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Joint Order Detection and Blind Channel
Estimation by Least Squares Smoothing

Lang Tong,Member, IEEE, and Qing Zhao

Abstract—A joint order detection and blind estimation algo-
rithm for single input multiple output channels is proposed. By
exploiting the isomorphic relation between the channel input and
output subspaces, it is shown that the channel order and channel
impulse response are uniquely determined by finite least squares
smoothing error sequence in the absence of noise. The proposed
subspace algorithm is shown to have marked improvement over
existing algorithms in performance and robustness in simulations.

Index Terms— Blind channel identification, least squares
method.

I. INTRODUCTION

ONE OF THE most important requirements for blind
channel estimation and equalization is the speed of con-

vergence. This is especially the case when it is used in packet
transmission systems where only a small number of data
samples are available for processing. Among blind channel
estimation techniques developed recently [12], those based
on the so-called deterministic models have a clear advantage
in the speed of convergence. Without assuming a specific
stochastic model of the input sequence, these “deterministic”
techniques are capable of obtaining perfect channel estimation
within a finite number of samples in the absence of noise.
Such a finite-sample convergence property comes mainly from
the exploitation of the multichannel structure first used in
[13]. Existing algorithms with this attractive feature include
the subspace (SS) algorithm [7], the cross relation (CR) (also
referred to as the least squares) algorithm [16], the EVAM [5],
the two-step maximum likelihood (TSML) approach [6], and
the linear prediction-subspace (LP-SS) algorithm proposed by
Slock [9].

Existing algorithms with the finite-sample convergence
property share a common difficulty: the determination of
channel order. While many order detection algorithms can be
applied (see, e.g., [15] and references therein), the approach
of separate order detection and channel estimation may not
be effective, especially when the channel impulse response
has small head and tail taps. Addressing this issue, a class of
channel estimation algorithms based on the linear prediction
(LP) interpretation of multichannel moving-average processes
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have been proposed first by Slock [9], followed by Slock and
Papadias [10], Abed-Meraimet al. [1], [3], and more recently,
by Gesbert and Duhamel [4]. Although only the upper bound
of the channel order is required, these algorithms, with the
exception of the (LP-SS) approach [9], which still requires
the knowledge of the channel order, suffer considerable
performance loss due to the requirement that the input
sequence is white. Consequently, these algorithms need a
relatively large sample size for accurate channel estimation,
which causes the loss of finite-sample convergence property.
Further, we may argue that although these algorithms provide
a consistent estimate with only the knowledge of the bound
of the channel order, overdetermination of the channel order
does affect the performance when the sample size is finite.

The contribution of this paper is twofold. First, by ex-
ploiting the isomorphic relation between the input and output
subspaces, we introduce a geometrical approach to linear
least squares smoothing channel estimation that preserves the
finite sample convergence property. This geometrical approach
provides a simple and unified derivation of different LP-based
channel estimators. Second, we develop a joint order detection
and channel estimation algorithm that aims to minimize the
smoothing error by jointly choosing the channel order and
coefficients. When compared with existing approaches, the
proposed algorithm provides considerable improvement in
convergence over LP-based approaches. There is also marked
improvement over CR and SS algorithms in robustness against
the loss of channel diversity.

This paper is organized as follows. Section II presents a list
of key notations followed by the channel model. Geometrical
properties of least squares smoothing based on the isomorphic
relation between the output and input subspaces are presented
in Section III. In Section IV, we present a general formulation
of LSS, data structures used in algorithm development and
their properties, and a joint order detection and channel estima-
tion algorithm. Simulation results are presented in Section V,
where we compared the proposed algorithm with existing
techniques. In conclusion, we comment on the strength and
weakness of the proposed approach.

II. THE MODEL AND PRELIMINARIES

A. Notations

Notations used in this paper are mostly standard. Signals
are discrete-time and complex in general. We use to
denote the -transform of signal and stands for
the convolution of and Upper- and lower-case bold
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Fig. 1. Single-input multiple-output linear system.

letters denote matrices and vectors, respectively.and
are transpose and Hermitian operations. Matrix stands
for the zero matrix. Given a matrix is
the Row (column) space of matrix For a matrix having
the same number of columns as is
the projection of onto (orthogonal complement of) the row
space of For a set of vectors ,
denotes the linear subspace spanned by
denotes the 2-norm. Finally, denotes the
Vandermonde matrix specified by

...
...

(1)

B. The System Model

The identification and estimation of a single input-output
linear system (channel), shown in Fig. 1, using only the
observation data is considered in this paper. The system is
described by

(2)

where is the (noiseless) channel
output, is the additive noise, is the received signal,

is the channel impulse response, and
is the input sequence. Consider a block ofsamples of the

observation in (2), and let
With , and similarly defined, we have

(3)

where the complex matrix is the so-called
filtering matrix

...
... (4)

Our goal is to estimate from
All signals are deterministic, although most results

can be generalized to statistical models of the input and noise.

The following two assumptions (one on the system, the other
on the input sequence) are made throughout the paper.

A1) There exists a (smallest) such that the filtering
matrix has full column rank.

A2) The input sequence has linear complexity [2] greater
than i.e.,

rank ... Toeplitz (5)

Assumption A1, which was first exploited in [13], is neces-
sary for all methods based on (general)deterministicmodeling
of the input sequence. Specifically, ifA1) is not satisfied, there
exists a different such that , i.e., two
channels and their inputs produce the same noiseless observa-
tion and are unidentifiable from the observation. Implications
of A1) are summarized below.

Property 1: UnderA1), we have the following:

P1.1) The subchannel transfer functions do not share com-
mon zeros, i.e., are co-prime.

P1.2) has full column rank for all
P1.3) If , then In general,

AssumptionA2) ensures that the input sequence is suffi-
ciently complex to excite the channel, and it is related to
the persistent excitation condition. The minimum required for
the smoothing technique presented in this paper is assumed
here. Larger complexity may be necessary, depending on
the implementations, which will be pointed out later in our
discussion. We note here thatA2) is stronger than necessary.
It is shown in [11] that when , the necessary and
sufficientcondition for the unique identification of the channel
and its input is A1) and that the input sequence has
linear complexity greater than The reason that a stronger
condition is required due largely to the smoothing approach
that requires both future and past data.

III. GEOMETRICAL PROPERTIES

OF LEAST SQUARES SMOOTHING

The essential idea behind the linear prediction and smooth-
ing approaches to channel estimation rests on the isomorphic
relationship between the output and the input subspaces. It is
this isomorphic relation of the two spaces that allows us to
avoid the direct use of input sequence, using instead the input
subspace that can be obtained from (noiseless) observation.
Our presentation relies heavily on geometrical intuition. It is
therefore necessary to begin with precise definitions of relevant
variables and spaces.

A. Key Variables, Spaces, and Isomorphic Relations

From (2), let be the row vector of input symbols and
be the data matrix of the noiseless observation defined,

respectively, by

(6)
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Consider next subspaces spanned by consecutive
vectors

... Toeplitz

(7)

... Block
Toeplitz

(8)

The above definition also applies to , in which case,
we have the span of future data vectors. It is also useful
to note that

(9)

Given a linear subspace, the orthogonal projection of
and its projection error are defined by

(10)

Similarly, the (row-wise) projection of onto a linear
subspace is a matrix whose rows are projections ofonto

Playing a critical role in the smoothing as well as LP-based
approaches is the equivalence between the input and output
spaces as a result ofA1) andP1.2). Specifically, we have the
following.

Properties 2: UnderA1), for i.e.,
is isomorphic to with isomorphism

In general, for any This implies that
given a fixed observation window, the input space
may not be “seen” completely from the output space
On the other hand, withA1), all the information of the input
space is contained in the output space when subchannels
do not have common zeros [P1.1)] and is chosen large
enough. Such equivalence enables us to replace the direct
use of input sequence by the use of observation in channel
estimation. Interestingly, whenA1) does not hold, may
still be a good approximation of , which is one of the
reasons that the algorithm proposed here offers considerable
improvement in robustness over existing methods such as the
subspace algorithm (SS) [7] and cross relation (CR) algorithm
[16].

B. Least Squares Smoothing—The Basic Idea

The isomorphism between the input space and the
output spaces leads to the following question:Can the
channel be identified from without the direct use of the in-
put sequence and how?Without going into implementation
details, we explain in this section how this can be achieved
by properly constructing subspaces that contain both past and
future data, namely, by smoothing. LSS algorithms and their
implementation issues are presented in Section IV.

Fig. 2. Projection ofxxxt+i onto _St:

1) The Use of Input Subspaces:From (2) and (6), we have

(11)

To avoid cumbersome boundary problems, we assume for the
moment the data size is infinity, i.e., Let be the
subspace that includes all future and past input data except

, i.e.,

(12)
Projecting onto with only not contained in ,
we have

(13)

(14)

The above process is illustrated in Fig. 2. The similarity of
two right triangles immediately suggests (14).

Note that the projection error of is independent of
Consequently, we have

... (15)

From , there are several ways of findingup to a scaling
factor, and they have different performance when there is
noise and when other implementation issues are considered.
We remark that because subspaces are invariant with respect
to scaling, the identification of up to a scaling factor using
only the inputsubspaceis the best we should expect. One
approach is the least squares fitting of the column space of

(16)

The above optimization can be obtained by the singular value
decomposition of either or the sample covariance of the

projection error sequence , where is the
number of columns in

There is an interesting connection with the conventional LS
approach when the input sequence is known. Indeed, were the
input sequence available, the LS channel estimate would have
been

... (17)
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Fig. 3. Isomorphism between input and output subspaces.

which is the same as that in (16). The second equality is
obtained by using the formula of inverting matrices with
subblocks [8, p. 413, A20.].

2) Use of Output Spaces-Least Squares Smoothing:The
identification procedure presented above requires the projec-
tion of onto the input space Because is isomorphic
to , the application of the above approach using only
the received signal requires only a careful construction of the
output subspace that is isomorphic to Specifically, using
Property 2 and (9), we have

(18)

(19)

The isomorphism between the input and output subspaces is
illustrated in Fig. 3. The idea of smoothing arises naturally
as the projection of onto in (14) is equivalent to the
projection of onto the output subspace spanned by all the
past data and future data From (15), we
have the identification equation of the LSS approach [14]

... (20)

where the left-hand side can be obtained from the observation
alone.

IV. A LGORITHM AND IMPLEMENTATIONS

In this section, we provide more details about the LSS
approach including its properties and implementations. We
begin with a general formulation of LSS that forms the basis
of our approach. Data structures of the LSS approach are
specified along with their properties. We then derive a joint
order detection and channel estimation algorithm and discuss
its implementations.

A. General Formulation of LSS

The projection space defined in (19) requires the
knowledge of channel order. We consider here a more general
formulation of the problem by defining slightly different
projection spaces that enable us to deal with practical issues
such as finite sample size and unknown channel order. Instead
of using the projection space given in (19), consider the
smoothing of observations by forward

and backward predictors of order The projection
space is given by

(21)

We notice that is essentially the same as that defined in
(19), except that we treatas a variable not necessarily equal
to the channel order Because of the isomorphic relation
between the output and input spaces, we have, using (9)

(22)

Therefore

(23)

Projecting onto , we have the
following result as a generalization of (15).

Theorem 1: Let the forward and backward predictor order
Let be defined in (22), and let be the

projection error matrix defined by

... (24)

Then

...

...
...

. . .
...

(25)

Further, if has linear complexity greater than
and

(26)

Proof: From (11), (21), (23), we have, for

(27)

(28)

With for all and , the above equation
leads to (25).
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To prove (26), we need to show that the projection error
matrix of the input sequence in (25) has full row rank. Consider
the Toeplitz matrix

...

...

...

(29)

With in (25), we note that

... (30)

When has linear complexity greater than ,
has full row rank, which implies that has full row
rank. We now have (26).

The above result holds the key to our approach, especially
when the channel order is unknown. When the smoothing
window size is too small, the smoothing error contains no
information about the channel because all input sequences are
in the output space. When , we have the case described
in Section III-B, where the channel vector spans the column
space of When the window size is greater than the
channel order , the projection space misses more than,
which complicates the channel identification. Nonetheless, it
is shown in Section IV-C that the column space of still
uniquely determines the channel vector, which, along with
another useful property of , forms the basis of a joint
order-detection and channel estimation algorithm that requires
only the upper bound of the channel order.

B. Data Structures

We consider now the problem of estimating the channel
using only a finite number of received signal samples

For a fixed predictor size and smoothing
window , define the overall data matrix

...

...

...

(31)

from which we have defined the “current” data matrix ,
the “past” data matrix , and the “future” data matrix

Denote the “future-past” data matrix as

(32)

(33)

To see the relation between these data matrices and various
spaces, we summarize their properties. The rank conditions
given below are useful in dealing with noise by finding the
least squares approximation of the noisy data matrix.

Property 3: Suppose that the input sequence has linear
complexity greater than and there is no noise.
For , we have the following properties.

P3.1) Data Matrix

rank (34)

P3.2) Past Data Matrix

(35)

rank (36)

P3.3) Future Data Matrix

(37)

rank rank (38)

P3.4) Projection Data Matrix

(39)

rank (40)

Proof: See the Appendix.

C. J-LSS: Joint Order Detection and
Channel Estimation via LSS

If the channel order is known or can be detected, channel
estimation by LSS can be derived directly from (20). This
approach and its adaptive implementations are explored in
[14], [18], and [17]. Here, we describe ajoint order detection
and channel estimationapproach based on Theorem 1 and
the data structure defined above assuming only that an upper
bound of channel order is available.

The idea here is to fit the smoothing error matrix
by jointly choosing both the channel order and the channel
impulse response. With fixedas the upper bound of the true
channel order , recall Theorem 1 for the case when
Consider the smoothing error matrix
obtained from projecting onto the row space of We
now have from (26), when there is no noise

(41)

Letting be the matrix whose row vectors
are orthogonal to the range space of , we then have
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which implies

Block
...

Hankel

... (42)

In other words, the channel coefficients satisfy a homogeneous
linear equation. What remains to be answered is whether the
solution is unique up to a scaling factor. The proposed joint
order detection and channel estimation algorithm is motivated
by the following Theorem.

Theorem 2: Assume that there is no noise, and the input
sequence has linear complexity greater than As-
sume also that the channels do not share common zeros. Let

be the projection error matrix, and let

be the sample covariance matrix
of the smoothing error sequence. Let the rows ofbe the
singular vectors associated with
smallest singular values of , and let be partitioned by

submatrices Define

Block
...

Hankel

(43)

Then, the homogeneous linear equation

(44)

has the unique nontrivial solution when and
trivial solutions otherwise.

Proof: See the Appendix.
We note that the above result does not apply to the subspace

algorithm. When , (44) defines a channel estimator
that bears some similarity to the subspace algorithm used by
Moulineset al. [7]. In both cases, the so-called noise subspace
is used in constructing a homogeneous linear equation of
which the channel vector is a unique solution. However, there
are several important differences. First, the filtering matrix

used in the subspace approach is different from the
smoothing error matrix . Maybe more importantly, the
homogeneous equation used in the subspace algorithm has
nontrivial solutions when the estimated channel order is larger
than the true channel order, which is the reason that the
joint order detection and channel estimation approach does
not apply to the subspace algorithm directly.

It is perhaps surprising that when , (44) has only the
trivial solution. Intuitively, we can argue as follows. When the
channel order is overdetermined, i.e., , in constructing

, we must include eigenvectors that are in the range space of
, which leads to inconsistency of (Note that

such inconsistency does not occur for the subspace algorithm
when the channel order is overdetermined.) For a generically
chosen channel, has full column rank. On the other
hand, when the channel order is underestimated , there
are an insufficient number of parameters to specify the null
space of

Theorem 2 enables us to define the following joint channel
order detection and estimation criterion:

(45)

The above optimization has a closed-form solution involving
the singular vector associated with the smallest singular value.
The joint order detection and channel estimation approach,
which is referred to as J-LSS, is summarized in Fig. 4.

There are many ways of implementing the algorithm out-
lined in Fig. 4. We discuss here several implementation issues
that are likely to affect the performance.

The Smoothing Window Size: It is clearly possible to im-
plement the algorithm with variable smoothing window size.
For simplicity, we considered the fixed window size case. Al-
though not necessary for , the smoothing window size,
in theory, upper bounds the channel order. In practice, channel
order is perhaps fictitious, and we can always argue thatcan
never upper bound the “true” channel order. Fortunately, when

for , the performance is not drastically affected as
long as these “spill-out” coefficients are sufficiently small. In
the simulation example shown in Section V, the robustness of
J-LSS with respect to the underestimation of channel order
is clearly demonstrated. In such a case, the finite-sample
convergence property is lost as in all other algorithms.

Order Selection for the Predictors:
In selecting the order for the forward and backward

predictors, we should observe the following factors. First, for
fixed data length, large implies a fewer number of columns
in data matrices. This corresponds to smaller sample size in
least squares problems. In this regard, it is desirable to choose

as small as possible, which is the reason why we have
considered in the algorithm. Certainly, if ,
a smaller can be choosen. On the other hand, larger
may provide a certain degree of robustness, especially when
subchannels have zeros approximately common near the unit
circle. It is clearly possible to vary the predictor sizewith

V. SIMULATION EXAMPLES

A. Algorithm Characteristics and Performance Measure

Simulation studies of the proposed LSS algorithms as they
are compared with existing techniques listed in Table I are
presentd in this section. We remark that only J-LSS does not
require the knowledge of channel order while still preserving
the finite sample convergence property.

Algorithms are compared by Monte Carlo simulation us-
ing the normalized root mean square error (NRMSE) as a
performance measure. Specifically, NRMSE is defined by

NRMSE1 (46)

1 The inherent ambiguity was removed before the computation of NRMSE.

This includes scaling and adjusting delays by adding zeros to either

or
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Fig. 4. J-LSS algorithm.

TABLE I
LIST OF ALGORITHMS COMPARED IN THE

SIMULATION AND THEIR CHARACTERISTICS

where was the estimated channel from theth trial.
Noise samples are generated from i.i.d. zero mean Gaussian
random sequence, and the signal-to-noise ratio (SNR) was
defined and given by

SNR (47)

where was the noise variance. The input sequence to the
channel is an i.i.d. quadrature phase shift keying (QPSK)
complex sequence.

B. Performance Comparison: A Multipath Channel

Fig. 5 shows the NRMSE performance comparison us-
ing a four-ray multipath channel generated from the raised-
cosine pulse. The T/2-sampled channel parameters are given in
Table II with even and odd samples corresponding to the two
subchannels. This channel has severe intersymbol interference.
It is also close to violate the identifiability condition in the
sense that the filtering matrix has condition number

Fig. 5. NRMSE performance comparison for the multipath channel. One
hundred Monte-Carlo runs. One hundred input symbols. Legend: SS: ‘’; CR:
‘�’; LP-SS: ‘+’; LP-LS: ‘�:’; MSP: ‘�’; LSS: ‘*’; J-LSS: ‘�’.

TABLE II
MULTIPATH CHANNEL

around We have also performed simulation compar-
isons for well-conditioned channels [18]. The performance of
J-LSS and SS are comparable in those cases.
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Fig. 6. Scatter-plots of 100 estimates at SNR= 30 dB. Solid lines: true channel. Left: J-LSS estimates. Right: SS estimates.

Observations and Discussions:

• J-LSS performs considerably better than the rest of the
algorithms although its behavior is somewhat peculiar.
Because the multipath channel has small head and tail
taps, correct channel order detection is difficult. Conse-
quently, J-LSS almost always underdetermines the chan-
nel order during the SNR range from 20–80 dB. On
the other hand, it is perhaps not wise to estimate these
small head and tail taps. Instead, it is better, as J-LSS
apparently aims to do, to find the channel order as well as
its impulse response that matches the data in some optimal
way. Fig. 6 shows the scatterplot at 30 dB SNR of the
magnitude response of the J-LSS and the SS algorithms.
In this case, the J-LSS algorithm has detected channel
order (rather than the true channel order ).
As we can see, the J-LSS algorithm captures the four
major taps of the channel impulse response. In contrast,
when the true channel order is used in the SS algorithm,
the performance of the estimator is rather poor.

• It appears that CR, SS, and LSS perform comparably.
Indeed, all of them assume knowledge of the channel or-
der, and all have the finite sample convergence property,
although this shows up only at relatively high SNR. From
the implementation point of view, the advantage goes to
the LSS algorithm that has a recursive implementation
both in time and in channel order [17], [18].

• It is interesting to observe that when the channel order is
correctly detected at high SNR, J-LSS is slightly worse
than CR, SS, and LSS, although the difference eventually
disappears as SNR This is due to the selection of

in J-LSS, which reduces the effective sample size
in the estimation.

• MSP performs better than LP-SS and LP-LS because it
estimates the channel in a single step, whereas LP-SS
and LP-LS estimate first. For this multipath channel,
the estimate of is rather poor. MSP and LP-LS levels
off as SNR because of the loss of finite sample
convergence. The floor reduces as the number of samples
increases. Note also that LP-SS does indicate finite sample
convergence, although its breaking point occurs about 20
dB higher than that of CR, SS, and LSS.

Fig. 7. NRMSE performance comparison for the multipath channel. One
hundred Monte Carlo Runs. One hundred input symbols. Channel order
under-determined by 1. Legend: SS: ‘��’; CR: ‘�’; LP-SS: ‘+’; LP-LS:
‘�:’; MSP: ‘�’; LSS: ‘*’; J-LSS: ‘�’.

• In deriving the algorithm, we have assumed that the
smoothing window is greater than the channel order.
When this is not true, it is interesting to test the robust-
ness of J-LSS. Fig. 7 shows the performance of these
algorithms when the channel order is underestimated. In
this simulation, the upper bound on the channel order
used in J-LSS and the channel order used in all other
algorithms are underestimated by one. We see that J-LSS
performs better than all other algorithms throughout the
entire SNR range. The flooring effect of all algorithms
comes from the underdetermination of the channel order.

VI. CONCLUSION

We have presented a geometrical approach to the least
squares smoothing algorithm for the blind estimation of mul-
tichannel finite-impulse response channels. The main idea
arises from the isomorphic relationship between the input
and output spaces, which serves as the basis of smoothing
and linear prediction-based algorithms. The LSS approach to
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channel estimation preserves the finite sample convergence
property critical to short data sample applications. The main
attraction of the joint channel order detection and channel
estimation algorithm is that it does not require knowledge of
channel order and, at the same time, preserves the finite sample
convergence property. There are, of course, several weakness
of J-LSS. It requires a number of eigendecompositions that
can be computationally expensive (it costs about times
more than the subspace algorithms where is the upper
bound of the channel order). For certain channels, the joint
order detection and channel estimation approach may not be
as effective as one that detect the channel order first and
implement CR, SS, and especially LSS. In [17] and [18], we
explore this strategy by developing time and order recursive
schemes based on LSS.

APPENDIX

Proof of Property 3: Denote

...

... Toeplitz (48)

When has linear complexity greater than ,

rank (49)

From (3), when there is no noise, we have

(50)

(51)

Because ofP1.2) and (49), we have (34)–(38).
To proveP3.4), we note that

(52)

Under A1), has full column rank, and hence

(53)

Because of (49), we have (40).
Proof of Theorem 2:When channels do not share common

zeros, it is sufficient to consider the case for Let

where the two subchannels are
Define

...
...

...
...

(54)

For convenience, by rearranging rows of we have, for

...

... (55)

We now consider the equivalent problem of findingfrom
the column space of

Define

(56)

and let be the distinct roots. Then,
columns of the Vandermonde matrix
form the orthogonal complement of the column space of
We now consider three separate cases:

I)
II)
III)

Case I– : In this case, the full null space of is
used. Constructing matrix from singular vectors is equiva-
lent to that from , whose columns span
the null space of Therefore, solving from (44) is
equivalent to solving

(57)

which, after removing redundant equations, leads to solving
the homogeneous equation (58), shown at the top of the next
page. Because the roots are distinct, the solution of the
above is unique.

Case II: In this case, matrix is constructed from the
entire null space of along with eigenvectors in
the range space of In other words

(59)

where

full-rank matrix;
corresponds to the matrix constructed from columns
of
matrix associated with the eigenvectors in the
range space of
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...
...

...

...

(58)

...
... (60)

...
... (64)

To show that (44) has only the trivial solution, it is sufficient
to show that

rank

Treating as the estimated channel order, has the
form of (60), shown at the top of the page. We note that

has full column rank. Consequently,
the first columns of are linearly independent.
Because are distinct roots of , all other columns of

are linearly dependent on the first columns

rank (61)

Next, when , vectors from the range space of
are used to form , where each vector introduces
rows in the matrix For
generic channels, these vectors are linearly independent among
themselves and linearly independent to rows in i.e.,

rank

(62)

Therefore, rank ; hence, (44) has only the
trivial solution.

Case III— : In this case, again treating as an es-
timated channel order, null space vectors will be
used in forming Since forms the
orthogonal complement of the range space of , we have

(63)

where is a matrix with full
row rank. Since the singular vectors used to formare
associated with the repeated zero singular value,can be
considered to be a randomly generated
matrix. Further, we have (64), shown at the top of the page.
Because rank For randomly generated

matrix

rank (65)

Therefore, (44) has only the trivial solution.
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