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A CLOSED-FORM IDENTIFICATION 
OF MULTICHANNEL MOVING 
AVERAGE PROCESSES BY ESPRIT* 

Lang Tong I and Rueywen Liu 2 

Abstract. In this paper, a closed-form identification of possibly nonrninimum phase multi- 
channel moving average (MA) processes is derived by exploiting the eigenstructures of the 
observation cumulant matrices using ~the ESPRIT algorithm. The proposed approach allows 
the combination of statistics of different orders for better performance and offers reduced 
computation complexity when compared with existing iterative approaches. Simulations 
are also presented to demonstrate the performance of the proposed algorithm. 

1. Introduction 

Multichannel moving average (MA) modeling is widely used in many scientific 
and engineering applications. In this paper, we consider the identification and 
estimation of  an Nth-order MA process 

N 
y(t) : ~ H(k)s(t  - k) + n ( t ) .  (1) 

k=0 

In many literatures, H(0) is often assumed to be identity. Such an assumption 
is indeed without loss of  generality if H(0) is known, or if we are only interested 
in the statistical structure of  the observation y(t), not that of  the source s(t). On 
the other hand, it is desirable in many practical applications to extract information 
about s(t) from the observation process, and H(0) is often unknown. Among many 
applications, the widely studied array signal processing formulation assumes a 
zero-order multichannel MA process [5]. The so-called blind identification requires 
the identification of  {H(k)} and S(t) (see, e.g. [19], [17]). Factor analysis is yet 
another example [1]. 
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It is well known that the identification and estimation of a multichannel MA 
process can only be achieved up to an all-pass factor when the second-order statis- 
tics of the observation are used. One of the advantages of parameter estimation 
using higher-order statistics is that the parameters of a nonminimum-phase system 
can be identified and estimated. Unfortunately, there is a lack of simple estima- 
tion algorithms because of the nonlinear nature of the problem. Unlike the single 
channel case when a closed-form solution can be obtained [14], the closed-form 
solution using cumulants of arbitrary orders, to our best knowledge, has so far 
not been found. Using the third-order cumulants, Giannakis et al. [3] derived the 
identification equations, referred to as cumulant-based identification (CBI) equa- 
tions, for a multichannel MA process and obtained the identifiability results. The 
CBI equations and identifiability results of using fourth-order and arbitrary-order 
cumulants can be found in [13], [2], [15], and [6]. 

Unfortunately, the CBI equations have not been solved satisfactorily. Most 
existing methods rely on some kind of iterative procedures such as the Newton 
Raphson type of algorithms, and the convergence properties of these algorithms 
are unknown and often problematic. In [16], we proposed an eigenstructure-based 
iterative scheme that guarantees to provide a solution of CBI equations in a finite 
number of iteration steps. By exploiting the eigenstructures of the observation 
cumulants, we showed that the CBI equations can be solved via singular value 
decomposition (SVD) of the cumulant matrices. However, as illustrated in the 
computer simulation [16], a rather large sample size, in the order of 70,000, is 
necessary to achieve satisfactory accuracy. 

In this paper, we present a closed-form solution to the parameter identification 
of multichannel MA processes. By exploiting the eigenstructure in the cumulant 
matrices, the CBI equations are solved using the ESPRIT algorithm, a technique 
originally developed for array signal processing [9], [12], [11]. The proposed 
algorithm enables the combination of higher-order statistics and is less complex 
than most iterative schemes. 

This paper is organized as follows. After a brief introduction of cumulants and 
basic properties, CBI equations are presented in Section 2. To avoid the compu- 
tational cost of dealing with high-dimensional matrices, the CBI equations are 
presented without using Kronecker products. In Section 3, results of identifiabil- 
ity and a closed-form identification are presented. In Section 4, we then outline 
the proposed identification algorithm, discuss certain implementation issues, and 
present a computer simulation. We investigate the underlying algebraic problems 
and give related proofs in the Appendix. The notation here is mostly standard. 
Symbols for matrices (in capital letters) and vectors are usually in boldface. The 
notations (.)t and (.)~ stand for transpose and generalized Moore-Penrose inverse, 
respectively. 

2. Identification equations 

Cumulant-based identification (CBI) equations of arbitrary order were obtained 
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by Swami et al. in [13] using Kronecker products. Although compact  and com- 
plete, the Kronecker-product form of  CBI equations has a rather high dimension 
and presents a formidable task as far as solving these equations is concerned. In 
addition, it is difficult to exploit certain symmetrical  properties of  cumulants. The 
formulation given here, as a natural extension of  the third-order [3] and fourth- 
order [6] cases, has a much lower dimension. More importantly, it allows us to 
exploit the symmetrical  properties of  the cumulants that lead to a closed-form 
identification. 

2.1. Cumulants. 

We shall not discuss a cumulant and its properties in detail. A rather complete 
recent survey can be found in [8], and the readers are also referred to a book by 
Rosenblatt  [10]. Instead, we shall list some basic definitions and properties that 
are directly related to the later development. 

Given n random variables xl,...,  Xn, a kth-order cumulant is denoted as 

Sl times sn times 

cum(~l . . . . . .  z~ . . . . .  zn,.  �9 -, Zn') , (2) 

where sl + - . -  + sn = k. A kth-order cumulant can be computed from the cor- 
responding moments and vice versa. For most commonly used third-order and 
fourth-order cumulants of  zero-mean random variables xl,..., Xn, relations be- 
tween cumulants and moments are given by 

cum(xi ,  x j ,  Xk ) =E (XiXjXk ) , (3) 

cum(xi ,  x j ,  Xk, Xl) = E ( x i x j x k x I )  -- E ( x i x j ) E  (XkXl) (4) 

- E (X iXk)E  (XjXI) -- E (XiXl )E  (XjXk) . (5) 

For a random vector x = [ x l , . .  �9 xn] t, the (K + 2)th-order cumulants o f x  can 
be represented by a set of  (n x n) cumulant matrices 

Cx(~) = (cum(x l ' x l ' x '~x '~K'"cum(x l ' x~ 'x '~" ' ' "x~K)  1 "  . . . . .  " " , (6) 

",cum(xn,xl,x~l,...,x~ ~) ... cum(x~,x,,,x~ 1, ,x,~)/ 
where ~ = [ o q , . . . ,  aK] t is a vector of  integer indices ranging from 1 to K .  For a 
zero-mean n-dimensional  random vector x, a third-order cumulant Cx(ot) is related 
to the third-order moments by 

Cx(a)  --- [cum(xi, xj ,  X,~l)] , (7) 

= E ( x x t x ~ I ) ,  oq = 1 , 2  . . . . .  n .  (8) 

Similarly, the fourth-order cumulants of  x are represented by a set of  n 2 cumulant 
matrices and they are related to the moments by 

Cx (a)  = [cum(x i ,  X j ,  Xal , Xo~ 2)] , (9) 
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= E  (xxtx,~,xa2) - E (xx t )E  (x,~,x,~2) (10) 

- E(xxal)E(xtx,~2) - E(xx,~z)E(xtx,~l) , O t l ,  a 2 = 1, 2 , . . . ,  n .( l l )  

We list here several properties of cumulants that are important in the later 
development. Their proofs are mostly immediate from the definitions of cumulants 
and can be found in [10]. 

Properties. Given a real random vector x = [Xl, . . .  , Xn] t, 

1. cum(a lx l , . . . ,  anXn) : a l  . " an c u m ( x l ,  . . . ,  Xn), f o r  any real a l ,  . . .  , an;  

2. I f  x is Gaussian, then for  any or, Cx(ot) = 0; 

3. Ira  random vector y = [Yl, . . . , Yn] t is independent o f  x, then 

cum(yl + xl,  . . . .  Yn + Xn) = cum(yl, . . . ,  Yn) + cum(xl, . . . ,  xn) . (12) 

2.2. Assumptions. 

We impose the following assumptions throughout this paper. 

Assumptions. For the multichannel MA process given by (1), 

�9 A1. {s(t)} is an i.i.d., non-Gaussian vector sequence with independent compo- 
nents and nonvanishing kth-order cumulants for  some k > 2. 

�9 A2.  The noiseprocess u(t), independent ors(t) ,  is Gaussian. 

�9 A3.  Both H(0) and H(N) are o f  full  column rank. 

The assumption of s(t) having nonvanishing kth-order cumulants can be relaxed 
to the assumption that each component of s(t) has a nonvanishing higher-order 
cumulant. 

2.3. Cumulant-based identification equations. 

Under the above assumptions and cumulant properties, one obtains a relation 
among a (K + 2)th-order output cumulant, the MA coefficients, and the sources 
cumulants 

cum(yp(t) ,  yq(t + to), y~l(t + r l ) , . . . ,  y~K(t + "~K)) 
N m K 

- -  ~ ~ C (K+2)h (k )hq i  (~o + k )  H haii  (l;j + k )  ( 1 3 )  - -  ~ ~ si pi 
k=0 i=1 j = l  

where yi( t)  is the ith component of the vector y(t), hij(k)  is the (i, j ) th entry of 
I-I(k), and 

(K+2) times 

c (K+2)  = cum(s i , . . . ,  si ) (14) Si 
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To abbreviate the notation, denote r = [ r l , . . , ,  r r ]  t, and ot = [ a b . . . ,  OlK] t. For 
any fixed or, to, and r ,  define an (n x n) cumulant matrix Cy(r0; r, or) whose 
(p, q)th entry is cum(yp(t),  yq(t + to), y,~l (t + r l ) , . . . ,  y,K(t + r/()), i.e., 

Cy(ro; r, or) = [cum(yp(t), yq(t + r0), y,~, (t + rl)  . . . . .  y,~K (t + r r ) ) ]  �9 (15) 

We then obtain the matrix form of  the equations (13). 
N 

y ~ H ( k ) D ,  (r, o0C~r+Z)H t (to + k) ; 
k=0 Cy(t '0;  "t', Or) : 

where 

if - N  _< to, 

. . . .  rx  < N  

otherwise, 

(16) 

Dk (r, a )  = diag h~jl (rj + k ) , . . . ,  H h~j,, (rj + k) (17) 
\ j = l  j=l  

((r+2) c(r+2)~ (18) -sC(K+2) = diag csl ,. " ' ,  s~, / �9 

Eva lua t ing  Cy('t-o; T, or) at z : [N . . . . .  N] t ~ r (N) ,  we obtain the so-called 
cumulant-based identification (CBI) equations. 

Theorem 1 (Cumulant-Based Identification Equation). For any integer K > 

0 and an integer index vector or, the (K + 2)th-order output cumulant matrix 
Cy(k; r (N) ,  or) of an m-input n-output, Nth-order MA process is related to the 
process coefficients {H(k)} and input cumulants {cJK +2) } by the following CBI 
equation 

Cy(k; r (N) ,  or) : H(0)D0(N),  ot)C~g+2)Ht(k). (19) 

It turns out that (19) contains all the information necessary for the identification 
of {H(k)}, a fact to be shown in Section 3. The key results rest on the recogni- 
tion of  the special structures of (19). Before we proceed to discuss the issue of 
identifiability, a closer look at (19) for special cases is in order. 

Third-order CBI equations. When third-order cumulants are used; i.e., K = 1, 
r ( N )  = N, and for any or, 1 < a < n, (19) becomes 

Cy(k; r (N) ,  or) = H(0) diag (h,~l(N)cJ3),..., h,m(N)c~ 3)) H t ( k ) ,  (20) 

an equation presented in [3]. 

Fourth-order CBI equations. For the fourth-order case; i.e., K = 2, r ( N )  = 
[ N ,  N ]  t ,  and any a = [ai, otj] t, 1 <_5 ai, otj < n, 

Cy(k; r ( N ) ,  or) = H(0) diag (h,~;1 (N)h,~jl (N)cJ 4), 

, h,~,m (N)hajm (N)c ~4)~ Ht(k) (21) " ' "  Sm} " 

The above equation was derived in [6]. 
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3. A closed-form solution of CBI equations 

In this section, we concentrate on solving the CBI equations given in (19). We first 
address the issue of uniqueness. A closed-form solution is then presented. 

3.1. Identifiability. 

It is not difficult to see that, under the given assumptions, the parameter matrices 
{H(k)} can not be determined uniquely from observation alone. For example, the 
MA process generated from {H(k)} driven by s ( t )  is the same as the process 
generated from {H(k)P} driven by Pts(t) for any permutation matrix P. Similarly, 
the MA process generated from {H(k)} driven by s(t) is the same as the process 
generated from {H(k)D} driven by D-is(t) for any nonsingular diagonal matrix 
D. The main result of this section is to show that, except for the above two types 
of ambiguity, the parameter matrices {H(k)} are uniquely determined by the CBI 
equations. 

The following lemma plays a key role in establishing the identifiability and 
deriving the closed-form solution. 

Lemma 1. For almost  any real sequence { ~  }, 

rank ( ~ , ~ D 0 ( ~ ( N ) ,  o r ) ) = m .  (22) 

Proof. The key of the proof is to relate D0(r (N), t~) to the column vectors of the 
Kronecker product H [k] (N), where 

K times 

HtKi(N) = H(N) | H(N)- .. | H(N) ~ . (23) 

From (17), we have 

Do(z(N),oe) = diag h ~ j l ( N ) , . . . ,  h~jm(N) �9 (24) 
"= j=l / 

The diagonal entries of matrix D0(r (N), or) are in fact the (element-wise) products 
of row vectors of H(N). Given an index vector o~ = [ o l l , . . . ,  otr], 1 < c~i < n, 
assign 

v~ h,j l(N) . . . . .  h~jm(N)  , (25) 
I_i=1 j = l  

where 
k = ul + (or2 - 1)n + . . .  + (Otr -- 1)n r - 1  . (26) 
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It can then be seen that the rows of matrix 

V = I v  I . . . . .  VnK ] ( 2 7 )  

are made of columns of I t  [K](N). Because H(N) has a full column rank, II [K](N) 
has a full column rank, and V has a full row rank. Consequently, for almost any 
weighting vector 8, V8 is a vector with nonzero components. When the weighting 
vector 8 is applied to the diagonal matrix Do(r(N), or), )--~,~ 8,~Do(w(N), a) is 
nonsingular. [] 

Let {8~} be such a sequence satisfying (22), and define 

I~,k = E 8,~Cy(k; r (N),  a)  , (28) 
0t 

D~ = E 8~Do(r(N), a ) .  (29) 
Ot 

From (19), we have 

K~,k = H(O)D~C~K+2)It t (k) . (30) 

From our ]_,emma along with the assumption that both H(0) and H(N) are of full 
column rank, it follows that, in parallel to the derivation in [3] for the third-order 
case, 

H(k) = LkH(0),  (31) 

where 
I ,  k = 0 ;  

Lk = (32) 
K~,k(K,,oKLo)tK~,o , k = 1 , . . . , N .  

where (.)* stands for the Moore-Penrose generalized inverse. 
It is now clear from (31) that the central issue is solving H(0). The uniqueness of 

solving {H(k)} hinges on the uniqueness of solving H(0). The following theorem 
shows that H(0) is uniquely specified by the CBI equations (19) up to a generalized 
permutation matrix. 3 Because of(31), all parameter matrices are uniquely specified 
by the CBI equations up to the same generalized permutation matrix. 

Theorem 2 (Identifiability). Under the given assumptions, if ({H(k)}, C~ g+z)) 

satisfies the CBI equations, then ({ITI(k)}, C~ K+2)) also satisfies the CBI equations 
if and only if there exists a generalized permutation matrix P such that 

ITI(k) = H ( k ) e ,  k = 0, 1 , . . . ,  N .  (33) 
C~ K+2) = p-1c~K+2)p-t . (34) 

3 A generalized permutation matrix is defined as a product of a permutation matrix and a nonsingular 
diagonal matrix. 
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Proof. With our Lemma, Theorem 2 is a direct consequence of Theorem 4 in the 
Appendix. [] 

The important implication of Theorem 2 is that the coefficients of MA pro- 
cesses are specified uniquely by the output cumulants up to a constant generalized 
permutation matrix, a significant reduction of ambiguity in comparing to the iden- 
tification using second-order output statistics where the identification can only be 
achieved up to an all-pass system. The ambiguity represented by the generalized 
permutation matrix can be further reduced with a prior knowledge of the sources 
such as the variance of the inputs. 

3.2. Closed-form identification. 

With the identifiability result, we are only interested in finding one solution of 
the CBI equations because all the solutions are related by generalized permutation 
matrices. The main result here is a closed-form solution of the CBI equations. Such 
a solution is obtained by exploiting the eigenstructure of the CBI equations and 
the application of the ESPRIT techniques originally developed for sensor array 
processing [9]. 

T h e o r e m  3 (Closed-Form Identification). Given the (k + 2)th-order output cu- 
mulants Cy(0; ~: (N), ct) of a multichannel moving average process satisfying our 
Assumptions, form almost any weighting coefficients {~, y~, q~} there exists a 
generalized permutation matrix P such that 

It(k) : LkUsE-tp,  (35) 

where Us is obtained from the Schur decomposition of K~,o: 

K~,o = E 8~Cy(0; r(N),  c~) , (36) 
O~ 

= [UsUn] diag(A, 0)[UsUn] t . (37) 

Matrix E is the generalized eigenmatrix [4] obtained from the generalized eigen- 
decomposition of {UtsKy,oUs, UtsK~,oUs}, where 

Ky,o = ~ yuCy(0; r(N),  or) , (38) 

I~,o = ~ r r(N),  a ) ,  (39) 

I ,  k = 0 ; 

L k =  K~,k(K~,oK~,o)+I~,o, k = l , . . . , N .  
(40) 

Proof. With our Lemma, the proof is immediate after the proof of Theorem 4 given 
in the Appendix. [] 
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Under Theorem 2, {tkUsE -t } is a solution of the CBI equations, and it differs 
from the "true" parameter coefficients by, at most, a generalized permutation ma- 
trix. Note also that, except for the generalized permutation matrix P, all quantities 
on the right side of equation (35) are related to the observation process y(t), and 
hence can be estimated from the data. 

As a special case when m ---- n, i.e., the number of sources is equal to the number 
of received signals, Theorem 3 takes a simpler form. 

Corollary 1 (Closed-Form Identification--A Special Case). Given the (k+2)th- 
order output cumulants Cy (0, r (N), or) of a multichannel moving average process 
satisfying our Assumptions and almost any { 8~, y~, ~b~ }, there exists a generalized 
permutation matrix P such that 

H(k) t -t -t = Ka,kK~,oE P ,  (41) 

where matrix E is the generalized eigenmatrix obtained from {Ky,o, K~,o}, where 

Kv,o =~--~ yaCy(0; r (N) ,  ~) , (42) 
o/ 

Ktb,0 = ~ ~ba.Cy(0; z'(N), ~),  (43) 

I~,0 - - - - ~  8c~Cy(0; r(N), or). (44) 

4. An identification algorithm and a computer 
simulation example 

Theorem 3 clearly suggests a computational algorithm for the identification of mul- 
tichannel MA processes. Here we present the details of the algorithm and discuss 
certain implementation issues followed by results of a Monte Carlo simulation. 

4.1. Summary of a closed-form identification (CFI) algorithm 
and discussions. 

CFI algorithm. 

1. Choose the order of the cumulants to be used in the identification. For most 
practical applications, fourth-order (K = 2) cumulants are often sufficient. 

2. Choose a set of K-dimensional index vector a ' s  and estimate cumulant ma- 
trices Cy(0; r (N) ,  or) by, for example, estimating the higher-order moments. 
When the fourth-order cumulants are used, for any a = [i, j] ,  1 < i, j < n, 

1 t=T 
Cy(0; z(N), or) = ~ ~ {y(t)yt(t)yi(t - N)yj ( t  - N)} 

t=l 
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1 t=r } L  T t = r  
- YT E { y(t)yt(t) E {yi(t- N)yj(t- N)} 

t=l t=l  

I t=T ~ t=T 
T Z {y(t)yi(t- N)} T E { yt(t)yy(t - N)} 

t=l  t=l 

1 t=T 1 t=T 
T E {y(t)yj(t- N ) } ~  ~ {yt(t)yi(t- N)}(45) 

t=l t=l 

3. Choose a weighting vector g and compute 

. 

= ~ 8:(~y(0; z(N), or) (46) 

and its Schur decomposition 

I~,0 = [l)sLrn] diag(A1,/Tk2)[Us[Jn] t , (47) 

where Us consists of the singular vectors associated with the m largestsingular 
values. The criterion of choosing the weighting vector 8 is to make I~,0 well 
conditioned in the sense that the ratio between the largest singular value and 
the mth singular value is as small as possible. 

Choose weighting vectors y and ~b and compute 

I~y,o = ~ ya(~y(0; "r (N), or) (48) 
0t 

l ~ ,  0 = ~ ~bct(~y(0; T (N), o/). (49) 
0t 

5. Find the generalized eigenmatrix 1~ from the generalized eigen-decomposition 

fdtsKy ofds, fdts~ oUs criteria of and ~b is that the o f [  , , } .The choosing y 

generalized eigenvalues are well separated. 

6. The identification of {I-I(k)} is given by 

tI(0) = l~lsl~-tP, (50) 

I~l(k) = R~,k(~7~a,ol~,~,o)tl~,oR(0), k = 1 , . . . ,  N .  (51) 

Discussions. 

�9 The algorithm can be simplified if all the parameter matrices are square as 
suggested in our Corollary. The singular value decomposition of I(~,0 is no 
longer necessary. The parameter matrices {H(K)} are estimated according to 
(41). 

�9 The selection of {8~, F,~, ~,~} is almost arbitrary theoretically. One can choose 
the weighting vectors to emphasize or de-emphasize the estimates of the cu- 
mulants. The selection, however, affects the performance of the estimation. 
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In choosing {y,~, ~b,~}, the rule of thumb is, for numerical reasons, to make the 
/ ^ / ^  ^ 

generalized eigenvalues of [UsK~,,0Us, l~ltsl~,01~ls ] have the greatest separa- 
�9 ,% | 

tion (in order to obtain accurate estimates of the eigenmatrix). Note that these 
criteria can be verified once {8~, y~, ~b,~} is chosen. 

�9 When m is unknown; i.e., the number of sources is unknown, by evaluating 
the singular values of K~,0, one can in fact estimate m by observing the most 
significant singular values. See, for example, [7] and [20]. 

�9 The computation complexity involved here is substantially reduced as com- 
pared with the method presented in [16]. 

�9 The algorithm can be extended to incorporate statistics of different orders. 
Note that (19) holds for all K > 1, and more importantly, they all have 
the same structures as thos e equations in (54) of the Appendix. Therefore, 
by taking linear combinations of Ky(0; r (N),  a)'s, with respect to ot's of 
different orders, one can easily obtain a closed-form identification involving 
statistics of different orders. Such a solution may provide better estimates of 
the process coefficients. However, determining how to choose the weighting 
parameters to obtain better estimates seems to be an open problem. 

4.2. A simulation example. 

We consider a second-order, 3-input, 7-output MA process 

H ( O )  = 

I - i ( 1 )  = 

I-i(2) = 

0.0012 0.3701 0.4330' 
0.2330 0.4115 0.5879 
0.0917 0.4494 0.1438 
0.5530 0.3354 0.3375 
0.4192 0.4203 0.4272 
0.5998 0.0925 0.2304 
0.3098 0.4379 0.3109 

0.2689 0.2201 0.5784' 
0.6033 0.2622 0.4719 
0.0662 0.0707 0.2523 
0.1770 0.4841 0.1815 
0.2926 0.5403 0.0606 
0.2981 0.5428 0.3646 
0.5945 0.2383 0.4561 

0.3434 0.1765 0.1799' 
0.4331 0.1870 0.3149 
0.1960 0.3417 0.4988 
0.3467 0.3470 0.0669 
0.2110 0.6137 0.5516 
0.6075 0.5334 0.5362 
0.3498 0.1885 0.1532 

, ( 5 2 )  

(53) 
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The source signals were one-sided exponentially distributed. In comparison with 
the finite-step global convergence (FSGC) algorithm [16], only the third-order 
cumulants were used. The signal-to-noise ratio (SNR) was set at 20 dB. Monte 
Carlo simulations of 100 runs were conducted with 5000 samples used to estimate 
the third-order cumulants. Sample means and root mean square errors of the two 
estimators are shown in Tables 1 through 6. In the simulation, uniform weighting 
factors were used. The closed-form identification was clearly superior than the iter- 
ative method in this simulation, both in computation complexity and in estimation 
accuracy. 

Table 1. The comparison of estimation means of I~I(0). 100 Monte Carlo runs 
at SNR = 20 dB. 5000 samples were used. 

Estimation Mean of t2I(0) by FSGC [16] 

' - 0 .0029  0.3299 0.4219' 
0.2310 0.3753 0.5855 
0.0847 0.4496 0.0940 
0.5498 0.3141 0.3258 
0.4209 0.4155 0.3971 
0.5925 0.0768 0.2263 
0.3023 0.4152 0.2886 

Estimation Mean of 121(0) by CFI 

'0.0016 0.3675 0.4343' 
0.2339 0.4046 0.5845 
0.0872 0.4607 0.1486 
0.5551 0.3236 0.3363 
0.4159 0.4236 0.4190 
0.5946 0.0762 0.2265 

,0.3084 0.4296 0.3193 

Table 2. The comparison of estimation means of I?t(1). 100 Monte Carlo runs 
at SNR = 20 dB. 5000 samples were used. 

Estimation Mean of ~I(1) by FSGC [16] 

Table 3. 

I0.2715 0.2070 0.5609 
0.5976 0.2429 0.4535 
0.0653 0.0490 0.2446 
0.1760 0.4546 0.1520 
0.2793 0.4880 0.0234 
0.2939 0.4883 0.3324 
0.5935 0.2247 0.4420~ 

The comparison of 
at SNR = 20 dB. 5000 samples were used. 

Estimation Mean of 121(1) by CFI 

'0.2701 0.2135 0.5659 ~ 
0.5995 0.2475 0.4661 
0.0651 0.0606 0.2512 
0.1768 0.4892 0.1926 
0.2872 0.5330 0.0805 
0.2966 0.5361 0.3743 
0.5924 0.2276 0.4466 

estimation means of 1:1(2). 100 Monte Carlo runs 

Estimation Mean of 1:1(2) by FSGC [16] 

I0.3395 0.1650 0.1635 
0.4323 0.1682 0.3069 
0.1956 0.3066 0.4933 
0.3344 0.3456 0.0356 
0.2030 0.5783 0.5229 
0.6056 0.5092 0.5200 

~0.3469 0.1819 0.1346 

Estimation Mean of 121(2) by CFI 

I0.3402 0,1665 0.1799 
0.4297 0.1787 0.3118 
0.1987 0.3374 0.4922 
0.3409 0.3439 0.0751 
0.2082 0.6173 0.5515 
0.6099 0.5281 0.5308 

~0.3466 0.1816 0.1555 
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Table 4. The comparison of root mean square errors of ~I(0). 100 Monte Carlo runs 
at SNR = 20 dB. 5000 samples were used. 

RMSE of ~I(0) by FSGC [16] 

'0.0741 0.1300 0.0607~ 
0.0628 0.1544 0.0545 
0.0411 0.1271 0.2033 
0.0384 0.0964 0.0539 
0.0425 0.1059 0.0857 
0.0382 0.1272 0.0792 
0.0435 0.0957 0.1077 

RMSE I?I(0) by CFI 

/0.0499 0.0364 0.0190~ 
0.0329 0.0429 0.0265 
0.0370 0.0600 0.0317 
0.0308 0.0410 0.0236 
0.0297 0.0291 0.0217 
0.0270 0.0719 0.0488 
0.0249 0.0257 0.0221 

Table 5. The comparison of root mean square errors of I~I(1). 100 Monte Carlo runs 
at SNR = 20 dB. 5000 samples were used. 

RMSE of I~I(1) by FSGC [16] 

r 0.2022 0.0851~ 
0.0313 0.1753 0.0505 
0.0558 0.1174 0.0485 
0.0473 0.0944 0.1449 
0.0635 0.1747 0.2063 
0.0525 0.1327 0.1314 
0.0341 0.1654 0.0433 

Table 6. The comparison of root mean square errors of I~I(2). 100 
at SNR = 20 dB. 5000 samples were used. 

RMSE of I~I(2) bye FSGC [16] 

0.0358 0.1057 0.1074~ 
0.0341 0.1578 0.0979 
0.0628 0.1565 0.0817 
0.0365 0.1286 0.1585 
0.0886 0.1035 0.1022 
0.0547 0.0991 0.0657 
0.0333 0.1010 0.0874J 

RMSE I~I(1) by CFI 

'0.0249 0.0818 0.0546 
0.0285 0.0767 0.0294 
0.0395 0.0592 0.0322 
0.0445 0.0379 0.0412 
0.0493 0.0614 0.0872 
0.0484 0.0316 0.0426 
0.0311 0.0722 0.0342, 

Monte Cafloruns 

RMSE I~I(2) by CFI 

'0.0280 0.0500 0.0367 
0.0302 0.0656 0.0354 
0.0267 0.0390 0.0510 
0.0233 0.0478 0.0539 
0.0513 0.0424 0.0301 
0.0452 0.0292 0.0347 
0.0303 0.0483 0.0477 

5. Conclusion 

A closed-form identification of multichannel MA processes has been presented by 
exploiting eigenstructures of the output cumulant matrices. An estimation algo- 
rithm is then derived from the closed-form identification. The method is computa- 
tionally simpler and offers better performance than previously proposed schemes. 
It also allows one to use cumulants of  different orders and weight the estimates of  
eumulants to achieve better performance. 
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There are several open issues that need to be addressed in future work. The 
assumption that both H(0) and H(N) have full column ranks may be too restrictive 
for some applications. Also there is a need to select the weighting factors in a 
systematic way. 

Appendix.  On solving a class o f  nonlinear matrix equations 

As shown in Section 2, the CBI equations (19) take a special form. The underlying 
algebraic problem of multichannel MA process identification can be reduced to 
solving a set of special nonlinear matrix equations having the following special 
algebraic structure 

HDiH ~ = K~ i = 1, 2 . . . . .  M ,  (54) 

where H is an (n x m)-matrix of full column rank, and Di is an (m x m) diagonal 
matrix not necessarily of full rank. 

We ask the following questions: 

�9 Given Ki, to what extent is H determined? 

�9 Given Ki, how does one solve for H? 

These questions can be answered by the following theorem (see also [18]). 

Theorem 4 (Closed-Form Solution). Suppose that {H, Di } satisfies equations 
(54). Let  matrix D be constructed from Dk = diag(dlk,. . . ,  dmk) by 

d l l  d12 " ' "  dlM "~ 
d21 d22 " ' "  d2M | 

D = . . . . .  / (55) 

~i l  dm2 " ' 's / 
/frank(D) = m, then 

1. I f  H is square, i.e., m = n, then for almost any {Yi, rPi} there exists a 
generalized permutation matrix P such that 

H = E - t p  , (56) 

where matrix E is a generalized eigenmatrix obtained from {K~, I~}, where 

Ky = E ykK~, (57) 
i 

K ,  = (58) 
i 

2 . / f n  > m, then for almost any { 6i , yi , rPi } there exists a generalized permuta- 
tion matrix P such that 

H = UsE-tp , (59) 
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where Us is obtained from the Schur decomposition of KS 

Ks = Z 8iK/ ,  (60) 
i 

= [UsU~] diag(A, 0)[UsUn] t ; (61) 

matrix E is the generalized eigenmatrix obtained from the generalized eigen- 
decomposition of {UtsKrUs, UtsI~Us} (K r and K 4 are defined in equations (57) 
and (58)). 

Proof. The proof of this theorem follows a technique used in deriving the ESPRIT 
algorithm [9]. 

1. Because matrix D is of full rank, then for almost any weighting vectors 
{Yi, ~bi}, (K r,  K~) has distinct generalized eigenvalues, where K r and K 0 are 
defined by (57) and (58). Suppose {Xk} and {ek} are the generalized eigenvalues 
and eigenvectors, respectively; i.e., 

K~,ek = ~.kK~ek �9 (62) 

We then have 
H(Dy - ~.kD4,)Htek = 0 .  (63) 

Because (D r - ~.kDr is a diagonal matrix with rank m - 1 and matrix H is of full 
column rank, vector ek is orthogonal to all but one column vector of H t. Let 

E = [ e l  . . . . .  era] �9 ( 6 4 )  

Then, because of the orthogonality of the eigenvectors with respect to the column 
vectors of H, there is a generalized permutation matrix P such that 

HtE = pt . ( 6 5 )  

Hence, 
H = E - t p  , (66) 

and a solution of equation (54) is obtained. 
2. When H is not square; i.e., n > m, it is no longer true that equation (63) 

implies that ek is orthogonal to all but one column vector of H. However, this 
problem can be easily circumvented by a simple transformation. Again, for almost 
any {di }, rank(Ks) = m, where 

I~  = Z 6iKi " (67) 
i 

Let Ks have a singular value decomposition of the following form, 

K~ = [UsUn] diag(A, 0)[UsU,] t . (68) 

It is evident that 

H = UsT,  (69) 
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where T is a nonsingular (square) matrix. If  a linear transform is applied to K r 
and K 0 by 

((y t = UsKrUs  , (70) 

= T D y T  t , (71) 

I ~  = UtsK~Us, (72) 

= T D ~ T  t , (73) 

w e  can apply the previous theorem to the above equations, and obtain 

T = ~ ; - t ~ .  (74) 

Consequently, 
H = U s E - t p  . (75) 

[] 
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