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Blind Sequence Estimation

Lang Tong, Member, IEEE

Abstract—Estimating the data sequence from the received signal
without knowing the transmission channel is referred to as blind
sequence estimation. A new blind sequence estimation scheme
is proposed by exploiting the second order statistical properties
of the source and the algebraic structures of the data sequence.
An optimal source (deterministic) correlation estimator and the
Viterbi algorithm are used to achieve blind sequence estimation.
The proposed approach also has a special structure particularly
attractive for time varying channels.

Index Terms—Channel equalization, multipath channels, viterbi
algorithm, sequence estimation.

I. INTRODUCTION

LIND identification and equalization have recently at-

tracted increasing research attention. One of the advan-
tages of blind equalization methods is that the training period
of the transmission over an intersymbol interference (IST)
channel may be shortened or eliminated. Therefore, there is
a potential increase in the transmission efficiency, particularly
for those rapidly varying channels whose training signals
must be transmitted periodically for conventional equalization
methods. In mobile communication, for example, the GSM
standard currently adopted in Europe requires a 28 bits training
sequence for every 116 information bits [7]. Certain military
applications have even higher overhead associated with the
transmission of channel probes.

Most current blind equalization schemes are not adequate
for mobile communication channels that require channel iden-
tification and equalization within about 100 symbols. Since
Sato [16] presented the idea of self-recovering (blind) equal-
ization, various algorithms (e.g., [5], [6], [13], [16], [18],
[23]), have been proposed based on optimizing certain cri-
teria involving higher order statistics (HOS). Blind channel
identification algorithms using HOS were also explored by
Hatzinakos and Nikias [8], and by Porat and Friedlander [14].
Simulations have shown that the convergence time of these
HOS algorithms (in thousands of symbols) is much too long
for mobile communication channels. Several blind channel
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identification methods based on second-order cyclostationary
properties have recently been proposed [11], [15], [19], [21],
[22]. The closed-form identification algorithms proposed in
[19], [20], [21], [22], for example, have a convergence rate of
about 100 symbols in simulation studies. It has been shown,
however, that the channel is not identifiable when the channel
has certain special zeros [19], although perhaps such cases are
rare. Nonetheless, this limitation is theoretically fundamental.

B. Proposed New Approach and Related Work

Existing approaches to blind equalization require the identi-
fication of the channel or its inverse. In this paper, we propose
a new approach focusing on blind sequence estimation rather
than channel identification. In fact, the proposed approach
does not require a channel identification. The key idea is
to estimate the source (deterministic) correlation from the
observation (without knowing the channel) and apply the
Viterbi algorithm to reconstruct the input symbols. As we
shall show in this paper, the estimation of signal correlation
function requires only the orthogonalization of the channel,
which is much simpler than the estimation of the channel. The
proposed approach also applies to both single and multiple
receiver structures. This is valuable because spatial diversities
offered by muliiple receivers are important for fading channels.
Balaban and Salz presented a rather extensive theoretical
and simulation study of an optimal diversity combining an
equalization scheme with conventional adaptive equalizations
(with training sequence or under decision directed mode)
[2]. Our approach naturally fits into the platform of multiple
receivers. '

Blind sequence estimation without channel identification
distinguishes the proposed approach from several existing se-
quence estimation methods. The Viterbi algorithm was applied
to combat ISI first by Forney [3], [4], where the channel
was assumed to be known. The blind techniques involving
the Viterbi algorithm were proposed by Mégee and Proakis
[9] and Ungerboeck [24] where the channel is estimated in
a decision-directed mode. These approaches, however, may
suffer error propagation. More recently, Seshadri [17] and
Zervas et al. [26] proposed the techniques of joint data and
channel estimation by quantizing the channel. When converged
properly, these techniques offer the optimal solution at the
expense of computation complexity.

II. MULTIPATH FADING CHANNELS AND ASSUMPTIONS

In this section, a vector representation of a multipath fading
channel is presented. A time varying channel between the
transmitter and the ith receiver, as illustrated in Fig. 1, is a
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Fig. 1. A multipath environment.

multipath Rayleigh fading channel With an envelope impulse
response

K
Ci(t) = Z Oéik(t)(‘j(t — Tik) (1)
k=1

where K is the number of multipaths ranging from 2 to 70 or
more, a;,(t) are zero-mean Gaussian processes, and 7;; are
the corresponding path delays. For slowly varying channels,
a;x(t) = oy, within a duration of about 100 symbols, see [2].
With the QAM signaling, the received baseband signal at the
ith receiver has the following form

zi(t) =Y sup(t — nTs) % ci(t) + na(t) @)

= snhi(t — nTy) +n4(t) 3)

where s,, is the symbol sequence, T is the symbol interval,
p(t) is the impulse response of the pulse shaping filter, and
hi(t) is the composite channel that includes the channel, the
shaping filter, and perhaps the receiver filter, and finally, n;(t)
is the additive noise. When z;(¢) is sampled at ¢ = [A with
some unknown timing ¢, we have a discrete-time model

z; (1) = Z snh

where, under a mild abuse of notation, z;(l) = z;(IA
t0), hi(l) = hi(IA + to), and n;(1) = n;(IA +t). T = &
is assumed to be an integer.

With the assumption that h;(l) lasts d symbol intervals, i.e.,
hi(l) =0, for1 < 0, and 1 > dT, a vector representation of
the received signal at the ith receiver is obtained by letting

(L =nT) + n(1) “

+

xi(t) = [z:(tT),- -, z:((t + )T = 1" (5)
n;(t) = [ni(tT), - ,ni((t+ nrT - (©6)
h; (t) [h (tT), ha((E+1)T = 1)) @)

= [h;(0),- -, hi(d — 1)] (®)
S(t) [ty 8¢—1,°" 8e—ar1]t ®

‘We then have

x;(t) = H;s(t) + n(t). (10)
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Putting all the data from M receivers in a single matrix form,
let

x1(t) n, ()
x(t) = e CNXl n(t) = echxt
xn(t) ny (%)
an
H,
Hit)=| : | echNx (12)
Hx,
The vector representation is given by
x(t) = Hs(t) + n(t). (13)

The problem of blind sequence estimation is to estimate the
information symbols s,, without the knowledge of the channel
parameter matrix H.

Remark:

1) The above model captures a wide range of fading
channels, particularly those involving a large number of
fading paths.

2) At each receiver, one can form x;(t) using more data
than that from a single symbol interval.

For example, data from K symbol intervals can be used to
form x;(t) by

x;(t) = [z:(tT), - -
|I1((t - K)T)7 M)

o+ 1T —1)] -

z(t-K-1)T -1 (14)

The corresponding vector representation has the same form,
and the approach developed in this paper applies also to the
case of single receiver.

A. Assumptions

We assume the following assumptions in the sequel:

1) The information symbol sequence is zero mean, and
E(s;s%) = 6(i — j), where §(-) is the discrete-time unit
pulse.

2) The noise process n;(-) is zero mean for all j, and
E(m(tl)n;‘-(tg)) = Uzé(i - j)(s(tl - t2).

3) The noise process n;(-) is uncorrelated with the source
symbol sequence {si}. '

4) The channel parameter matrix H is an N x d matrix
with full column rank.

The assumptions A.1-A.3 are fairly common. Assumption
A4 deserves closer examination. First, A4 implies that all
channels have finite impulse responses, which is reasonable
for most wireless communication cases. It has been shown
that the full rank condition is necessary and sufficient for
the channel to be identifiable using only the second order
statistics of the observation [19], [21]. In fact, A.4 is almost
always satisfied except perhaps in some pathological cases’. In
practice, however, the channel matrix H is most likely to be
close to singular due to small tails of the channel impulse

1 The necessary and sufficient condmon for H be rank deficient is that all
M channels share the same uniformly <= T _spaced zeros [19], [21].
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responses. Although our derivation and analyses are based
on the full rank condition, the algorithm shows a surprising
robustness when H is close to singular. This is due perhaps
to the application of the Viterbi algorithm where the algebraic
structure of the source is exploited.

III. BLIND SEQUENCE ESTIMATION

~ In this section, we ptesent a new blind sequence detection
scheme that does not require a complete channel identification.
We first motivate our approach by showing that the source
(deterministic) correlation can be obtained from the (deter-
ministic) correlation of the received signal. It is then pointed
out that the Viterbi algorithm can be applied to obtain the
source symbols. Next, we develop an optimum estimator for
the source correlation.

A. Mahalanobis Orthogonalization

The so-called Mahalanobis orthogonalization plays a key
role in our approach. The essential idea is to orthogonalize the
channels using only the observation data. Consider the vector
representation (13). Denoting

R, (k) = B(x(t)x*(t — k)) 15)
we have, from (13) and assumptions (A.l—A.4)
R.(0) = HH* + o1 (16)

It is well known that the singular value decomposition (SVD)
of R,(0) must then take the following form

R.(0) = Udiag(w%, ‘e
= Ugdiag(A], -

, T2 U*
SADUS + 0%

an
18)

where U, is the submatrix consisting of the first d columns
of U and 77 = A? + o2. The Mahalanobis orthiogonalization
transform is defined by

y(t) = T,.x(t) 19)

where T, is obtained from the SVD of R.(0) by
T,, = A;'U* (20)
As = diag(Al'; o )/\d)' (21)

Note that, given R, (0), the noise variance ¢ and the signal
dimension d can both be determined from the singular values
of the N x N matrix R,(0) when d < N because the last
N — d singular values will all be o2.

The Mahalanobis transform matrix T,, has the following
simple but important property.

Property 1: The Mahalanobis transform matrix T, orthog-
onalizes the channel parameter matrix H, i.e., there is an
orthogonal matrix V such that

T,H=V. (22)
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Proof: Comparing (16) and (18), we have

HH* = U,A2U. 1 (23)
Therefore

T, H(T,H)*=1" 24
which leads to (22). | ood

The important consequence of this property is when there is
no noise, the (deterministic) correlation of the orthogonalized
observation

y(t) = Tpx(t) = Vs(t) 25)
preserves the (deterministic) correlation of the source, i.e.,

Y @Oyt — k) =s"(t)s(t — k) Vk.

This implies that the correlation function of s(¢) can be
recovered from the observation process without knowing the
channel. '

(26)

B. Application of Viterbi Algorithm

It is the inner product preserving property (26) that enables a -
direct application of the Viterbi algorithm to the transformed
observation y(t). Denote

() = y* (t)y(t — k) @7
() = s*(t)s(t — k) (28)
d—1 ’
= 5:_131—1—1& (29)
1=0
We have
ri () = (1) + wh() @)
where w®)(¢) accounts for the contribution of noise
- w® () = n*(4)T5, T, Hs(t - k)
+s* ()T, H* T;n(t) + 0* () TL Ton(t — k). (3D

An optimal sequence detection can be defined in the fol-
lowing sense

: (F) (1) — rB) (£)]2
H;ix]}zt: P () = rP @) (32)
This optimization can be achieved by applying the Viterbi
algorithm to a K9*~Lstate trellis for a K-QAM signaling.

Remark: , ‘ :

1) There are inherent ambiguitiés in all blind estimation
schemes. In blind - sequence estimation; {sx} and
{sxe?®} have identical autocorrelations. Siich an ambi-
-guity cannot be eliminated without further information of
the source. A common practice is to employ differential
encoding of the information sequence.. Of course,
knowing a single symbol eliminates. the ambiguity
completely. This can be achieved by perhaps using
a few flag bits at the beginning of the transmission.
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Fig. 2. The state transition diagram.

2) The delay parameter & in (32) should be chosen as small
as possible so that the number of states is minimum.
Obviously, for k = 0, {sx} cannot be uniquely de-
termined from 7"50 (t) since each symbol can have an
arbitrary phase without affecting rﬁo)(t). Setting k =
1 is usually sufficient for the unique determination of
the information sequence. In this case, the ambiguity is
reduced to a common phase ambiguity for all symbols.
The optimal sequence detection scheme carn be extended
with multiple selections of k’s by using

iy SR - rP @)
"tk

(33)
as the objective function. Such an approach may improve
the performance of the algorithm with added complex-
ities.

Example: Blind Sequence Estimation of A BPSK Source:

Consider an example when d = 2 with the BPSK constellation.

We have

Tg(;l)(t) = 8501 + se-15¢—2 + wD (1) (34
Define the state 6,, by
bn = ($n—1,8n)- 39)

The state transition diagram is shown in Fig. 2. Each transition
path from 6, to 6,41 is labeled by r{”(n + 1). Fig. 3
shows a typical sequence {s,} = {-1,-1,1,1,1}, the
correlation sequence rg(,l) (t) is the estimate of rgl)(t), and the
corresponding optimal path found by the Viterbi algorithm.

C. An Optimal Estimator of the Source Correlation

There is a potential problem from the above approach when
the channel parameter matrix H is ill-conditioned. In such a
case, A, in (21) is close to singular, and the Mahalanobis
transform T,,, defined in (20) tends to greatly enhance the
noise. In addition, the Mahalanobis transform enables us
to find the source correlation from the correlation of the
observation y(¢) only when there is no noise (26). Such an
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Fig: 3. The trellis diagram and the optimal path of a typical example.

approach does not result in an optimal estimation of the source
correlation.

The key idea of the proposed approach is to obtain an
optimal estimation of the source (deterministic) correlation

rs(t)

rs(t) = s*(D)s(t —1). (36)
The Viterbi algorithm can then be applied to the estimated
r4(t) to recover the source sequence. Motivated by the Ma-
halanobis transformation, we propose to estimate 7,(t) from
the (deterministic) correlation function of a transformed ob-
servation. Denote

y(t) = Tx(t)
ry(8) = y* (D)y(t - 1).

(37
(38)

The objective is to find the optimal transformation matrix T,
that minimizes

J(T) = E(jry(t) = rs(t)[?)- (39)
Fortunately, under some mild conditions, the above optimiza-
tion can be obtained in closed form.

Theorem 1: Assume, in addition to A.1-A.4, the informa-
tion sequence {sy} is i.i.d., and the noise n;(-) is independent
of n;(-) and the source {sx}, a matrix T, that minimizes
J(T), is given by

T, = (6?1 + AZ)71A, U (40)
where .02, A,, and U, are obtained from the SVD of R.(0)
in (17)—~(18). The minimum estimation error is given by

d

4
J(T) =31 A—)

i
=1

“n

where /\1‘2 and 72, also defined in (17)~(18), are the singular
values of R,(0) for the noise-free and noisy observation,
respectively (17).

Remark: When there is no noise, the transform (40) reduces
to the Mahalanobis transformation and the source correlation
can be estimated with no error. When the source is uncor-
related but not i.i.d., T, has a different interpretation. See
Section IILD.
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Proof: In the Appendix, we show that

J(T) =tr(PQPQ) + o*tr(P?)

+ 20%r(P2Q) — 2tr(PQ) + d (42)

where d is the signal subspace dimension (it is also the column
rank of H), and P and Q are both Hermitian matrices

P=T'T
Q = HH".

(43)
(44)

To find T, we find first the optimum P, that minimizes J(T)
in (42) by setting

9J(T) _
~5p = 0. (45)
'We have
QPQ + 0*P +202PQ - Q = 0. (46)
From (16)—(18), and (44)
Q= HH* 47)
=R, (0) — 0?1 (48)
= U, AU (49)

It can then be easily verified that a solution of (46) is given by

P, = U,X2U;
2 2 2\—2 42
2, = (0" T+ A7) T°A;.

(50)
5D

Therefore, from (43), a transformation matrix T, (among
infinite many) that minimizes J(T) is given by
T, = (6’1 +A?)7TA, UL, (52)

Substituting P, and Q into (42), we have the estimation
error

J(T,)
= tr(SyA% + 0%, +20°E2AZ - 2352A2) +d (53)
= d+tr(Tp (T + A2)® — 252A2). (54)

Substituting 2127 in (51) into the above equation, we have

J(T,)=d— tr((021 + AZ)*2A§) (55)
=d- Z (U /\2)2 (56)
= Z(l % = 57)

o0od
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D. A Simple Interpretation of the Optimal Estimation ‘

The optimal estimation of source correlation has a simple
interpretation that prov1des some insight. From Property 1, we
have

H=U,AV (58)

where Ug and Ag can be computed from Ry (0) and V is
some unknown orthogonal matrix. Subsututmg (58) into (13),
we obtain

x(t) = UsAyz(t) + n(t),
z(t) = Vs(t).

Since V is orthogonal, the correlation function of’z(t) is the
same as the correlation function of s(t)

z(t)z(t — k) = s™(t)s(¢t — k). 61

Note that Ug and Ag are known. 'Therefore, the Manalanobis
transform

(59
(60)

y(t) = Trnx(t)
= z(t) + A, Uin(t)

(62)
(63)

can be viewed as the least-square estimate of z(t). When Ay
is close to singular, noise is greatly enhanced.

A better approach is using the minimum variance estimate
2(t) of z(t), and estimate r4(t) = s*(t)s(t — 1) by rs(t) =
2*(t)z(t—1). Interestingly, the linear transform T,,., that gives
the minimum variance estimate of z(¢) turns out to be. the
same matrix that provides the minimum variance estimate of
the source correlation 7, given by (40).

From (59), the minimum variance linear estlmate of z(t) is
given by [12]

i(t) = va?((t), )
Tumo = E(z(t)x* ()R (0).

Substituting x(t) from (59) and R.(0) from (16) into (65),
we have

(64)
(65)

Ty = A, UNUdiag (2, 7% )U*
= ("I + AYH7IA UL =T,

(66)
®7)-.

E. Summary of the Algorithm and Implementation

A schematic of the approach proposed. in this section
is shown in Fig. 4. The transformation matrix T, is first
estimated, perhaps continuously, from the windowed data by
computing the singular value decomposition of, the sampled
covariance R(0). The signal dimension d and the noise
variance o2 are also estimated from this decomposition. The
correlation function of the transformed data is computed and
fed into the Viterbi algorithm. One of the most important .
features of this approach is that the Viterbi algorithm is time
invariant even for time varying channels. This, of course,
means significant simplifications of implementation where the
Viterbi algorithm can be incorporated as a stand alone part
even when the channel varies with time.
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Fig. 4. A schematic of the proposed approach.

1) = Blind Sequence Estimation Algorithm—An Outline:
a) Form the data vector x;(¢) by sampling the received
signal at each receiver at a rate higher, perhaps, than the
symbol rate

xi(t) = [z:(tT),-- -, z:((t + )T = 1)]'.  (68)

b) Collecting data from each receiver and form the total
data vector x(¢t) by
x(t) = [xi(), - x5 ()" (69)
c) Estimate R.(0) by
R [ L2
R, (0) = I ZZ:% x(t —)x"(t —9). (70)

Appropriate data windows can be used to estimate R..(0)
continuously. .
Compute the SVD of R.(0)

R, (0) = Udiag(x?, - - x%,)U*.

d

~—

(71

e) Estimate the signal dimension d from the singular values
{n?}. There are many detection schemes [25], [10]. See
“the discussion followed by this outline and the simulation
examples.
f) Estimate thé noise variance o2 by

A2 1 - 2
Nog 2™ (712)
i=d+1
g) Extract the first d singular vectors u; and let
U = [uyg, -, uy) (73)
A, = diag(y/2 — 82, -- \/wg —57). (74)
h) Form the optimal transform matrix T, by
T, = (A? +62I) A, UZ. (75)
i) Apply the linear transform to the data vector
y(t) = Tox(1). (76)
j) Compute the (deterministic) correlation
ry(t) = y* )y (t - 1). an
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k) Estimate the source symbol sequence via the Viterbi
algorithm by minimizing

1{13151 ; [ry () — 7s(t)|? (78)

where r4(t) = ijo 8§ 8t—i 1.

2) Implementation Issues: Indeterminacy: It is well known
the blind equalization can only be achieved up to an unknown
constant phase and delay [1]. The use of the Viterbi algorithm
reduces the ambiguity somewhat because the source symbols
are constrained. For example, there is a sign ambiguity asso-
ciated with the estimated symbols when the BPSK signal is
used.

Signal Subspace Dimension: The determination of the di-
mension d of the signal subspace appears to be quite important
from our experience in simulation. Since channel impulse
responses often have small tails, exact determination of d is
hardly possible, nor does it seem to be necessary. In practice,
using lower dimension approximation is often satisfactory.
More importantly, smaller d results in smaller trellis in the
Viterbi algorithm. In our simulation, we start with small d and
increase d if necessary. Of course, there is a trade-off between
better performance and computation cost.

IV. SIMULATION EXAMPLES

We present in this section, a simulation example to demon-
strate the performance of the proposed approach. We con-
sidered 3-ray multipath channels. We assumed to have three
receivers and the sampling rate at each receiver was four times
the symbol rate (1" = 4). The composite channels were given
by

hi(t) =ci1p(t) + cizp(t — 1) + cisp(t — 72),

1=1,2,3 (79)
where p(-) was a raised-cosine pulse with 90% roll-off. The
delays were 7y = 0.77 and 7, = 1.27T. The gain o;; at
the ith receiver with respect to the jth multipath is seen
in (80), generated from a zero mean unit variance Gaussian
distribution (see equation (80) at the bottom of the page). The
real and imaginary parts of the channel are shown in Fig. 5.
The corresponding channel matrix H, obtained by truncating
the channel impulse responses up to six symbol intervals was
given by (81) (please see equation (81) at the bottom of the
next page). The truncation errors for these channels, as one can
see from the first and last columns of H, are negligible. We
note that all the baud rate sampled channels are non-minimum
phase. It is clear from the row vectors of H that the inter-
symbol interference is severe for this multipath channel. Noise
was added at the receiver with signal-to-noise ratio (SNR)

1.2094 + 0.8260:
—0.5123 — 1.3070¢
0.8922 + 0.9049:

[evij] =

0.6251 — 0.1450z
0.1163 + 0.3929¢
—0.0075 — 0.02194

—0.9660 4 1.6894¢
0.2007 — 0.07552
0.1018 4+ 0.1685¢

(80)



2992

®

Fig. 5. Channel impulse responses. (a) Real parts of the channel impulse
responses for the three receivers. (b) Imaginary parts of the channel impulse
responses for the three receivers.

defined by

E(|[Es(1)]I*)
E(lm@®I) -

The input source was a BPSK signal.

'SNR = 10logy, (82)
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The algorithm was executed in @ batch manner. For every
100 bits of data, we estimated the covariance matrix R, (0).
We did not assume that the dimension of the signal space was
known. Starting with signal subspace dimension d = 1, the
transformation matrix T, was formed from the SVD of the
estimated covariance matrix Rm(O). The correlation function
of the transformed data was computed and fed into the Viterbi
algorithm. We did not assume the initial state of trellis was
known, although such an assumption may be reasonable and
will improve the performance. If there were errors in'the
symbol estimation, the signal dimension d was increased to
obtain the sequence estimate with minimum error. Such a
scheme may be implemented in practice if the source were
coded with error detection capability. We used this scheme
for the purpose of finding the best performance that can be
offered by this algorithm. Fig. 6 shows the bit-error-rate vs.
SNR. Total 10° bits were tested for SNR below 6 dB, 108
bits for SNR = 8 dB and 107 bits for SNR = 9 dB. For
SNR = 10 dB, there was no error found in 107 testing bits.
It appears that using 100 symbols to estimate the necessary
statistics was adequate.

V.- CONCLUSION

‘We presented a blind sequence estimation method that does
not require complete channel identification. It exploits both
statistical and algebraic properties of the source. It can be
applied to both single-and multiple receiver structures. From
numerical simulations, the algorithm seems to perform well us-
ing a relatively small amount of data which shows the potential
application of this approach to wireless cofnmunications. One
of the important future works is the performance analysis of
this algorithm.

APPENDIX

Here we will derive (42).

J(T) =tr(PQPQ) + o*tr(P?)

+ 20%tr(P2Q) — 2tr(PQ) + d. (83)

H__

0.0009 + 0.0028:

0.0072 + 0.0103;

0.2430 + 0.1870:

—0.0055 — 0.00245
—0.0100 — 0.007&¢
—0.0010 — 0.0003;
—0.0004 — 0.0009;
—0.0031 + 0.00004
—~0.0040 + 0.00115 —0.0254 + 0.0067:
—0.0001 — 0.0003i  0.0002 + 0.0008:
—0.0002 — 0.0003; .~ —0.0043 4 0.0062i
0.0041 — 0.0079  0.0135 — 0.0256i
0.0061 — 0.0113;  0.0393 — 0.0702:
—0.0004 — 0.0002; —0.0002 — 0.00113

—0.0164 — 0.0059:
—0.0553 — 0.0410:¢
—0.0060 — 0.0075¢
0.0015 — 0.0027¢

—0.0102 — 0.0000:

0.6565 + 0.48844
1.0065 + 0.6577¢
1.0453 + 0.4638¢
0.1167 — 0.0361¢
0.3228 — 0.0922:¢
0.5396 — 0.1144:
0.6543 — 0.04644
—0.1883 + 0.3240¢

—0.8265 + 1.4448:
—0.9203 + 1.6637:

—0.5144 + 0.88897

0.7540 — 0.04954
0.3909 — 0.5281:
0.2543 — 0.6012¢
0.3991 — 0.22621
0.6059 + 0.10974
0.4313 + 6.2751¢
0.2303 + 0.3498:
0.0864 + 0.2950¢

—0.7068 + 1.40937
—0.2989 + 0.85891

0.0762 + 0.34774
0.2532 + 0.0924¢

0.6062 + 0.27604
0.6253 + 0.5310¢
0.4159 + 0.4348:
0.1434 4 0.1755¢
0.0194 + 0.1615:
0.0006 + 0.0392¢

—0.0191 — 0.0091:
—0.0417 — 0.0436:
—0.0081 — 0.0068:
0.0071 4 0.01254

—0.0050 - 0.00257
—0.0022 4 0.0031%

—0.0034 — 0.0175:  —0,0003 — 0.00043

—0.0055 — 0.01807

0.2313 + 0.0643i
0.1242 + 0.0987:
0.0390 + 0.0831¢
0.0065 4 0.0263:

—0.0008 — 0.0027i
0.0025 — 0.0133;
0.0015 — 0.01464

~0.0011 — 0.0020i

—0.0009 + 0.0012i

81)
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Estimated BER

4 5
SNR (dB)

Fig. 6. BER versus SNR for a fixed channel. Signal statistics were estimated
every 100 symbols. 105 bits were tested for SNR < 6 dB, 10° bits for
SNR = 8 dB and 107 bits for SNR = 9 dB.

Recall that
x(t) = Hs(t) + n(t) (84)
y(t) = Tx(¢). (85)
Denote
rs =s"(t)s(t — 1) (86)
ry = y(t)*y(t - 1) (87)
P=T*T (88)
Q =HH"* (89)
J = E(|ry - rs]?). (90)
We have
J = E(Jry, —r4|%) 1)

= E(lry*) = E(ryry) = E(ryrs) + E(|rs[?).  92)

We shall now proceed to evaluate each term in (91).
Computation of E(|ry|?): From (84), (85), (88), ‘we have

ry =%x(8)"Px(t — 1), 93)
=s"(t)H*PHs(t — 1) +n*(¢)Pn(t — 1)
+8"()H"Pn(t ~ 1) +n* ()P Hs(t - 1) (94)
P9 (i)

Based on the assumptions given in Theorem 1, it is easily
shown that

E(jry|*) =E(Ir1?) + E(Ir§?1?)

+E(|7‘§m)|2) +E(|T?(f”)|2). (95)
We then have
E(jr{)|?) =E(s* (t)H*PHs(t — 1)s*
(¢t — DH"PHs(?)) (96)
=tr(H*PHE(s(t — 1)s*
-(t — DH"PHSs(t)s"(1))). 97
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Let IT = H*PH = [r;;], where 7;; is the (4, )™ component
of II. We have

E(|r§i)|2) =tr(IT*E(s(t — 1)s*(t)s* (¢ — D)IIs(¢))). (98)

Recalling from (9), that s(t) = [s¢,---,8t—at1]’, and
that {s;} is an ii.d. sequence, the (Z,7)th component of
E(s(t — 1)s*(¢)s*(t — 1)IIs(t)) is given by

E(se—iSt_jy1 ) ThIST pSe141) = Tij. 99)
Kyl
Hence
E(|r{?)?) = tr(I1*1T) (100)
= tr(H*P*"HH*PH) (101)
= {r(P*QPQ"). (102)
Next, we evaluate the second term in (95)
E(|r$?)?) =E(n*(t)Pn(t — 1)n*
(t = 1)P*n(t)) (103)
=tr(PE(n(t - 1)n*
-t = DP*n(t)n*(t))). (104)

From the assumption that the noise processes are uncorrelated
and white, we have

E(|r{®?) = o*tr(PP*). (105)
The third and the fourth terms are evaluated similarly
E(|r?) =E(s*()H*Pn(t — Ln*(t - 1)
P*Hs(t)) (106)
=c’tr(H*PP*H) (107)
=o*tr(PP*Q) (108)
E(|r{™)|?) =E(n*(t)P*Hs(t — 1)s*(t — 1)
H*Pn(t)) (109)
=tr(P*HE(s(t — 1)s*(t — 1))
H*PE(n(t)n*(t))) (110)
=c’tr(QPP") 111
=E(|r{*?). (112)
Hence, with both P and Q being Hermitian, we have
E(|ry?) = tr(PQPQ) + o*(P?) + 25°tr(P?Q). (113)

Computation of E(r*r,) and E(r;rs): From (84), (85),
(88), (86), (87), we have

rary =s () H"PHs(t — 1)s™ (¢t — 1)s(¢)

+n*()Pn(t — 1)s*(t — 1)s(¥) (114)
+s*()H*'Pn(¢t — 1)s*(¢t — 1)s(t) ;
+n*(t)PHs(t — 1)s*(t — 1)s(¢). (115)
Again, using assumptions A.1, A.2, and A.3, we have
E(riry) = tr H'PH) (116)
= tr(PQ) (117)
E(r;rs) =tr(PQ). (118)
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The Computation of E(|r,|?): Under the assumption that
the source symbols are independent, we have

d
E(jrs?) = Z E(si41-i8t—iSt_;8e41—5)  (119)
4,7=1
d
=Y B(sei-sPlsei) =d.  (120)
=1
We now have, from (113), (117), (118)
J =tr(PQPQ) + o*tr(P?)
+ 20%tr(P2Q) — 2tr(PQ) + d (121)
aCod
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