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Vector-CM Stable Equilibrium Analysis

Azzédine Touzni, Lang Tong, Raul A. Casas, and C. Richard Johnson, Jr.

Abstract—The vector-constant modulus (VCM) criterion is an We show that VCM admits stable ZF receivers associated with
extension of the constant modulus (CM) criterion [2] introduced  input/output transmission delays at the extremes of the range
recently for equalization of channels involving Gaussian sources ¢ possible delays for Gaussian and super-Gaussian sources.
(1], [5]. In this letter, we analyze the behavior of VCM for = g, icingly. the condition of stability of these extrema, based on
arbitrary source distributions and combined channel-receiver hek i ofth d d hel hofthe ch |
impulse responses of finite dimension. We begin by pointing out NeKurtosisofthesource, depends onthe length ofthe channel-re-
the difference between the VCM and CM cost functions and Ceiverresponse. Infact, the kurtosis of the source mustbe smaller
showing that the VCM criterion can be expressed as a composite than a constant, which decreases when the length of the channel
criterion combining the CM cost function and a penalty term in-  increases. This constant is equal to 3 (when all the variables are
volving cross-correlations of the equalizer output. We continue by reg| valued) in the limit case, where the channel length is infinite.
providing conditions for noise-free channels, under which VCM 1 o1 Gaussian sources, itis shown that all ZF receivers, which

admits stable minima corresponding to zero-forcing (ZF) channel . . .
receivers. We find that for sub-Gaussian sources. the VCM and ar€ stable minima of the CM cost function, are also stable minima

CM criteria share the same global minima. For Gaussian and ©fthe VCMcostfunction.
super-Gaussian sources, however, it appears that only ZF receivers
corresponding to input/output transmission delays at the extremes Il. PROBLEM FORMULATION

of the range of possible delays are truly stable equilibria of VCM.

) o . A. Criterion Definition
Index Terms—BIlind equalization, source shaping, vector-CM

criterion. The relation between the received signéh) (the observa-
tions) and the source signal, in a noise-free scenario, is given by

l. INTRODUCTION z(n) = Hs(n) @)
ITINI_D Iinea}r estimation c_)f Gaussian sources finds applica- y(n) = fg(n). @)
tion in a wide range of signal processing problems such as
channel equalization, source separation, and sensor-array proere H denotes the channel-convolution matrix amdn)
cessing. For example, in digital communications, when sourgerresponds to additive noise. We assume that the combined
shaping [3] is used for transmission of high-order constellatioggannel-receiver response = H'f is an N-dimensional
to achieve optimum transmitted signal power, this signal has %#Ctor.
approximately Gaussian distribution. In this case, well-known Linear estimates of;(n ), theith component of the unknown
criteria like the constant modulus (CM) criterion fail to equaliz€ource signak(n), are provided by the minima of the VCM

the channel [2]. cost-function defined by

Thevector constantmodulus (VCM) costfunctionwasrecently det P-1 2
introducedin[1] as an extension of the well-known CM cost func- I (f)=FE <Z v (n—k) — p) 3)
tion. [1], [5] give intuitive considerations emphasizing the ability k=0

of VCMtoequalize datawith Gaussiansourcedistributions.  wherep = E{s*}/E{s*} is the so-called dispersion con-
The contribution ofthisletteristo provide ananalyticaldescriggtant introduced in the CM criterion. We assume, moreover,

tion of the robustness of the VCM cost function. More preciselthat the source is an independent and identically distributed

we derive the conditions under which VCM admits stable minim@i.d.) zero-mean process of variandg{s?} and kurtosis

corresponding to zero-forcing (ZF) combined channel-receiver= E{s*}/E{s?}?, and thatH is a full-column rank. All the

responses, in a noise-free scenario, for arbitrary source distafiables are assumed to be real valued.

butions and a channel-receiver response of finite dimension. 1tvCM will be compared to the well-known CM criterion, de-

appears that the robustness of VCM with respect to Gaussfared by

source distributions stems mainly from the fact that VCM can be ) )

seenasacomposite criterioninvolving the CM costfunctionanda Je(f) = E{(y"(n) — p)"}. (4)

cross-correlation constraintinthe time domain. Notice that the VCM cost function is equal to the CM cost func-

tionwhenP = 1. The choice of this parameter for the VCM cost
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TABLE |
CLASSIFICATION OF THE EXTREMA OF
VCM FORN = 3.

il 92 a3
0 0 0
+/3/5 0 0
] 0 +,/3/5
0 ++/3/5 0
Fig. 1. VCM versus CM cost function fa¥ = 2, P = 2, andx = 3. F3v94/47 | £31/94/94 | £3/94/94

) | N ( ) with +3v94/94 | +£3v/94/94 | ¥3/94/47
two-tap, channel-receiver impulse response: (g1, q2) wit
P = 2 and a Gaussian sour¢e = 3). We will characterize the —3v94/94 | 3v94/47 | 3v94/94
extrema of each cost function. 3v94/94 | —3/94/94 | —3/94/47
When the input signal is Gaussiah, f) is equivalent to an
output power constraint. The CM cost function admits infin-
itely many minima, which are solutions of the equatigh+ comparable, the difference between them being mainly in the
g3 = 1. In spite of the Gaussianity of the input signal, thequaring introduced in the penalty measure.
VCM cost function admits distinct extrema, which are splitinto When the source is Gaussian, the CM cost function is equiva-
four global minimag = (0,++/3/4) andg = (£/3/4,0) lentto an output power constraint. Therefofg( f) is basically
leading to the estimation of soureén) or s(n — 1) and four a decorrelation criterion with a norm constraintgnt has been
unstable extrema corresponding to saddle points givepsy emphasized by several authors that output decorrelation is a suf-

(£4/2/9,£4/2/9), as is shown in Fig. 1. ficient criterion for equalization when the channel-matrix re-
sponse is full-column rank [9]. Therefore, we realize that condi-
IIl. I NTERPRETATION tions on(\;) can be derived to guarantee the stability of all pos-

According to the relation (5) below, the VCM criterion (3)S§£ieGZaZ;§;;er:vse(;3rlcnetsh\?vr?Horllisse;LrI(Iaioslﬁ(:nnna:;n;or sub-Gaussian

can be expressed as a composite criterion involving the CM c8: ) .
P P g H1 the next section, we show that behavior of the VCM

function and a penalty measure based on the cross-correlatio e - L _
of the square of the outputs. cost function is, surprisingly, significantly different from the

TPUF) = PI.(f) behavior of the CRIMNO criterion. This result stems from the
v Pcl— fact that the decorrelation argument cannot be used for the
— VCM criterion (becauseb{y*(n)y*(n — k)} differ from a
2 2
+2 Z(P — B E{y (n)y*(n = k)} decorrelation measure) to explain its ability to admit stable ZF
k=t 5 solutions when the source is Gaussian.
+ (1 —=P)p”. (5)
Composite criteria involving the CM cost function and decorre- IV. STABILITY OF ZF SOLUTIONS
lation-like regularization constraints on the outputs are usually h ami dwe deri
introduced in order to avoid possible local minima of the CM Xt We prove that VCM admits ZF extrema, and we derive
cost function, when all global impulse-response parameteri#3€ conditions of stability of these solutions. _ ,
tionsg are not achievable (i.e. when the channel-impulse matrixAccording to the assumptions introduced in the introduction,
H is ot full-column rank) under the assumption that the sour€8aracterization of the VCM extrema can be equivalently given
is sub-Gaussiatx < 3). The idea, based on a noise-free scd” terms of the channel-receiver respogseet us consider the
nario, is to penalize the minima of the CM cost function, whickth component of the gradieRt.JS" (¢) given by
differs from ZF receivers [7], [4]. I (q) - ) )
The question addressed herein, concerning VCM, is rather 5 —— = 4PE{s*}? ((r = 3)g; + (P +2)l|ql|-2* — &) qx
different. We investigate the effect of the cross-correlation con- ~**

straint, giving the composite VCM cost function, in order to de- ol (2

rive the conditions on stability of ZF receivers when the source +4(r = 3)E{s)’ Z (P~ j)w,i])» I

has an arbitrary distribution. Note that this question has not been J=1

investigated previously in the literature (to our knowledge) for P—1

other similar composite criteria. + 8F{s*}? Z(P — ) <Z qiqi]) w,(clj),
Before addressing this problem, let us consider the CRIMNO j=1 i ’

cost function defined in [4] by 7)

r—-1

whereg;, is thekth component of;. The termm,ﬁ{’]). (with p =
: 1,2) are defined byy , ; whenk—j < 0, q;_;+qj, ; whenk+
for which the coefficients\, . . ., A, are free parameters not/ < P—1andk—j > 0,¢;_; Whe;‘kJrj > P—1,and Olelse-
explicitly defined. Clearly, the CRIMNO and VCM criteria arewhere. Since the contributionswid).qk and(}, qiqi_j)w,(w). of

To(f) = Xode(S) + D ME{y(n)y(n—k)}*  (6)
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(7) are equal to zero whenhas only one nonzero componentfor linear-prediction methods that lead to the estimation of the

the ZF solutions that are the extrema of (5) also correspondsource of delay zero (i.e(n) [6], [8]).

the ZF solutions zeroing the gradient of the CM criterion. Notice that the upper bound, depends implicitly on the
The result concerning the stability of these solutions is surshannel length. WheR — +4-oc, we haves, — 3. This shows,

marized in the theorem that follows. in particular, that when the channel and receiver have a double
Theorem 1 The cost fUﬂCtiOﬂ]E-P)(g) admits extrema of infinite response, VCM does not admit stable ZF minima for

the formg¢™ = (0....,0,,0,...,0), wherey is themth ~Gaussian and super-Gaussian sources.

component of™ for

p=0, and p=+,/—2> 8) o o
k+P -1 In this section, we address the problem of the characterization
The stability of the previous solutions is related to the sign of thsf extrema that differ from ZF solutions. We focus on the special

quadratic formu* ¥ (q)w, whereW(q) is the Hessian ofﬁp)(q) case of Gaussian sources (ke= 3).

of dimensionV x N of entries¥y, ;(q) = (97 (q)/0qrdq;) The location of all VCM extrema and the analysis of their

and is an arbitrary vector. stability for arbitrary” andN (whereN denotes the dimension
Under the assumptiot N (i.e., when the averaging of the channel-receiver response) is not a trivial problem. We

window in (3) matches the combined channel-receiver lengtlgiye insight on the behavior of VCM through characterization

we have the following. of all the extrema forV = 3. Two different situations” = NV

V. OTHER EXTREMA

1) Forq = (0---0), ¥(0) = —4PE{s*}Inxny < 0. andP < N, have to be considered separately for the analysis
Thereforeg is a maximum. of VCM.
2) Let - For P = N, all the extrema of VCM are shown in the
P Table I. The stable solutions corresponding to ZF estimation of
tx =1425—, whereP > 1. (®)  the source that are associated with delays at the edges of the

Whenx > ., ¥(q) admits positive and negative eigenchannel-equalizer response are given in boldface. The Hessian
values forg = ¢ with j = 1,..., P, these solutions for the ZF center-spike solution has one zero eigenvalue so that
correspond to saddle points. Whee= x,, U(q) > 0for stability of this solution is not well deflne_d, asis menﬂongd in

g = ¢ andq = ¢(D). All other solutions correspond Theorem 1. The other extrema are split into a global maximum
5gain_9co saddle po_iﬁts. g =0and sadc_ilg points, and are thu_s unstable.

Under the conditio < < ., the Hessiant(g) > 0 For P < N, itis easy to characterize fay _2 3 subsets of

‘ — 0@ ando — o Th*' ¢ tors are th extrema that do not correspond to ZF receivers. For example,
org =g,’ andg = ¢,’. These two vectors are thusgy v _ 3 andp — 2, ¢ = (q1,0,q3) With ¢ + @2 = 1/16
stable minima of/{"”(¢). Whenx > 3, () admits denotes a continuum of solutions as extrema of the VCM cost
positive and negative eigenvalues fpe= q,(vj) with 7 #  function. However, the stability of these solutions for VCM are
1, P. These solutions are thus saddle points. Whea not clearly defined, in contrast with the CM cost function for
3,,U(q) > 0for g = ¢\ with j # 1, P. which these solutions (up to a scale factor) correspond to a set of
Under the condition: < 3, U(q) > 0forq = Q,f.j) with  stable minima. In fact, the eigenvalues of the Hessian for these

j = 1,....P. All these solutions correspond to globasolutions are given bfy, 2+8g3/1 — g3, 16. Thus, the Hessian
minima. could be semi-positive definite or semi-negative definite. We get
The bound (9) is the admissible maximum source kurtosive at similar conclusians for the general case- 3.
for which the VCM cost function admits global stable minima,
leading to the perfect estimation of the input signal, indicating

3)

4)
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