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Joint Order Detection and Blind Channel
Estimation by Least Squares Smoothing

Lang Tong,Member, IEEE and Qing Zhao

_ Abstract—A joint order detection and blind estimation algo- have been proposed first by Slock [9], followed by Slock and
rithm for single input multiple output channels is proposed. By Papadias [10], Abed-Merai®t al.[1], [3], and more recently,
exploiting the isomorphic relation between the channel input and by Gesbert and Duhamel [4]. Although only the upper bound

output subspaces, it is shown that the channel order and channel f the ch | order i ired. th lqorith ith th
impulse response are uniquely determined by finite least squares.O € Channel oraer IS required, these aigorithms, wi €

smoothing error sequence in the absence of noise. The proposedexception of the (LP-SS) approach [9], which still requires
subspace algorithm is shown to have marked improvement over the knowledge of the channel order, suffer considerable

existing algorithms in performance and robustness in simulations. performance loss due to the requirement that the input
Index Terms— Blind channel identification, least squares S€quence is white. Consequently, these algorithms need a
method. relatively large sample size for accurate channel estimation,
which causes the loss of finite-sample convergence property.
Further, we may argue that although these algorithms provide
a consistent estimate with only the knowledge of the bound
ONE OF THE most important requirements for blinchf the channel order, overdetermination of the channel order
channel estimation and equalization is the speed of cafves affect the performance when the sample size is finite.
vergence. This is especially the case when it is used in packethe contribution of this paper is twofold. First, by ex-
transmission systems where only a small number of dgiiting the isomorphic relation between the input and output
samples are available for processing. Among blind channglbspaces, we introduce a geometrical approach to linear
estimation techniques developed recently [12], those bagggst squares smoothing channel estimation that preserves the
on the so-called deterministic models have a clear advantagfte sample convergence property. This geometrical approach
in the speed of convergence. Without assuming a specififovides a simple and unified derivation of different LP-based
stochastic model of the input sequence, these “deterministighannel estimators. Second, we develop a joint order detection
techniques are capable of obtaining perfect channel estimatigiti channel estimation algorithm that aims to minimize the
within a finite number of samples in the absence of nOngmoothing error by jointly choosing the channel order and
Such a finite-sample convergence property comes mainly frgfgefficients. When compared with existing approaches, the
the exploitation of the multichannel structure first used iproposed algorithm provides considerable improvement in
[13]. Existing algorithms with this attractive feature includeonvergence over LP-based approaches. There is also marked
the subspace (SS) algorithm [7], the cross relation (CR) (algBprovement over CR and SS algorithms in robustness against
referred to as the least squares) algorithm [16], the EVAM [She loss of channel diversity.
the two-step maximum likelihood (TSML) approach [6], and This paper is organized as follows. Section Il presents a list
the linear prediction-subspace (LP-SS) algorithm proposed §/key notations followed by the channel model. Geometrical
Slock [9]. properties of least squares smoothing based on the isomorphic
Existing algorithms with the finite-sample convergencgslation between the output and input subspaces are presented
property share a common difficulty: the determination gf Section Ill. In Section IV, we present a general formulation
channel order. While many order detection algorithms can e LSS, data structures used in algorithm development and
applied (see, e.g., [15] and references therein), the appro@e&ir properties, and a joint order detection and channel estima-
of separate order detection and channel estimation may geh algorithm. Simulation results are presented in Section V,
be effective, especially when the channel impulse responggere we compared the proposed algorithm with existing

has small head and tail taps. Addressing this issue, a classeghniques. In conclusion, we comment on the strength and
channel estimation algorithms based on the linear predictigakness of the proposed approach.

(LP) interpretation of multichannel moving-average processes

I. INTRODUCTION

Il. THE MODEL AND PRELIMINARIES
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) The following two assumptions (one on the system, the other
on the input sequence) are made throughout the paper.
Al) There exists a (smallesty, such that the filtering
RN matrix F,, (h) has full column rank.
N A2) The input sequence has linear complexity [2] greater
than L, = 2wy + 2L, i.e.,

\J/

St : (P)

SL.—L+1 Tt SN
P : rank : Toeplitz =L.+1. (5
U S1-L

;
W

Fig. 1. Single-input multiple-output linear system. Assumption A1, which was first exploited in [13], is neces-
sary for all methods based on (genedsd}erministicnodeling

of the input sequence. Specifically Afl) is not satisfied, there
exists a differenth,, 5,} such thath, = s, = h, * 3,, i.e., two
channels and their inputs produce the same noiseless observa-
tion and are unidentifiable from the observation. Implications
of A1) are summarized below.

Property 1: UnderAl), we have the following:

P1.1) The subchannel transfer functions do not share com-

letters denote matrices and vectors, respective}y.and (-)’
are transpose and Hermitian operations. Mafirjx..,, stands
for them x n zero matrix. Given a matrid, R{A} (C{A}) is
the Row (column) space of matria. For a matrixX having
the same number of columns ak P4{X} (Pj{X}) is
the projection ofX onto (orthogonal complement of) the row

space ofA. For a set of vectorgy, - --, ., sp{x1, -, %} i k
denotes the linear subspace spannedaby:--.z,. || - || mon zeros, i.e.{/;(z)} are co-prime.
denotes the 2-norm. Finally,,(z1, - - - , 2, ) denotes the.xm P1.2) Fy,(h) has full column rank for alky > w.
Vandermonde matrix specified By, - -, zm} P1.3) If P =2, thenw, = L. In generalw, < L.
AssumptionA2) ensures that the input sequence is suffi-
Ll ciently complex to excite the channel, and it is related to
V(- am) Al L Im (1) the persistent excitation condition. The minimum required for
: - : the smoothing technique presented in this paper is assumed
a:’l”_l ceogntt here. Larger complexity may be necessary, depending on
the implementations, which will be pointed out later in our
B. The System Model discussion. We note here thaAR) is stronger than necessary.

The identification and estimation of a single inge#output It is shown in [11] that whenP = 2, the necessary and
linear system (channel), shown in Fig. 1, using only theufficientcondition for the unique identification of the channel
observation data is considered in this paper. The systema its input isAl) and that the input sequence has

described by linear complexity greater tha®L. The reason that a stronger
L condition is required due largely to the smoothing approach
() = Z his,_; that requires both future and past data.
=0
y(t) ==(t) +nt), =12 N (2) IIl. GEOMETRICAL PROPERTIES
where z(t) = [z{",---,2{7]' is the (noiseless) channel OF LEAST SQUARES SMOOTHING
output,n(t) is the additive noisey(t) is the received signal, The essential idea behind the linear prediction and smooth-
{he = [P, Rt} is the channel impulse response, antihg approaches to channel estimation rests on the isomorphic
s¢ is the input sequence. Consider a blockw$amples of the relationship between the output and the input subspaces. It is
observation in (2), and laf,, (t) 2 [y (1), -y (t—w+1)]. this isomorphic relation of the two spaces that allows us to

With 2., (t), s14w(t), andn.,(¢) similarly defined, we have avoid the direct use of input sequence, using instead the input
subspace that can be obtained from (noiseless) observation.

Tw(t) = Fo(M)siiw(t), 4,() =zw(t) +nu(t)  (3)  Our presentation relies heavily on geometrical intuition. It is
therefore necessary to begin with precise definitions of relevant

where thew P x (w+ L) complex matrixF,,(h) is the so-called _
variables and spaces.

filtering matrix
ho --- hr
A . .
ho - hr

A. Key Variables, Spaces, and Isomorphic Relations

From (2), lets; be the row vector of input symbols and
z; be the data matrix of the noiseless observation defined,
/

Our goal is to estimatés = [k}, --- kL] from y,(t),t = espectively, by
1,---, N. All signals are deterministic, although most results

can be generalized to statistical models of the input and noise. s, 2

2] [x(t),z(t+1),--]. (6)

Stast-l-l?"']a Tt
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Consider next subspaces spannedpbfp > 0) consecutive

vectors Xegi = 9 DSpio

St,p é SP{Stv e 7St—p+1} ~ -
St St+1 Kitildy, = hist\sz
=R : Toeplitz _
SL = Slvl,oo Usi+1,~oo
St ptl éqs’; >k ki Bespyiox *zﬂl&}
=R{[sp(t), sp(t + 1), -]} () ’
X p a sp{@e, ) Tepp1 } Fig. 2. Projection ofz;,; onto S;.
x(t) z(t+1)
) 1) The Use of Input SubspaceBbrom (2) and (6), we have
=R : Block
z(t—p+1) Toeplitz g = hose +huse 1+ +hrsep. (11)
=R{[zp(t), 2, (t + 1), -]} (8) To avoid cumbersome boundary problems, we assume for the

moment the data size is infinity, i.eN = co. Let S, be the

The above definition also applies o< 0, in ‘.Nh'Ch case, subspace that includes all future and past input data except
we have the span df| future data vectors. It is also useful” .

to note that St 1€
N
Sy =spl--,si_1tUspi{sia1, -} =8 USii1 oo
St,p :St7p+l,fpv Xip =X pr1, p 9) ¢ p{ ¢ 1} p{ t+l } t=lyo0 o+, Ca_Z)
Given a linear subspac8, the orthogonal projectio; of s, Projectingz,; onto S, with only k;s, not contained inS,,
and its projection errog; are defined by we have
EN 2 argmin||s, — 2|\, 3,5 25— 3)s- (10) Tppis, =hidys, + Z histti—k (13)
zCS b, ki
Similarly, the (row-wise) projectio, v of z, onto a linear Ty, =Bt — B = hidyg,- (14)

subspacet is a matrix whose rows are projectionsafonto The above process is illustrated in Fig. 2. The similarity of

X. . . . .
. . . . two right triangles immediately suggests (14).
Playing a critical role in the smoothing as well as LP—base\c/inote that the projection era, ¢ of s, is independent of

approaches is the equivalence betwee_r_l the input and OutP%onsequently, we have
spaces as a result 8f1) andP1.2) Specifically, we have the ~
following. Tiyr)S,
Properties 2: UnderAl), for w > w,, & o = St 11w, 1-€., E
Yt 1S isOmMorphic taS, 4., with isomorphism#,,(h).
In general,X; ., C Si 1+ for any w. This implies that o _
given a fixed observation window, the input space, ;4,, oM &, there are several ways of findidgup to a scaling
may not be “seen” completely from the output spate,. factor, and they have different performance when there is
On the other hand, witi1), all the information of the input noise and when other implementation issues are considered.
space is contained in the output space, when subchannels We remark that because subspaces are invariant with respect
do not have common zero$].1] and w is chosen large 0 scaling, the identification ok up to a scaling factor using
enough. Such equivalence enables us to replace the di@dy the inputsubspaceis the best we should expect. One
use of input sequence by the use of observation in chanAgProach is the least squares fitting of the column spade: of
estimation. Interestingly, wheAl) does not hold &, ., may h = arg max ||k E|. (16)
still be a good approximation &$; 1., which is one of the |IR]l=1
reasons that the algorithm proposed here offers considerapife above optimization can be obtained by the singular value
improvement in robustness over existing methods such as gh&omposition of eithe or the sample covariance of the
subspace algorithm (SS) [7] and cross relation (CR) algorithﬁ?ojection error sequencﬁE A (1/M)EE', whereM is the
[16]. number of columns ink.
) ] There is an interesting connection with the conventional LS
B. Least Squares Smoothing—The Basic Idea approach when the input sequence is known. Indeed, were the
The isomorphism between the input spagg, and the input sequence available, the LS channel estimate would have
output spacest; ,, leads to the following questiorCan the been

113

= h3, g, (15)

Ty,

channel be identified frorf; ., without the direct use of the in- his =3,8(S8) ! = L
put sequence, and how?Without going into implementation L5 =T - ||5t|5. 2 5418,
details, we explain in this section how this can be achieved '
. . St
by properly constructing subspaces that contain both past and g . (17)

future data, namely, by smoothing. LSS algorithms and their
implementation issues are presented in Section IV. St—L
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Past data Current Data Future Data and backward predictors of order > wy. The projection
sin ) I (s Input Space space is given by
St—l,oo St St+1,Aoo - A
Xt =X 10wU X410 =10 UXpigww. (21)
$ Fu(h) i Fu(h) We notice thatt, ; is essentially the same as that defined in
(19), except that we tredtas a variable not necessarily equal
X100 Xy Xi+L Xa+L_+:oo to the channel ordeL. Because of the isomorphic relation
— x, MMM [x. outputSpace  between the output and input spaces, we have, using (9)
Past data C t Dat Future Data - A
urrent ata Xt = St1 14w U Sthitw, 4w = St (22)
Fig. 3. Isomorphism between input and output subspaces.
Therefore
which is the same as that in (16)._The .second _equalit)_/ is SP{St—L—w, Sty Staiqw
obtained by using the formula of inverting matrices with. I<L
l =
subblocks [8, p. 413, A20.]. " sp{st—r—w, s St—1} U sp{Stti—r+1, ", Stidw}
2) Use of Output Spaces-Least Squares Smoothirge [>L.
identification procedure presented above requires the projec- (23)

tion of , onto the input spacs,. Becauset; ,, is isomorphic

to & ., the application of the above approach using onlgrojectingx;;,: = 0,---,1 onto Xu = S‘u, we have the
the received signal requires only a careful construction of tf&lowing result as a generalization of (15).

output subspace that is isomorphic&. Specifically, using  Theorem 1: Let the forward and backward predictor order

Property 2 and (9), we have w > w,. Let Xu be defined in (22), and lek,; be the
rojection error matrix defined b
Sroo = Xroor Siptoo = Xipr41,—0  (18) PO Y
Xr 2 Xi—1,00 U Xy L4100 = St (19) Tiril2,
E; = - (24)

The isomorphism between the input and output subspaces is B
illustrated in Fig. 3. The idea of smoothing arises naturally L2, ,
as the projection oft; onto S; in (14) is equivalent to the

projection ofx, onto the output subspace spanned by all th-léhen
past datat’_; -, and future datel’ ;s 4+1,—-o. From (15), we ( 0 <L
have the identification equation of the LSS approach [14] B Seti-LIS:
. tl = : <
A $t+L|“>t Hl(h) o L - !
E= = hg‘tl v (20) . St1804
. - hr
Ty, : .
where the left-hand side can be obtained from the observation A h:o h;
alone. Hi(h) = (25)
IV. ALGORITHM AND |IMPLEMENTATIONS ho
In this section, we provide more details about the LSS l_vl_/
—I4+1columns

approach including its properties and implementations. We
begin with a general formulation of LSS that forms the basis Further, if{s,} has linear complexity greater tham -1+ L
of our approach. Data structures of the LSS approach agq; >~ 1
specified along with their properties. We then derive a joint -
order detection and channel estimation algorithm and discuss C{E 114} = C{H(h)} (26)
its implementations.

Proof: From (11), (21), (23), we have, far< ¢ <1
A. General Formulation of LSS

The projection spaceY; ; defined in (19) requires the Tiil X = Frtil S (27)

knowledge of channel order. We consider here a more general 0 i I<L
formulation of the problem by defining slightly different Z hid, .. oo 1>1- (28)
projection spaces that enable us to deal with practical issues ear 17 ti—klS: -

such as finite sample size and unknown channel order. Instead

of using the projection space given in (19), consider th&ith hy, = 0 for all £ < 0 andk > L, the above equation
smoothing ofl + 1 observationg,,;,¢ = 0,---,l by forward leads to (25).
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To prove (26), we need to show that the projection err@enote the “future-past” data matri?,, ; as
matrix of the input sequence in (25) has full row rank. Consider

the Toeplitz matrix

S2w+1+1 SN
A
Sw+l—L+2
SwHl—-L+1
S = : B . (29)
Sw+1
Sw
C
S1-L

With ¢ = w + 1 in (25), we note that

SwHl—L+1|Sy 1.4

_ p5{B}.D 2 (g) (30)

S'w+1|$w+1,z

When {s;} has linear complexity greater thaw +1+ L, S

has full row rank, which implies thaPj{B} has full row

rank. We now have (26). oo

Pui 2 [y (w), -,y (N —w—1—1)]
Fug = [y,Quw+1+1), 5, (V)] (32)
Youi = [yo(w+1+1), g, (N —w)
D, 2 <£Zj ) (33)

To see the relation between these data matrices and various
spaces, we summarize their properties. The rank conditions
given below are useful in dealing with noise by finding the
least squares approximation of the noisy data matrix.

Property 3: Suppose that the input sequence has linear
complexity greater thaBw + 1 + L + 1 and there is no noise.
Forw > w,, we have the following properties.

P3.1) Data MatrixZ,, ;:
rankZ,;) =2w+1+ L+ 1. (34)
P3.2) Past Data MatrixP,, ;:

R{Pw,l} :Xw,w = Sw,w+L (35)
rank P, ;) =L + w. (36)

The above result holds the key to our approach, especially3.3) Future Data MatrixF,, ;

when the channel ordet is unknown. When the smoothing

window sizel is too small, the smoothing error contains no RiF w1} = Xowririw = S2opivrwrr (37)
information about the channel because all input sequences are rank( ¥, ;) =rankP,,;) = L +w. (38)
in the output space. Wheh= L, we have the case described

in Section IlI-B, where the channel vector spans the column
space ofE,;. When the window siz€ is greater than the
channel orderL, the projection space misses more thgan
which complicates the channel identification. Nonetheless, it rankD., ;) :{

is shown in Section IV-C that the column spacefof; still

P3.4) Projection Data MatrixD,, ;

R{D'w,l} :Sw,'w—l—ﬁ U S’u}—l—l—L—l—l,—'w—L = Sw—l—l,l (39)

qwHl+L+1, I<L
2w 4+ 2L, L<I<w. (40)

uniquely determines the channel vector, which, along with  Proof: See the Appendix.

another useful property oF,;, forms the basis of a joint

order-detection and channel estimation algorithm that requir€s j-| SS: Joint Order Detection and

only the upper bound of the channel order.

B. Data Structures

Channel Estimation via LSS

If the channel order is known or can be detected, channel
estimation by LSS can be derived directly from (20). This

We consider now the problem of estimating the channgpproach and its adaptive implementations are explored in

using only a finite number of received signal samplés,t =

[14], [18], and [17]. Here, we describej@int order detection

1,---,N. For a fixed predictor sizev > w, and smoothing and channel estimatiompproach based on Theorem 1 and

window [ > 0, define the overall data matrix

y2w+14+1) - y(N)
: Fy,
y(w +142)
yw+1+1)
Zw,l é Y'w,l (31)
y(w+1)
y(w)
: Py,
y(1)

from which we have defined the “current” data matk, ;,
the “past” data matri¥?,, ;, and the “future” data matri¥’,, ;.

the data structure defined above assuming only that an upper
bound of channel order is available.

The idea here is to fit the smoothing error mati, ;
by jointly choosing both the channel order and the channel
impulse response. With fixeldas the upper bound of the true
channel order., recall Theorem 1 for the case whén- L.
Consider the smoothing error matrik;; = Pﬁu{YU}
obtained from projecting’; ; onto the row space ab; ;. We
now have from (26), when there is no noise

C{E;;} = C{Hi(h)}. (41)

Letting @ = [Q,, - -,@;] be the matrix whose row vectors
are orthogonal to the range spacekf;, we then have

Qo Q|E11 =0
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which implies Theorem 2 enables us to define the following joint channel
order detection and estimation criterion:
Q - @\ [k B
Block D | =T(@h=0. (42) {L,h} =arg win | 1 Z:(Q)R. (45)
Hankel @, ho 7
h TL?Q) The above optimization has a closed-form solution involving

the singular vector associated with the smallest singular value.

In other words, the channel coefficients satisfy a homogeneoute joint order detection and channel estimation approach,
linear equation. What remains to be answered is whether #{Bich is referred to as J-LSS, is summarized in Fig. 4.
solution is unique up to a scaling factor. The proposed joint There are many ways of implementing the algorithm out-
order detection and channel estimation algorithm is motivatiged in Fig. 4. We discuss here several implementation issues
by the following Theorem. that are likely to affect the performance.

Theorem 2: Assume that there is no noise, and the input The Smoothing Window Size It is clearly possible to im-
sequence has linear complexity greater ttan+ L. As- plement the algorithm with variable smoothing window size.
sume also that the channels do not share common zeros. ft@t simplicity, we considered the fixed window size case. Al-
E,; = Pﬁ,z{yl:l} be the projection error matrix, and letthough not necessary fdt > 2, the smoothing window size

A ) . in theory, upper bounds the channel order. In practice, channel
Rp 2 (1/N = 31)E,E}, be the sample covariance matrix Y Ubp P

£ th thi Let th be th order is perhaps fictitious, and we can always argueltban
ot the smoothing error sequence. Let the rowsipbe the never upper bound the “true” channel order. Fortunately, when
singular vectors associated with?(l + 1) — I + k — 1)

. - " hi # 0for k > [, the performance is not drastically affected as
smallest singular values ok, and letQ be partitioned by long as these “spill-out” coefficients are sufficiently small. In

(P(I+1)—I+k—1)x P submatrices) = [@Q, - - -, Q;]. Define  the simulation example shown in Section V, the robustness of

Qo Q. J-LSS with respect to the underestimation of channel order
A i is clearly demonstrated. In such a case, the finite-sample
(@) = Block : |- (43) convergence property is lost as in all other algorithms.
Hankel @, Order Selection for the Predictors:

In selecting the orders for the forward and backward
predictors, we should observe the following factors. First, for
T(Q)z =0 (44) fixed data length, large implies a fewer number of columns
in data matrices. This corresponds to smaller sample size in
has the unique nontrivial solution = ah whenk = L and least squares problems. In this regard, it is desirable to choose
trivial solutions otherwise. w as small as possible, which is the reason why we have
Proof: See the Appendix. consideredw = [ in the algorithm. Certainly, ifP > 2,

We note that the above result does not apply to the subspacemallerw can be choosen. On the other hand, larger
algorithm. Whenk = L, (44) defines a channel estimatomay provide a certain degree of robustness, especially when
that bears some similarity to the subspace algorithm used $syochannels have zeros approximately common near the unit
Moulineset al.[7]. In both cases, the so-called noise subspagcicle. Itis clearly possible to vary the predictor sizewith &.
is used in constructing a homogeneous linear equation of
which the channel vector is a unique solution. However, there
are several important differences. First, the filtering matrix
Fw(h) used in the subspace approach is different from tfk\e
smoothing error matrix;;. Maybe more importantly, the "~
homogeneous equation used in the subspace algorithm haSimulation studies of the proposed LSS algorithms as they
nontrivial solutions when the estimated channel order is largiie compared with existing techniques listed in Table | are
than the true channel order, which is the reason that tRgesentd in this section. We remark that only J-LSS does not
joint order detection and channel estimation approach dogguire the knowledge of channel order while still preserving
not apply to the subspace algorithm directly. the finite sample convergence property.

It is perhaps surprising that wheéns£ L, (44) has only the  Algorithms are compared by Monte Carlo simulation us-
trivial solution. Intuitively, we can argue as follows. When théng the normalized root mean square error (NRMSE) as a
channel order is overdetermined, i.e.>> L, in constructing performance measure. Specifically, NRMSE is defined by
Q, we must include eigenvectors that are in the range space of
H;(k), which leads to inconsistency 6}E;; = 0. (Note that ) 1 (m
suéh)inconsistency does not occur for the subspace algorithm NRMSE! 2 Noh? Z ||h( - h.|]? (46)
when the channel order is overdetermined.) For a generically T m=
chosen channef/,(Q) has ful -COIumn ran_k. On the other 1 The inherent ambiguity was removed before the computation of NRMSE
hand, when t_h(_a channel order is underestimated L_, there o (m) o ) e
are an insufficient number of parameters to specify the nJ’Z:i)mCIUdes scalindy and adjusting delays by adding zeros to either

Then, the homogeneous linear equation

V. SIMULATION EXAMPLES

Algorithm Characteristics and Performance Measure

N

~

space ofRp. R orh,.
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J-LSS Order Detection and Channel Estimation

1. Choose [ > L and form data matrices Y;; and Dy,.

2. Obtain the 4] orthogonal basis {uy,- -, uy} that spans the row space of Dy;.
3. Obtain the projection error of Y,; onto sp{uy, - -, uy}:
L5
E,2Y,-Y,UU, U=| (66)
Uy
4. For each 1 < k < [, treated as the estimated channel order, let Q = [Qq, - - -, Q] be matrix

whose rows are the last P(I + 1) — [ + k — 1) left singular vectors of Ey;, or equivalently, the

sample covariance of the smoothing error sequence. Form

QO e Qk
T(Q)2 Block © |. (67)
Hankel Q

5. Joint Order Detection and Channel estimation:

{L,h} = arg min |[T{(Qh] (68)

Fig. 4. J-LSS algorithm.

TABLE |
LiST oF ALGORITHMS COMPARED IN THE 0
SIMULATION AND THEIR CHARACTERISTICS
-5
Abbreviation | Name Convergence | Order Required?
SS [7} The Subspace Algorithm finite Yes -10F
CR {16], [5] | The Cross Relation Algorithm! finite Yes 15 : :
LP-SS[9] Linear Prediction-Subspace Algorithm finite Yes :
LP-LS [1] Linear Prediction-Least Squares Algorithm infinite No _.-20
MSP [4] Multistep Linear Prediction Algorithm infinite No @
w
LSS [14] Least Squares Smoothing Algorithm finite Yes g -25
J-LSS Joint Order Detection and Channel Estimation | finite No. % 20
by Least Squares Smoothing. -
-35
~(m) . .
whereh™ ~ was the estimated channel from theth trial.

Noise samples are generated from i.i.d. zero mean Gaussiams
random sequence, and the signal-to-noise ratio (SNR) was

1 1 1 i 5 1 1 1 1

1 i 0 10 20 30 40 50 60 70 80 0 100
defined and given by SNy
A 1 r . Fig. 5. NRMSE performance comparison for the multipath channel. One
SNR= —F Z |J;§J)|2 (47) hundred Monte-Carlo runs. One hundred input symbols. Legend: SS: *; CR:
Po? = ‘0’; LP-SS: 4’ LP-LS: ‘—."; MSP: ‘x’; LSS: *; J-LSS: ‘—".
where o2 was the noise variance. The input sequence to the TABLE I
channel is an i.i.d. quadrature phase shift keying (QPSK) MULTIPATH  CHANNEL
complex sequence. : 1 . 3 .
hy | —0.0031 — 50.0017 | —0.0016 - j0.0047 | —0.0109 — j0.0025 | —0.0263 — 70.0433
B. Performance Comparison: A Multipath Channel t 5 6 7 8
. . hy | 0.1522 + 70.0705 0.4409 + j0.4736 0.3789 + 70.5930 0.0766 -+ j0.2168
Fig. 5 shows the NRMSE performance comparison us- - . m " ’”
ing a four-ray multipath channel generated from the raised- Ju | —0.0301 - j0.0348 | —0.0042 — j0.0154 | —0.0032 — j0.0017 | —0.0017 — j0.0044

cosine pulse. The T/2-sampled channel parameters are given in
Table Il with even and odd samples corresponding to the two

subchannels. This channel has severe intersymbol interferersreunds3 x 10%. We have also performed simulation compar-
It is also close to violate the identifiability condition in thesons for well-conditioned channels [18]. The performance of
sense that the filtering matri&,,(h) has condition number J-LSS and SS are comparable in those cases.
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SS: h_esl with h_true (multipath channel)
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Fig. 6. Scatter-plots of 100 estimates at SMR30 dB. Solid lines: true channel. Left: J-LSS estimates. Right: SS estimates.

Observations and Discussions: NRMSE vs. SNR: Multipath Channet with Underestimated Order

J-LSS performs considerably better than the rest of the °
algorithms although its behavior is somewhat peculiar.
Because the multipath channel has small head and tail |
taps, correct channel order detection is difficult. Conse-
quently, J-LSS almost always underdetermines the chan-
nel order during the SNR range from 20-80 dB. On _
the other hand, it is perhaps not wise to estimate thege
small head and tail taps. Instead, it is better, as J-LS§ 7
apparently aims to do, to find the channel order as well as_ys! -
its impulse response that matches the data in some optimal
way. Fig. 6 shows the scatterplot at 30 dB SNR of the
magnitude response of the J-LSS and the SS algorithms.z}
In this case, the J-LSS algorithm has detected channel
order I, = 1 (rather than the true channel order= 5). ; 5
As we can see, the J-LSS algorithm captures the four.zs0 ~ zio = 4i0 550 e
major taps of the channel impulse response. In contrast, SNR(db)

when the true channel Orde,r IS US,Ed in the SS algonthmg. 7. NRMSE performance comparison for the multipath channel. One
the performance of the estimator is rather poor. hundred Monte Carlo Runs. One hundred input symbols. Channel order
It appears that CR, SS, and LSS perform comparabinder-determined by 1. Legend: SS:—~'; CR: ‘o’ LP-SS: '4'; LP-LS:
Indeed, all of them assume knowledge of the channel o= MSP: % LSS: ™ J-LSS: "=

der, and all have the finite sample convergence property, o )

although this shows up only at relatively high SNR. From * In deriving the algorithm, we have assumed that the
the implementation point of view, the advantage goes to SMoothing windowl is greater than the channel order.
the LSS algorithm that has a recursive implementation When this is not true, it is interesting to test the robust-
both in time and in channel order [17], [18]. ness_of J-LSS. Fig. 7 shows the p_erformancg of these
It is interesting to observe that when the channel order is @lgorithms when the channel order is underestimated. In
correctly detected at high SNR, J-LSS is slightly worse this S|_mulat|on, the upper bound on the cha_nnel order
than CR, SS, and LSS, although the difference eventually used_m J-LSS and the_ channel order used in all other
disappears as SNR- ~c. This is due to the selection of algorithms are underestimated by one. We see that J-LSS

I > L in J-LSS, which reduces the effective sample size performs better than all other algorithms throughout the
in the estimation. entire SNR range. The flooring effect of all algorithms
MSP performs better than LP-SS and LP-LS because it comes from the underdetermination of the channel order.
estimates the channel in a single step, whereas LP-SS

and LP-LS estimatdy first. For this multipath channel, VI.  CONCLUSION

the estimate ohy is rather poor. MSP and LP-LS levels We have presented a geometrical approach to the least
off as SNR— oo because of the loss of finite samplesquares smoothing algorithm for the blind estimation of mul-
convergence. The floor reduces as the number of samgiehannel finite-impulse response channels. The main idea
increases. Note also that LP-SS does indicate finite sampleses from the isomorphic relationship between the input
convergence, although its breaking point occurs about 28d output spaces, which serves as the basis of smoothing
dB higher than that of CR, SS, and LSS. and linear prediction-based algorithms. The LSS approach to

10
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channel estimation preserves the finite sample convergemdeere the two subchannels aféz) = SE_ fi27%, g(2) =
property critical to short data sample applications. The ma®{_, g;z—*. Define

attraction of the joint channel order detection and channel 5

estimation algorithm is that it does not require knowledge of 0

channel order and, at the same time, preserves the finite sample

convergence property. There are, of course, several weaknessH f) A Jr Jo H, A <Hz(f))_ (54)
of J-LSS. It requires a number of eigendecompositions that T B Hi(g)
can be computationally expensive (it costs abdyt times fr

more than the subspace algorithms whérg is the upper
bound of the channel order). For certain channels, the joint
order detection and channel estimation approach may not be
as effective as one that detect the channel order first aRdr convenience, by rearranging rows Bf; we have, for
implement CR, SS, and especially LSS. In [17] and [18], we > L
explore this strategy by developing time and order recursive

{—L+1columns

é .
schemes based on LSS. . &nlf) o
E,; =\
o \&awlg )|
Stpi—118,,
APPENDIX 5.
St
Proof of Property 3: Denote —H,; . ] (55)
St §t+l—L|$},l
Skt 2 : We now consider the equivalent problem of findihgfrom
s the column space off; ;..
t—k+1 . )
Define
St ot SN—2w—Il—1+4t
. 2 fod oot fral 42ttt Ly (56)
St—k+1 and let{z,---, z1+1} be thel + L4 1 distinct roots. Then,
_ _ columns of the Vandermonde matrid (27, -+, 27, 1)
Whensy, has linear complexity greater tham + 1 + L, form the orthogonal complement of the column spacéf..
We now consider three separate cases:
rank{S2w14+14 L2041} = 2w+ 1+ L+ 1. (49) ) k= L;
) L <k<l
From (3), when there is no noise, we have k£ < L.
Case |+ = L: In this case, the full null space dﬂ’L is
Zwi = Fowtir1(R)Sowtit140 20141 (50) used. Constructing matri€) from singular vectors is equiva-
Fog=Fu(l)Swirowsisrs Pot = Fulh)Swirw. (51) lent to that fromVaryo(2], - -+, {41 ) W_hose columns span
the null space ofHQjL. Therefore, solvingh from (44) is
Because of1.2) and (49), we have (34)—(38). equivalent to solving
To proveP3.4) we note that . . A H(S)
V. 2,2 =0 57
2122 71+L+1) Hi(g) (57)
D, = <0 Fu(h) O’W;:X(’L}"LJFL)) <Sw§L72w+l+1 ) which, after removing redundant equations, leads to solving
Qo wlx(wtl) - w(h) wtlw the homogeneous equation (58), shown at the top of the next
H page. Because the roofs;} are distinct, the solution of the

(52) above is unique.
Case II: In this case, matrix@Q is constructed from the

UnderAl), H has full column rank, and hence entire null space 01H§7L along with & — L eigenvectors in
the range space dff; ;. In other words

_ Sw—l—L,Qw—l—l—l—l T,
RiDud=R{ (g ) ) 6 7@ -a(") (59)

Because of (49), we have (40). oo Wwhere
Proof of Theorem 2:When channels do not share common G full-rank matrix;
zeros, it is sufficient to consider the case r= 2. Let T, corresponds to the matrix constructed from columns
of Vargo(27, -+, 25 r41)
f(2) V' matrix associated with thg: — L) eigenvectors in the
h(z) = <g( ) range space oH .
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fo
1 z1 v zf‘ zi"’l zi"'? . Zi—l—L—i—l
; :’;L =0. (58)
Uozyren 0 Zhon Afon Afie o Ak !
gr,
1 z1 a 2F z{"’l zi"'? .. Z]lL+k+1
Ti = | Sk (60)
1 zyp41 - Zlk-i—L+1 leii-l—l le:il——i—l—l - Z[":[{ill
1 21 Pl 2t A¥2 L ke
1 24D+l Zlk-i—L+1 2111—}1-1-1 le:il——%—l—l - Z?—Ij—fl:—ii——ll

To show that (44) has only the trivial solution, it is sufficientvhere G is a (I + & + 1) x (I + L + 1) matrix with full

to show that row rank. Since the singular vectors used to fo€nare
T associated with the repeated zero singular valdecan be
rank{ < ‘l," ) } =2k + 2. considered to be a randomly generategtk+1) x (I+L+1)

matrix. Further, we have (64), shown at the top of the page.
Treating k as the estimated channel ordéf; . has the Because: <L, rank{T;} = 2k-+2. For randomly generated
form of (60), shown at the top of the page. We note that +% +1) x (I + L + 1) matrix G
Vigrs1(#, -+, 2 p41) has full column rank. Consequently,

the firstk 4+ L + 1 columns ofT7 are linearly independent. rank{[Qo, - -, Q]} = 2k + 2. (65)
Because{lzi} are distinct roots ofy(x), all other columns of Therefore, (44) has only the trivial solution. o000
T, ;. are linearly dependent on the fifstt- L 4+ 1 columns
rank{T,;} =k + 1+ L. (61) REFERENCES
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