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General model, design criteria, and signal processing

ilot-assisted transmission (PAT) multiplexes known symbols with information bearing
data. These pilot symbols and the specific multiplexing scheme are known at the receiver
and can be exploited for channel estimation, receiver adaptation, and optimal decoding.
Some of the earliest studies on PAT focused on fast varying channels [1]–[5]. It was

Cavers who coined the now widely used term pilot symbol assisted modulation (PSAM) and pre-
sented an analytical approach to the design of PATs [4]. Since then, there has been continuing
interest from the signal processing and communications communities in the design of PATs for
wireless systems. We use here a slightly broader view of PAT to address issues beyond modulations,
especially in topics related to parameter estimation and information theory.

PAT is prevalent in modern communication systems; some of the standardized schemes are
illustrated in Figure 1. The GSM system [6], for example, includes 26 pilot bits placed in the
middle of every packet along with a small number of starting and tail bits. The North America
TDMA standard [7] places pilot symbols at the beginning of each packet. Third-generation sys-
tems such as WCDMA [8] and CDMA-2000 [9] transmit pilots and data simultaneously using
separate spreading codes. Pilots are also used in broadband systems such as HyperLAN II [10]
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and by the IEEE 802.11 [11]–[13] family, all consid-
ered part of the fourth-generation wireless systems.
Wireless broadcast also relies on PAT. The DVB-T [14]
inserts different types of pilots in a doubly periodic
manner whereas the single carrier ATSC [15] sends
pilots in chunks and sprinkles the data stream with syn-
chronization pilots. PAT is common in wire-line sys-
tems such as DSL, cable, and voiceband modems.

To practical designers, PAT makes sense: it simplifies
the challenging task of receiver design for unknown
channels. The presence of pilots also offers the possibil-
ity of link recovery from outages. The more frequently
pilot symbols are transmitted, the better the estimation
and tracking, and the more robust the receiver. The
placement of pilot symbols also appears to be straight-
forward: they should be placed in clusters to avoid
interference from unknown data symbols. If the chan-
nel varies rapidly, more pilot symbols are needed and
transmitted more frequently. For the most part, the
design of PAT is based on engineering intuition, practi-
cal experience, heuristic analysis, and simulation.

At the theoretical level, however, the design of pilot
symbols and the way that they are multiplexed with data
are far from trivial. Pilot symbols carry no information
about the data; the time spent on sending pilot symbols
is time missed for transmitting information. The power
allocated to pilots is power taken away from data.
Indeed, Shannon theory neither requires nor disqualifies
the use of PAT when the channel is unknown. For exam-
ple, the structure of capacity achieving codes for ergodic
block fading channels excludes the use of PAT for certain

cases [16], [17]. See [19] for a survey of information
theoretical approaches to fading channels. From a detec-
tion and estimation perspective, blind signal processing
techniques provide means for detection and estimation
without embedding training into data transmission [18].

Even if PAT is used for practical reasons, there
remains a need for optimal design. The amount of
pilots, the power allocated for pilot symbols, and the
locations of these pilots in the data stream all affect the
system performance measured by the reliable transmis-
sion rate, bit error rate (BER), or the mean square error
of the estimator (by reliable transmission rate we mean
the rate for which bit error probability can be made
arbitrarily small). Theory and methodology for design
of optimal PAT are emerging, although much remains
unknown. Do we need optimal PAT? How much gain
can one expect from an optimal scheme over an ad hoc
but simple one? Is the optimal PAT so complicated that
no receiver of reasonable complexity can be implement-
ed to take advantage of its optimal design? Indeed, one
may even question the existence of optimal PAT. No
clear answers yet exist. In the past few years, however,
partial results have emerged, which suggest that signifi-
cant potential gain can be realized in some cases if pilot
symbols are designed optimally and placed judiciously.

Optimal PAT Design: A Framework
An optimal design depends critically on a carefully cho-
sen model and a well-reasoned criterion. In this section,
we lay out the framework on which various optimal
PAT schemes are to be developed.
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▲ 1. Pilot placement patterns in existing wireless systems. (a) Packet transmissions and (b) continuous transmissions. Shaded areas are
pilot symbols.
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What Do We Gain from an Optimal PAT Scheme?

Atelling example is related to broadcasting systems as
illustrated in (a) below. The broadcasting station serves

users at various geographical locations with different chan-
nel conditions. Some users experience little fading and
enjoy high signal-to-noise ratios (SNRs), while others suffer
from severe intersymbol interference and poor SNR. For
broadcasting applications, users may turn on their receivers
at random times. Therefore, pilot symbols are needed
throughout the transmission so that a new user can acquire
the channel state information and gain synchronization. This
implies that a fixed percentage of pilot symbols should be
embedded in the data stream.

Outage probability is a key performance measure for
broadcasting. Given a transmission rate R, an optimal PAT will
minimize the probability that a user fails to receive at rate R
reliably. Part (b) shows the outage probability versus trans-
mission rate for two different PATs operating at SNR = 20 dB.
The nonergodic channel model is used for the intersymbol
interference channels, with order L. Specifically, the channel
between the transmitter and a user is governed by a proba-
bility density, and the channel stays constant for the entire
use of the channel. The receiver is assumed to belong to one
of three different equally likely geographical locations, each
has a different multipath structure, i.e., different fading statis-
tics. PAT A is a widely used scheme that puts all pilot symbols

at the beginning of the packet. PAT B uniformly spreads the
pilot symbols in small clusters of sizes α equal to the delay
spread L. We see that PAT B is better than PAT A for all rates.
At the rate of 3 b/s/Hz, the outage probability of PAT B is two
orders of magnitude smaller than that of PAT A. For a 6 MHz
broadcasting channel and at the outage probability level
between 10−3 and 10−5, the 0.3 b/s/Hz gain of PAT B over
PAT A would translate to a gain of 1.8 Mb/s, which is more
than enough to add a CD-quality audio channel or ten MP3
broadcasts.

The superiority of PAT B is not a fluke; it can be shown that
PAT B is optimal among all placement schemes that have
pilot clusters larger than the delay spread of the channel.
Most surprisingly, the optimality is uniform across all channel
distributions [20]. There are intuitive reasons that PAT B is
better than PAT A for intersymbol interference (ISI) channels.
Suppose that the ISI channel has two taps, i.e., every symbol
is interfered by its predecessor. If the predecessor is a pilot
symbol and if the channel taps are known, the interference
to the unknown data symbol can be subtracted. If there are
as many pilots as data, we can interlace pilots and data so
that ISI is completely removed. On the other hand, a stan-
dard approach that groups all pilot symbols at the beginning
will perform much worse, because only the first data symbol
benefits from the knowledge of the pilot.

▲ Outage probability of a broadcast system. (a) A PAT packet is broadcast to three user groups with different channel distribu-
tions. (b) Outage probability versus rate for two different PAT schemes. In PAT B, the number of data and pilot symbols is N and P,
respectively, and α is the pilot cluster size. The channel order is L. See [20] for details.
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PAT Models
Pilot symbols are traditionally time multiplexed. The use
of an antenna array extends the multiplexing to the spa-
tial dimension. Multicarrier transmissions and code divi-
sion multiple access (CDMA) add frequency and code
dimensions to the mix, respectively. Power allocation
among data and pilots is another factor. In addition to
interleaving training and data by time division multiplex-
ing (TDM), we may consider superimposing pilots and
data, an idea proposed as early as 1987 [22] that has also
received more recent attention [23]–[29]. The combina-
tion of these factors multiplies the possible scenarios to
be examined and motivates the model described next.

The Multidimensional PAT Model 
The key to unifying various schemes is to view the
problem of PAT design as one of power allocation.
Specifically, in each design dimension, such as time, fre-
quency, and space, a pair of power allocation parame-
ters are used to model PAT. The simplest case is single
carrier transmission over a single input and (possibly)
multiple output channel where each transmitted sym-
bol st can be modeled as a linear combination of a
known pilot s p

t and an information bearing data symbol
s d
t . Specifically

st =
√

φt s p
t + √

γt s d
t , t = 1, . . . ,B , (1)

where s p
t satisfying |s p

t | = 1 is known with allocated
power φt ≥ 0, and s d

t is unknown data with zero
mean, unit variance, and average power γt ≥ 0. For
the transmission of a packet of size B , a PAT scheme is
defined by the B -dimensional pilot vector sp = [s p

t ],
and two power allocation vectors φφφ = [φt ], and
γγγ = [γt ]. A graphical illustration of the one dimen-
sional PAT scheme is shown in Figure 2(a) where a
partially shaded square indicates superimposed pilot
and data symbols.

If the spatial domain is added, a two-dimensional
description is necessary, as shown in Figure 2(b). A
block coded space-time transmission, for example,
sends the data symbols in blocks, and each transmitted
symbol s i t is indexed by the block number t and the
position i within the block. If we assume that pilots
may be superimposed in any position, we have

s i t =
√

φi t s p
i t + √

γi t s d
i t ,

i = 1, · · · ,N , t = 1, · · · ,B , (2)

and the PAT scheme is parameterized by the N × B
pilot matrix Sp = [s p

i t ], and nonnegative power alloca-
tion matrices ��� = [φi t ] and ��� = [γi t ]. The same for-
mulation naturally applies to orthogonal frequency
division multiplexing (OFDM) by treating i as the fre-
quency index. The generalization to higher dimensions

is straightforward; the idea is illustrated in Figure 2(c).

Power Constraints
All transmissions are subject to power constraints, and
there are many ways such constraints can be imposed
on PAT. It is sufficient to consider the two-dimensional
case. Given N × B matrices ��� and ��� , the average
power constraint is given by

1
N B

B∑

t=1

N∑

i=1

E
{|s i t |2

} = 1
N B

B∑

t=1

N∑

i=1

(γi t + φi t ) = P .

(3)

As a special case, the per-symbol average power con-
straint imposes a more stringent condition:

E
{|s i t |2

} = γi t + φi t = P . (4)

In this case, power allocation matrices ��� and ��� are com-
plementary, and one power allocation matrix is sufficient.

PAT Transceiver Structures
The presence of pilots naturally implies that they will
be used at the PAT receiver explicitly or implicitly.
Parametric approaches, as illustrated in Figure 3, esti-
mate channel parameters and use the estimated channel
for demodulation and decoding. The channel estimator
takes the pilot vector sp (and possibly the entire obser-
vation y), produces a channel estimate θ̂θθ , and feeds the
estimate to the decoder. A practical decoder may
assume that the estimated channel parameters are per-
fect. Such an assumption is of course not valid, and the
corresponding scheme is referred to as a mismatched
decoder [30], [31]. An alternative is to treat the
estimated channel parameters as part of the observa-
tion. The decoder exploits the joint statistics of (θ̂θθ, y).

Nonparametric approaches, in contrast, treat the
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▲ 2. An illustration of the multidimensional PAT model (with a
per-symbol average power constraint). Each square is a symbol
boundary, and the pilot symbol at each square has power propor-
tional to the volume of the shaded region.

(a)

(b) (c)



pilot symbols as side information. The channel estima-
tor in Figure 3 is bypassed, and pilots are used to tune
the receiver directly. In voiceband modems, for exam-
ple, explicit channel estimates are not obtained; rather,
the training is used for adaptively updating an equalizer.

Figures of Merit
PAT design is primarily a transmitter technique,
although receiver characteristics must also be taken into
account. Once a PAT scheme is chosen, it may be stan-
dardized for a specific application. It is therefore
important that a PAT scheme is optimal or near opti-
mal for a wide range of channel conditions.
Furthermore, since designers may have different design
constraints and objectives, it is preferable that the PAT
scheme is optimal for different design criteria. We out-
line next a few commonly used design criteria.

Information Theoretic Metrics 
Reliable transmission at rate R requires the existence of
encoding and decoding schemes that make the detec-
tion error probability arbitrarily small when the code
length is sufficiently long. Shannon capacity measures
the maximum rate of reliable transmission among all
transceiver designs. The information theoretical metrics
for PAT apply to the class of systems constrained to
using pilots in specific ways. In other words, we are
interested in the PAT design with some fixed transceiv-
er structure (such as that shown in Figure 3) while
allowing the design of optimal signaling and codes with
long code words.

Shannon’s characterization of the reliable rate of trans-
mission (the achievable rate) is through the use of mutual
information [32]. The optimal PAT design that maxi-
mizes channel capacity requires expressing mutual infor-
mation as a function of PAT parameters and maximizing
the mutual information with respect to these parameters
and the channel input distribution. Unfortunately, the
required mutual information expressions are often diffi-
cult to obtain. In some cases, however, bounds [33],
[34] on the achievable rate can be obtained and opti-
mized with respect to PAT parameters [35]–[37].

For certain fading channels, codes that ensure reli-
able transmission do not exist. Sometimes, practical
constraints on decoding delay make the Shannon
capacity zero. In such cases, the outage probability may
be used. Specifically, given a transmission rate R, an
optimal PAT scheme maximizes the probability that
rate R can be achieved reliably.

The channel reliability function, random coding
exponent, and cutoff rate [38], [39] are explicit meas-
ures that relate detection error probability with data
rate and code word length. For PAT systems, they are
all functions of PAT parameters. These information
theoretic metrics allow us to quantify the decay rate of
error probability with respect to the code length.

Channel Estimation: Mean Square Error 
and Cramér-Rao Bound
The information-theoretic metrics are global measures
of a communication system. Often, we are interested in
the optimality of specific configurations or system com-
ponents. For the receiver structure shown in Figure 3,
one may be interested in the PAT scheme that mini-
mizes the channel estimator error. A sensible measure is
the mean square error (MSE) of the estimator. Because
it is desirable that the design of optimal PAT does not
depend on the specific algorithm used at the receiver,
the Cramér-Rao bound (CRB) is a natural choice as a
figure of merit. Specifically, the MSE of an unbiased
estimator θ̂θθ , under regularity conditions, is lower
bounded by 

E
{∥∥∥θ̂θθ − θθθ

∥∥∥2
}

≥ trace
{
F−1(���,���, Sp)

}
, (5)

where F(���,���, Sp) is the Fisher information matrix
[40], [41], and Sp is the matrix consisting of pilot s p

i t .
(For deterministic parameters, F(���,���, Sp) is also a
function of the unknown parameters. For random
parameters, the Fisher information is a function of the
(prior) parameter distribution.) Note that, although
the CRB can be achieved with finite data samples in
some estimation problems, such as in the case of linear
system model, the achievability is not always guaran-
teed with finite data samples. However, the existence of
asymptotically efficient (asymptotic efficiency is defined
as that the variance of the estimator approaches to the
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It was Cavers who coined the
now widely used term pilot
symbol assisted modulation
and presented an analytical
approach to the design of PATs. 

▲ 3. The structure of PAT transceivers.
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CRB as the number of samples goes to infinity) algo-
rithms (e.g., the maximum-likelihood estimation
(MLE) in many cases) justifies the use of CRB as a
design criterion. (This contrasts with information theo-
retic metrics where there is a coding theorem that
ensures the achievability of capacity, although the code
length may be very long.)

The CRB may be formulated with both random and
deterministic parameter models; random models lead
to useful insights into ensemble behavior whereas
deterministic models provide means for assessing

specific realizations of channels and sources. The chan-
nel CRB may also be a function of the unknown data
transmitted simultaneously with the pilots. When the
unknown data are treated as random parameters, they
need to be marginalized to obtain the likelihood func-
tion. If, on the other hand, these unknown data are
treated as deterministic unknown parameters, then the
data may be viewed as nuisance parameters that affect
the CRB of the channel estimator. Incorporation of
known pilots into the bounds yields performance limits
for semiblind estimators.
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Information Theoretic Formulation

We illustrate here a simple case of PAT design from the
information theoretic point of view, which is germane

to many scenarios considered in the literature. Consider the
flat fading time-varying channel model

yt = htst + wt, (6)

where ht is a stationary ergodic channel process, st the
channel input, yt the output, and wt is additive white
Gaussian noise. We assume that a fraction η of the channel
resource is used for transmitting pilots using a fraction ξ of
the total power Ps. For OFDM with B carriers, this may cor-
respond to ηB carriers being used for pilot tones. For single
carrier transmissions, this may correspond to inserting pilots
periodically with period 1/η.

With the estimated channel process ĥt available at the
decoder, the model in (6) becomes 

yt = ĥtst + zt, zt = h̃tst + wt (7)

where h̃t = ht − ĥt is the estimation error. The above equa-
tion resembles the model when the channel (ĥ) is known
at the receiver. The difference is that noise zt is not neces-
sarily Gaussian or independent of st.

If the decoder takes ĥt as part of the observation and
uses it along with yt to decode st , the capacity of such a
scheme is lower bounded by the mutual information I(·; ·)
with any fixed i.i.d. distribution of st

C ≥ lim inf
n→∞

1 − η

n

n∑
i=1

I
(
si; yi, ĥi

)

= lim inf
n→∞

1 − η

n

n∑
i=1

I
(
si; yi|ĥi

)
,

where the equality is the result of applying the chain rule
under the assumption that the data source st is independent
of the channel estimate ĥt. If we choose st to be zero mean
Gaussian with variance (1 − ξ)Ps, i.e., st ∼ N (0, (1 − ξ)Ps),
and if the estimator ĥt is unbiased conditioned on ĥt, i.e.,
E(ht − ĥt|ĥt) = 0, then the conditional mutual information
I(si; yi|ĥi)can be lower bounded by 

I(si; yi|ĥi)≥ Eĥi

(
log

(
1 + (1 − ξ)|ĥi|2Ps

σ 2
w + (1 − ξ)PsE(|hi − ĥi|2|ĥi)

))
.

(8)

The proof and a more general bound can be found in [34].
Notice that, conditioned on ĥt, the noise term zt in (7) has
variance

E
(
|zt|2|ĥt

)
= (1 − ξ)PsE

(
|hi − ĥi|2|ĥi

)
.

Therefore, the lower bound in (8) appears as if the noise
term zt in (7) were independent Gaussian. This comes from
the fact that Gaussian noise is the worst uncorrelated addi-
tive noise for the Gaussian model [33], [34], [44]. 

The problem of PAT design can be formulated as maxi-
mizing the lower bound on capacity. Let P denote the set of
PAT parameters that specify η, ξ and the placement of pilot
symbols. For any conditionally unbiased estimator ĥt , the
optimal PAT scheme is given by

sup
P

lim inf
n→∞

1 − η

n

n∑
i=1

Eĥi

(
log

(
1 + (1 − ξ)|ĥi|2Ps

σ 2
w + (1 − ξ)PsEi,P

))
,

where we explicitly indicate the dependencies of the chan-
nel estimation error Ei,P

�= E(|hi − ĥi|2|ĥi;P) on the PAT
parameters P . If hi is stationary Gaussian and the MMSE
estimator is used, the estimation error Ei,P is independent
of ĥi. In some cases, the MMSE estimator is itself stationary,
which leads to a simpler optimization

sup
P

(1 − η)Eĥ

(
log

(
1 + (1 − ξ)|ĥ|2Ps

σ 2
w + (1 − ξ)PsEP

))
, (9)

where EP is the channel MMSE for a fixed pilot scheme. The
above optimization is performed with respect to the training
percentage η, power allocation ξ , and pilot placement that
affects the MMSE.



Source Estimation: BER, Error-Exponent Function, and MSE
For detection, BER (or symbol error rate) is the most
appropriate performance metric; it is also one of the
most dif ficult to characterize precisely. A more
tractable approach is to use BER bounds as the figure
of merit. To that end, Bhattacharyya and random
coding bounds [39], [42] can be considered. Also
relevant is the error-exponent function that measures
the decay rate of the error probability [38]. One can
also treat symbol detection as one of parameter esti-
mation, and use the MSE as the metric for
optimization. For example, MSE is widely used in the
design of equalizers.

A Tour of the Field
In reviewing the literature, we have two fundamental
questions in mind. The first is how much training is
needed. This problem is not well posed without con-
straints on data rates. The appropriate figures of merit
are of information theoretic nature, where there is a
tradeoff between having more training for better esti-
mation and more channel uses for higher rates. The
second question deals with how training symbols are
multiplexed into the data stream—the problem of opti-
mal placement. Here we can fix the percentage of train-
ing and optimize the placement of training symbols.
Both information theoretic and detection-estimation
measures can be used. With an extensive list of refer-
ences (see also [21] for full references organized
according to a few broad categories), our goal in this
section is to provide a few pointers with respect to the
two basic questions mentioned previously.

Information Theoretic Approaches to PAT
The use of information theoretic metrics is crucial to
reveal tradeoffs among PAT designs. In such settings a
PAT scheme provides side information about unknown
channels. Along this line, there is extensive literature
on reliable communications under channel uncertainty
(see [31] and references therein), which provides use-
ful tools for obtaining achievable rate expressions that
may be optimized with respect to PAT parameters.
Specifically, when channel estimates are available to the
receiver, bounds on mutual information [31], [33],
[34], [43] are the primary equations used in many of
the optimal PAT designs. These expressions, however,
do not incorporate the resources required to obtain
channel estimates. For the analysis of PAT systems, one

must take into account the resources allocated for pilot
transmission.

How Much Training Is Necessary?
A direct attack on the problem of training design using
Shannon capacity as the metric was made by Marzetta
[45], and later by Hassibi and Hochwald [36], where
the class of ergodic block fading multi-input, multi-
output (MIMO) channels were considered. The chan-
nel considered there was memoryless, hence the
problem of placing pilot symbols uninteresting.
Assuming time division multiplexed training, Hassibi
and Hochwald maximized a lower bound on channel
capacity, a MIMO version of (9), with respect to the
number of pilots used in the block and the power allo-
cated to pilots. The work of Hassibi and Hochwald
provided several interesting insights. They identified
that, in the low SNR regime and when the coherence
time (block length) was short, the optimal PAT
scheme incurred a substantial penalty; training can lead
to bad channel estimates, and no training may be
preferable. On the other hand, PAT was close to being
optimal in high SNR and long coherence time
regimes. This is consistent with the intuition that, with
a negligible price paid to obtaining high quality esti-
mates, we can assume that the channel is approximate-
ly known at the receiver.

The problem of PAT design for time varying chan-
nels was considered in [35] and [46]. Periodic place-
ments of pilot symbol of cluster size one were used,
although it was not obvious that one should not group
pilot symbols. Mutual information using a binary input
was discussed in [46], where a capacity lower bound of
the type in (9) was maximized with respect to the per-
centage of pilot symbols as well as the power allocation
in [35]. Cutoff rate is another information theoretic
measure that can be used for PAT design. In
[47]–[50], cutoff rate was used for optimizing PAT
design. Unlike the mutual information measure, the
use of cutoff rate leads to a more analytically tractable
framework that gives, for some cases, closed-form
power allocation [49], [50].

Optimal Placement of Pilot Symbols
When the channel has memory, the positions of the pilot
symbols can affect the performance significantly. For
intersymbol interference channels, for example, a trans-
mitted symbol is interfered by its predecessors, and the
effect of interference from data is different from that
from pilots. Our starting point here is to fix the percent-
age (in power or in the number of channel uses) of pilot
symbols and optimize the pilot symbol placement.

Using a capacity lower bound and a version of (9)
that incorporates frequency selective fading, the opti-
mal pilot placement for ergodic block frequency-selec-
tive fading channel of memory order L for both single
carrier and multicarrier transmissions are obtained in
[37]. For OFDM transmissions over block ergodic
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challenging task of receiver
design for unknown channels.



fading channels, pilot symbols are placed in frequency.
It is shown in [37] that the optimal placement that
maximizes the capacity lower bound is the periodic
placement in frequency. For the single carrier system
with TDM training, the optimal pilot placement is the
so-called quasi-periodic placement. Specifically, given a
packet with P pilot symbols and N unknown data sym-
bols, the optimal placement breaks P pilot symbols into
as small cluster size as required, and these clusters are
placed as evenly in the packet as possible. The
minimum cluster size may be dictated by a specific esti-
mation scheme. It turns out that the same strategy also
maximizes the outage capacity when the channel fading
is nonergodic [51]. The optimal PAT design for time
varying channels with memory is, in general, difficult.
Under certain conditions, the use of a basis expansion
technique can convert time and frequency selective
channels to a block fading model that allows the opti-
mization of PAT parameters [52].

Signal Processing Perspectives on PAT
We now consider PAT design when there is a fixed allo-
cation of training, focusing on performance measures
relating to detection and estimation in PAT systems.
There is a vast amount of literature in this area.
Typically, the analysis of a specific PAT structure is con-
sidered, and algorithms are developed that exploit this
particular structure. Readers will find a snapshot of these
results in the reference section and [21]. We focus here
on a few interference models and their PAT designs,
especially on the optimal placement of pilot symbols.

PAT for Block Fading Channels
Block fading channels are time invariant for the coher-
ence time, and then change to a different fading state.
This, of course, is an approximation but a reasonable
one for many applications. Channel estimation and
detection under such models are often performed with-
in each block with the help of pilot symbols.

For the block-fading (quasi-static) model, pilots are
used in each packet, and they can be exploited in differ-
ent ways (see Figure 4). The classic training based esti-
mator, ĥ = Ft (yp , sp), forms a channel estimate based
only on observations of the pilot symbols. A more
sophisticated class of estimators, referred to as semiblind,
use all available observations (i.e., pilot and data) in
forming a channel estimate ĥ = F (y , sp). This makes the
unknown data sd a nuisance parameter that can either be
marginalized or estimated jointly with ĥ .

Similar strategies also apply to detection. A mis-
matched detector assumes the estimated channel is cor-
rect and ignores those observations unrelated to the
symbols to be detected. A more sophisticated approach
is to view the channel estimates as part of the observa-
tion, so that the effective observation vector is [y , ĥ ]. A
noncoherent approach may bypass channel estimation,
directly using the observation data and the knowledge
of pilots.

The apparent first attempts for designing pilot place-
ments optimally were made by Rinne and Renfors [53]
and Negi and Cioffi [54] for OFDM in single-input,
single-output (SISO) systems. In [54], the authors
optimized pilot tone spacing for training-based MMSE
estimation. For a channel with order L , and for which
L + 1 tones are selected for training, they showed that
selecting pilot tones periodically (in frequency) results
in the minimum MSE. Recall that this is precisely the
same placement that maximizes the Shannon capacity
of an ergodic block fading channel. For multicarrier
systems, estimating carrier frequency offset (CFO) is
important. It has been shown in [55] that placing
equally spaced nulls (in frequency) minimizes the CRB.

When training-based estimators are used for single
carrier systems over intersymbol interference channels,
the PAT design is simple. All pilots should be clustered
into a single block. The only design left is the choice of
pilot sequence. Designing the optimal sequence is an
old problem dating back to the early 1960s [56], and
the work continues for different settings and objectives
(see a version of this article with full references [21]).
For semiblind channel estimation, on the other hand,
the positions of pilot symbols do make a difference as
pilots and data are both part of the estimation model.
Using the Cramér-Rao bound as the design metric, and
under a random channel model, optimal placement of
pilot symbols and power allocations are derived for
SISO and MIMO intersymbol interference channels in
[57]. It is shown that the optimal PAT scheme that
minimizes the CRB is independent of the prior channel
distribution and the SNR. The placement does depend
on the power allocation and the number of pilot sym-
bols in a block.

The CRB has also been employed to study the
impact of side information, including training, with
MIMO channels in [58] and [59]; see also the discus-
sion in “Beyond PAT: Some Generalizations.”
Identifiability of the unknown channel(s) may also be
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▲ 4. Training-based estimators rely on yp, while semiblind esti-
mators make use of the entire received block y.

yp

Data DataDataPilot Pilot

sp Pilot Pilot

Transmitted
s

Received
y



studied by considering the minimum conditions under
which the CRB exists (that is, the minimum conditions
under which the Fisher information matrix (FIM)
becomes full rank, which is referred to as FIM identifia-
bility). Necessary and sufficient conditions for this to
occur are provided in [60] and [61] covering cases
from SISO to convolutive MIMO channels. Minimum
conditions include the length of the training. For single
carrier with cyclic prefix, the single carrier counterpart
of OFDM, the idea of replacing the cyclic prefix by a
fixed training sequence, referred to as “known symbol
padding,” is proposed [62]. By inserting a short cluster
of training sequence at the beginning of each transmis-
sion block to maintain the cyclic structure, such a
scheme resembles the PAT scheme and allows frequen-
cy domain equalization with low complexity.

Channel estimation using a superimposed periodic
pilot sequence was considered in [63]. This idea of
exploiting the underlying cyclostationary statistics
induced by the periodic training sequence was further
explored and analyzed in [29]. Although the superim-
posed training may not be the optimal approach for
block fading frequency-selective channels, periodic
superimposed training leads to a low complexity chan-
nel estimation algorithm [29]. A superimposed pilot
scheme for space-time coded transmission over flat
block fading was considered in [25], where the prob-
lem setting is general but the optimal placement was
not found. The analysis, however, revealed the weak-
ness of superimposed training in the block stationary
case, showing that TDM training had lower CRB than
that of superimposed training. On the other hand, if
training must be included in every block and the chan-
nel estimation is accurate, the superimposed scheme
gives higher mutual information.

PAT for Fast-Fading Channels
By fast-fading channels we mean that the channel varies
within a slot for transmission, or within a packet, or
from symbol to symbol. We typically assume that chan-
nel variations are highly correlated, at least for a short
time, which is consistent with mobile channel measure-
ments [64]. Indeed, if the channel process behaves
independently from sample to sample, then training is
required for every sample and training placement is not
the issue. A practical model is the first order autore-

gressive (AR) model of the channel process {ht } that
leads to a state-space representation

ht+1 = αht + ut , yt = ht st + wt , (10)

where α characterizes the fading rate and ut is the driv-
ing noise. When ut is a white Gaussian sequence, the
previous model is also referred to as the Gauss-Markov
model. Higher order AR models have also been
employed for mobile channel modeling. AR models
provide a reasonable fit to the widely used Jake’s model
that characterizes the power spectral density of the
channel process ht .

In some applications, one must model the channel as
doubly selective, i.e., it is both time varying and fre-
quency selective. Both intersymbol interference and
fading correlation introduce memory to the model.
Thus PAT design will again affect the performance and
is also more challenging. A useful technique is to con-
vert the doubly selective channel to either a time or fre-
quency selective model. For example, the idea of a basis
expansion model [65] allows us to absorb the time-
varying part of the channel into a set of known basis
functions and therefore converts a general time varying
model to a block frequency-selective fading model or a
flat fading model. The number of basis coefficients
grows with the packet size, so the method is generally
appropriate for short blocks. See, for example, [52].

Single Carrier System
For fast flat-fading channels, when pilots are time-divi-
sion multiplexed, it is intuitive that pilots should be
inserted periodically, although no simple proof exists.
For Markov channels with a causal linear MMSE esti-
mator, the optimality of periodic placement of cluster
size one was established in [28]. For bandlimited fad-
ing models, the optimality of such PAT scheme,
though expected, has not been established.

The superimposed pilot scheme was compared with
the TDM scheme for time varying flat fading channels
in [28], using the Gauss-Markov channel model in
(10). Under the same overall power allocation, it was
shown that the superimposed scheme performs better
for fast fading channels, which confirms the intuition
that the constant presence of training in the superim-
posed scheme has considerable benefit. When the chan-
nel is fading slowly and the SNR is high, there is a
penalty for using superimposed training because data
transmission interferes with channel estimation. An
example from [28] is shown in Figure 5, comparing
TDM and superimposed training, plotting BER against
α . For the superimposed case, a Kalman filter was
employed to track the channel and estimate the data;
steady state was typically achieved after 20 symbols.
Notice that, except for very slow time variation
(α → 1), the superimposed scheme is preferred.
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Significant potential gain
can be realized in some
cases if pilot symbols are
designed optimally and
placed judiciously.



OFDM
Pilot placement for fast fading OFDM was considered
in [66]–[68]. When the channel experiences symbol-
by-symbol variation, the orthogonality of OFDM is
destroyed causing intercarrier interference (ICI), com-
plicating channel estimation. In [68], the authors ana-
lyzed the ef fect of intercarrier inter ference on
MIMO-OFDM. They proposed an ICI-mitigating lin-
ear filter, as well as a channel estimation and tracking
scheme. The authors showed that grouping pilot tones
into equally spaced clusters is more effective for time-
varying channels than equally spaced pilot tones, while
the later is shown to be optimal for time-invariant

channels. Garcia et al. considered hexagonal placement
in [66], with the intuition that hexagonal placement
has the best coverage in the time-frequency plane.

CDMA and Diversity Systems
The pilot channel design for CDMA systems has been
studied by many. The optimal power ratio of pilot and
data channels was obtained in [69]. Under the optimal
power ratio, the loss due to imperfect channel estimation
was calculated. In [70], optimal pilot symbol spacing for
pilot symbol assisted binary phase shift (BPSK) over
Rayleigh fading channels with L diversity paths is
obtained. The loss due to imperfect channel estimation
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Channel Estimation Under TDM PAT

Awidely considered PAT scheme is one in which a single
pilot is inserted once every T transmission symbols.

Specifically, snT are pilots for all n, and st are data otherwise.
The linear minimum mean square error (L-MMSE) is typical-
ly used. If the fading process ht can be modeled as a first
order AR process as in (10), a low complexity causal estima-
tor for flat fading channels using all previous pilots is the
Kalman predictor based on (10). The L-MMSE estimator,
which is also the MMSE estimator when ht is Gaussian, has
the form

ĥnT = ĥ(n−1)T + Kn
(
ynT − αT ĥ(n−1)TsnT

)
(11)

ĥnT+i = αi ĥnT (12)

where Kn is the Kalman gain [78]. A closed-form expression
for the MSE at each time instance can be obtained. For this
model, the further away from a pilot position, the higher
the MSE of the estimator, which suggests the possibility of a
modulation and coding strategy that takes into account the
quality of the channel estimates (see [46] and [79]).

The frequency domain fading models (such as the Jake’s
model) make the design of a causal channel estimator
more difficult, although the noncausal MMSE estimator that
uses both future and past pilots is easy to derive (for exam-
ple, see [4] and [35]).

Let the observation space Y = {yt} be decomposed into the
pilot subspace Yp = {ynT} and the data subspace
Yd = Y − Yp. Assuming that the data sequence is white and
independent of the noise, we see that Yp is orthogonal to Yd ,
i.e., E(ydy∗

p) = 0 for any yd ∈ Yd and yp ∈ Yp. Furthermore, the
channel process ht is also orthogonal to the data subspace Yd .
This implies that those samples corresponding to data trans-
mission are not useful in channel estimation and can be dis-
carded. Next, to estimate hnT+i, we only need Yp, and the
standard noncausal Wiener filter in the frequency domain is
given by Fi(ω) = (S(i)

h,yp
)/((ω)Syp(ω)), where Syp (ω) is the power

spectral density (PSD) of {ynT }, and S(i)
h,yp

(ω) is the cross spec-
tral density between hnT+i and {ynT }. The MMSE is given by

Ei = E
(|hnT+i|2

) − 1
2π

∫ ∣∣S(i)
h,yp

(ω)
∣∣2

Syp(ω)
dω. (13)

Note that S(i)
h,yp

(ω) can be related to the PSD of the channel
process. The cross-correlation function between {hnT+i} and
{ynT} is given by

Rhi,yp(k)
�= E

(
hnT+iy∗

(n−k)T

) = Rh(i + kT)

where Rh(m) is the autocorrelation of the channel process,
and we assume that all pilots have the same value. Note
that Rhi,yp(k) is a down-sampled channel autocorrelation
function (by a factor T). It is interesting to observe, as in [4]
and [35], that when the PSD of the channel process has a
low bandwidth so that the sampling of Rh(n) causes no
aliasing, we then have

S(i)
h,yp

(ω) = 1
T

Sh

(ω

T

)
e j ω

T i.

Substituting the above into (13), we conclude that, when
the percentage of pilots is high enough to satisfy the
Nyquist sampling theorem and the doubly infinite non-
causal Wiener filter is used, then there is no need to consid-
er varying coding and modulation strategy at different
positions of data transmissions. When the percentage of
pilot symbols drops below the Nyquist rate, however, the
MMSE of the channel estimator again varies with the data
position. Varying modulation and power allocation accord-
ing to data position becomes an option. Note that there is
no obvious reason, from information theoretical viewpoints,
that the pilot symbols need to be inserted at a rate higher
than the required Nyquist sampling rate, so that the low
pilot rate cases should not be discounted.



was also calculated. In [47], the author provided a com-
prehensive analysis and performance comparison under
two training schemes (pilot channel assisted and pilot
symbol assisted schemes) in CDMA systems in terms of
channel estimation, detection, and cut-off rate. Training
parameters were optimized based on Bhattacharyya
bounds and cutoff rates. The optimal pilot spacing of
PSAM transmission for an LMMSE channel and data
estimator over flat Rayleigh fading channels for multi-
user CDMA systems was discussed in [71]. The estima-
tion of both time- and frequency-selective channels for
single-user CDMA systems was addressed in [72], where
a pilot channel was used in parallel to the data channel.

Ultra Wideband
PAT is highly warranted in ultra wideband (UWB)
communications, due to the significant challenges of
acquisition, synchronization, and equalization in this
high bandwidth regime. An interesting way to incorpo-
rate training is via a transmitted reference (TR)
approach, an old idea that has received attention
recently in the UWB context [73]–[75]. TR schemes
significantly reduce the receiver complexity but come at
a high performance penalty. More generally, optimal
training in the UWB context is considered in [76], and
the impact of imperfect channel estimates with training
in a DS-like UWB approach is analyzed in [77].

Beyond PAT: Some Generalizations
Pilot symbols carry no information. In packet networks,
packets have headers that are not completely known,
but they are highly protected by error control codes. In
applications such as wireless LANs, for example, each
user may need to decode the header first and only pro-
ceeds to decode the payload if the packet is intended for
this user. It is then natural to consider whether the

header part can be treated as pilots—an idea that has
been used for equalization [80]—and whether the opti-
mal PAT design applies also to the design of the header.

A generalization of PAT design is to consider the
transmission of a mixture of low-rate and high-rate
sources. While the protocol header can be viewed as a
low-rate source, a more interesting case is the mixing of
voice transmission with that of data. If the low-rate
source is decoded first, it is natural to consider using
them as pilots, and the issue of optimal design of pack-
ets that contain both low-rate and high-rate sources
arises. The new challenge here is to deal with detection
errors and analyze how such detection errors affect the
overall performance. Given that there are (albeit small)
errors in decoding the low rate sources, one may ask
whether the PAT strategies apply to the header design.
For time varying channels, should the low rate source
be periodically inserted in the payload? An initial
attempt to this problem is given in [81].

Previously we have noted how training can be
viewed as side information and incorporated into semi-
blind channel estimation and decoding algorithms.
Often, additional side information is available at the
receiver. Examples include constant modulus signals
(or more generally known constellation), known
power levels, known angles of arrival, space-time cod-
ing, precoding, and others. Exploiting the additional
side information can result in significantly enhanced
channel estimates and cochannel interference rejection.
Alternatively, exploiting the side information can lower
the required amount of pilots for a given performance
level. The constant modulus (CM) property is particu-
larly powerful in this regard and leads to tractable
algorithms. The impact of many forms of side informa-
tion may be analyzed using the constrained CRB [82],
[83]. Examples include MIMO space-time coding

IEEE SIGNAL PROCESSING MAGAZINE22 NOVEMBER 2004

▲ 5. Comparison of TDM and superimposed training with a flat time-varying channel [28]. 

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
10−2

10−1

100

Fading Correlation Coefficient a 

B
E

R

SNR=20 dB, η=0.1 

TDM:RPP−1 (max BER)
Superimposed
TDM:RPP−1 (avg BER)

. . . . . .

Periodic Training

Superimposed Training



[84] and performance of semiblind CM algorithms
with cochannel signals [59], [85]. These examples
demonstrate the reduced training sizes needed when
the CM property is exploited.

An example from [59] is shown in Figure 6, depict-
ing channel estimation performance against training size
(block fading, block size = 30, two sensors, two 8-PSK
sources with 15◦ spatial separation, and source SNRs of
15 and 20 dB, respectively). CRBs are shown for train-
ing-only, semiblind, and CM semiblind channel estima-
tion. Training-only and semiblind bounds are
coincident; in this scenario more sensors than sources
are required to obtain improvement with training [86].
The addition of the CM constraint relaxes the amount
of training needed. Performance of two algorithms are
also shown. First, blind estimation based on a zero-forc-
ing version of ACMA [87], and second, a semiblind
CM algorithm based on scoring with ZF-ACMA initial-
ization. The scoring algorithm exploits the training and
data (semiblind) as well as the CM property, and comes
very close to the CM semiblind CRB.

Conclusions
In this article we have presented an overview of PAT. A
general PAT model was given, and common design cri-
teria have been reviewed. Also, information theoretic
and signal processing issues have been discussed. The
optimal design of PAT is application specific and is
often dominated by implementation concerns. It is
fruitful in pilot designs, however, that the performance
limits be part of the design process, with joint consider-
ation of transmitter and receiver issues.

A number of new applications call for careful PAT
design. Of particular interest is the pilot design in an
asynchronous networking environment, where packets
collide and the pilot symbols in the packet may be
destroyed [88]. The design of PAT is therefore coupled
with the medium access control that requires cross
layer considerations. Emerging applications in wireless
LANs, ultra wideband communications, and sensor
networks all require some form of PAT design.
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▲ 6. Channel estimation bounds and algorithm performance with
two constant modulus sources, plotted against number of pilots in
a packet of length 30 [59].
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