multiplier which
gives the following solution

which results in

(16)

where

(17)
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Therefore the optimal (minimum) CRB for all policies
where each channel has a single interval is

(18)

Here we denote by the optimal CRB when
under the class of policies with single installment per

channel.
Derivations above show that the optimal time distribution

among the channels depends on the values of the unknown
parameters . Since channel parameters are un-
known, to achieve asymptotic optimality, we consider the class
of sequential policies that involves multiple rounds of estima-
tion, each round is based on data collected up to the previous
round. For example, within each round, the sensing time spent
on each channel can be allocated based on the most current
channel estimates according to (17). Note that the use of data in
sensing makes the sensing policy random, which complicates
the MSE analysis presented in Section IV-E.

B. SEINE

We describe here policy SEINE—an adaptive estimation
scheme that adjust data collection strategies based on current
estimates. In Section IV-E, we will establish the asymptotic
optimality of SEINE. The key of SEINE is to involve multiple
rounds with increasing duration. Within each round, sensing
time of each channel is allocated according to (17) based on
the estimated channel parameters using all data collected up to
the previous round.
Policy SEINE
1 Round 0: Pick a constant large enough with respect
to the average idle busy times of all channels. Sense all
channels equally by time.

2 Round : Use all the observations from
rounds to obtain the channel parameter

estimates using (12) and (13) where
. Substitute these estimated parameters in

(17) to get the estimates s to distribute time among
channels. Pick the total round time and spend
amount of time on channel , where is an in-

creasing sequence such that .
In what follows we consider three asymptotic properties of

the estimator and policy proposed above.

C. Asymptotic Statistics Properties: Strong Consistency

A sequence of estimators for parameter is strongly
consistent if converges almost surely to .

(19)

In order to have consistency the number of samples for the es-
timators in (12) and (13) needs to grow unboundedly. In our
scenario the number of samples is random and time is the pa-
rameter that grows to infinity. Therefore we need to show that

as time goes to infinity the number of samples ( , and )
goes to infinity almost surely. This fact is shown in the following
lemma which will be used later too.
Lemma 3: Define the event

then

Proof: Let , then

(20)

where is the CDF of the Erlang distribution of
order 4 with parameter .
Based on the definition of the policy SEINE,

(21)

Therefore

(22)

so that we can conclude

(23)

Theorem 3: The estimators defined in (12) and (13) are con-
sistent.

Proof: Based on lemma 3, we know

(24)
Since the complete periods are i.i.d random variables, based on
the strong Law of Large Numbers

(25)

The first equality in (25) comes from

since .
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From probability theory we know that If

(26)

where , then

(27)

Since all ’s are strictly positive, by choosing ,
consistency follows from (27).

D. Asymptotic Statistics Properties: Asymptotic Distribution

Perhaps the most common distribution to arise as an asymp-
totic distribution is the normal distribution. In particular, the
central limit theorem provides an example where the asymp-
totic distribution is the normal distribution.
Consider the reciprocal of the estimators in (12) and (13)

(28)

where ’s are i.i.d with exponential distribution and parameter
. From CLT (Central Limit Theorem) we have

(29)

In general if , the distribution of the reciprocal of the
non-negative random variable is

(30)

and for the pdf we have

(31)

Therefore since has asymptotic distribution given in

(29), the asymptotic distribution of the estimator can be
obtained in closed-form by (30), and (31).

E. Asymptotic Statistics Properties: Asymptotic Efficiency

We now establish the asymptotic efficiency of SEINE for the
class of sparse sensing policies. The reason to consider only
sparse sensing policies is that, in practice, when switching cost
is not negligible, each channel should be observed at least for
some minimum amount of time, and if there are many chan-
nels to consider, the gaps between observation intervals are suf-
ficiently large. Recall that a sensing policy is defined by the
allocation of sensing time where is the dura-
tion of the th sensing interval on channel . We denote the total

sensing time by . The MSE of a channel
estimator associated with sensing policy is given by

(32)

For the class of sparse sensing policies (as defined in Theorem
2), Theorem 2 shows that the Fisher information associ-
ated with is upper bounded by the Fisher information when
each channel is allocated with a single sensing interval

(33)

where is the Fisher information when each channel is
allocated with a single sensing interval with total sensing time

. Therefore, for a sparse sensing policy , the optimal CRB
is obtained under the class of policies (with single install-
ment per channel) in (18). Hence we define the asymptotic effi-
ciency by

(34)

where defined in (18) is
the optimal CRB for the class of policies which is optimal
for the class of sparse policies as well based on (33).
When the sensing policy is randomized, the resulting alloca-

tion of sensing time is also random. We use stopping times
(the time instants when a certain number of complete idle and
busy periods are at hand) in the calculation of MSE to deal
with the randomness, and we define the relative efficiency the
same way as (34). Note, however, that the relative efficiency is
also random. A sensing and estimation policy is almost surely
asymptotically efficient if

(35)

The following theorem establishes the a.s. asymptotic
efficiency.
Theorem 4: The asymptotic efficiency of the Policy SEINE

converges to 1 asymptotically almost surely. Namely

(36)

Proof: See Appendix C.

V. SIMULATION RESULTS

In this section the simulation results are presented in three
subsections. First we present the simulation results showing the
consistency of the estimator, then we present the simulation re-
sults regarding the asymptotic distribution of the estimator, and
at the end we show the asymptotic convergence of the MSE
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Fig. 5. Convergence of estimated parameters for all channels.

of policy SEINE to the Cramer-Rao bound (asymptotic conver-
gence of efficiency to one). For simulation a network consisting
of 4 channels occupied by primary system is considered with
the following parameter set

The sequence of round lengths used in the policy SEINE,
, is picked to be exponentially increasing with . In

particular, we have chosen and . The
policy SEINE is run for 22 rounds for 200 Monte Carlos. We
refer to this setting as Case 1.

A. Consistency

In this section we illustrate the consistency of our estimator
by simulation. In Fig. 5 the estimated and (averaged over
all Monte Carlo runs) for all channels are presented. It is shown
that all of the estimated parameters converge to their true values.
In Fig. 6 two parameters ( for channel 1), and

( for channel 3) are chosen and the estimated sequence is
plotted for all the Monte Carlo runs. As shown in the figure
the estimated sequence converges to the true values for all the
Monte Carlos verifying the almost surely convergence (strong
consistency).

B. Asymptotic Distribution

In this section we plot the histogram of the estimated se-
quence for ( for channel 1). Fig. 7 shows the distribution
of the for different round indexes , and how it is dis-
tributed around and converges to as the round index
grows.

Fig. 6. Convergence of estimated parameters for all Monte Carlos.

C. Asymptotic Efficiency

In this section we plot the MSE of the policy SEINE versus
the optimal Cramer-Rao bound for the sparse policies .
Here we consider another network setting with the same number
of channels but different parameter set

The policy SEINE is run the same as the case 1 for 22 rounds
with 200 Monte Carlo runs. We refer to this new setting as case
2. The MSE of policy SEINE versus is plotted for both
case 1, and case 2 in Fig. 8 and Fig. 9. As you can see the MSE
asymptotically converges to indicating the asymptotic
efficiency of the policy SEINE for the estimator within sparse
policies.
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Fig. 7. Histogram of the .

Fig. 8. MSE versus : Case 1.

VI. DISCUSSION: PRACTICAL SCENARIOS

In practice, of course, the sampling will be finite, and the
actual primary users’s channels are not Markovian. Deviating
from the idealistic assumptions creates complex situations that
specific system parameters will affect the simulation outcome.
In fact, it is not clear how to deal with the bandwidth issue
without going deeper into the specific signaling used by the
primary user. Considering a noisy observation scenario, the use
of continuous-time model further complicates the problem of

Fig. 9. MSE versus : Case 2.

incorporating noise in the sensing process. One now has to deal
with a detection problem of continuous waveforms. There does
not seem to be a tractable way to characterize the performance
of the estimated change points. Here again, we find it difficult
to conduct appropriate simulations that captures the presence of
noise. The assumption that the switching time between channels
take no time is for the ease of presentation and analysis. The
switching time has no significant effect on the performance of
the policies except that it will only make the convergence of
MSE to CRB slower.
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VII. CONCLUSION

In this paper, we have considered the problem of multi-
channel estimation in OSA. The channel occupations of the
primary system are modeled by two-states Markov processes.
Secondary system’s objective is to learn the channel parame-
ters in the optimal way in order to maximize the estimator’s
efficiency. A sequential policy is proposed that achieves the
optimal efficiency asymptotically. An interesting future direc-
tion is to consider the estimation and tracking of time-varying
primary traffic models.

APPENDIX A
PROOF OF THEOREM 1

From (5) we get

where

(37)

is a bounded function of parameters , , and , and , and
are some constants depending on being even or odd and

also ; but since they are constants, their exact value does not
affect our final results. Similarly we get

And clearly for the cross terms . Note
that

(38)

Therefore

From definition of , and we can get

APPENDIX B
PROOF OF THEOREM 2

Let first consider the Likelihood function for the case we have
two disjoint intervals. Assume that two intervals

are observed. Therefore the likelihood function
becomes

Here we denote the likelihood function of a single interval of
length as obtained in previous section by . It is seen that
the extra information provided by the discrete sampling is

(39)

It is apparent that when these intervals are far enough so that
and are independent, this term becomes

(40)

Thus the discrete sampling part will not provide any extra infor-
mation and the Fisher information will be the sum of the Fisher
information for these two intervals.
The Fisher information matrix for

is

(41)

where

(42)
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Now based on the above argument and (5), we compare the
Fisher information matrixes for these two cases of single and
two intervals.
For the single interval , the Fisher information

matrix is

(43)

The Fisher information matrix for is

It can be rewritten as

where , , 2, and , 1 is the corresponding value
of for the th interval. Note that since chopping the interval

into two pieces gives smaller number of complete
idle and busy periods in expectation, we have

Using this inequality we get

From (40) it is clear that when the discrete sam-
pling gives no extra information. Therefore

(44)

Also note that the matrix 1 is positive definite

(45)

Therefore when (which makes the matrix
zero) we have

(46)

Thus from (44) we know that such that

For every

(47)

It means that sensing one continuous interval has higher Fisher
information than chopping it into two pieces.
For intervals with we can use induc-

tion. We take the first two intervals and replace them by one
interval to get intervals. We do this procedure for
steps to get a single interval with length .

APPENDIX C
PROOF OF THEOREM 4

Since the MSE is obtained under the policy SEINE, in what
follows we drop the superscript SEINE for simplicity.
Lemma 4: ,

(48)

where , is the estimated at the end of round
, and is the estimated when complete samples of idle
and busy periods is at hand for all channels.

Proof: is based on the strong Law of
Large Numbers. In particular

(49)

and the fact that is a continuous function of ,
.

is a direct consequence of
lemma 3. ( on the event
and this event has probability 1).
Define the stopping times

(50)

Consider the time sequences . is the sum of
MSEs for the parameters and at the time instant . It
is computed for the estimators in (12), and (13) using the com-
plete idle or busy periods of channel which can be rewritten
as where ’s are i.i.d. exponential random

variables with parameter .
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In general if where s are i.i.d. exponentially
distributed random variables with parameter , has Erlang
distribution of degree with parameter . Therefore for
the MSE of we have

Therefore for our problem we get

(51)

Denote

Lemma 5:

Proof: Note that , and differ only at the
incomplete idle/busy periods that only happens at the beginning
and the end of each round. Therefore

Denote

then the number of incomplete periods is at most . Thus

Note that

where , and, .
Since

From lemma 4

Therefore

where . Thus

By definition , therefore

Then the lemma follows.
Lemma 6:

Proof: From lemma 5 we have

The equality
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is based on the strong Law of large numbers since is
exactly equal to sum of complete idle, and busy realizations
divided by .
We have

therefore from Lemma 6 we get

Note that such that

Also

Therefore we have

(52)
Lemma 7:

Proof: From lemma 4 we have

Therefore such that

For this given , such that ,

Then

Since , and

(54)

Also

Combining it with (53), and (54), we get

Thus

From lemma 7 and (52) we get

Therefore

or equivalently for the efficiency

(8)
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