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Vector-CM Stable Equilibrium Analysis
Azzédine Touzni, Lang Tong, Raúl A. Casas, and C. Richard Johnson, Jr.

Abstract—The vector-constant modulus (VCM) criterion is an
extension of the constant modulus (CM) criterion [2] introduced
recently for equalization of channels involving Gaussian sources
[1], [5]. In this letter, we analyze the behavior of VCM for
arbitrary source distributions and combined channel-receiver
impulse responses of finite dimension. We begin by pointing out
the difference between the VCM and CM cost functions and
showing that the VCM criterion can be expressed as a composite
criterion combining the CM cost function and a penalty term in-
volving cross-correlations of the equalizer output. We continue by
providing conditions for noise-free channels, under which VCM
admits stable minima corresponding to zero-forcing (ZF) channel
receivers. We find that for sub-Gaussian sources, the VCM and
CM criteria share the same global minima. For Gaussian and
super-Gaussian sources, however, it appears that only ZF receivers
corresponding to input/output transmission delays at the extremes
of the range of possible delays are truly stable equilibria of VCM.

Index Terms—Blind equalization, source shaping, vector-CM
criterion.

I. INTRODUCTION

B LIND linear estimation of Gaussian sources finds applica-
tion in a wide range of signal processing problems such as

channel equalization, source separation, and sensor-array pro-
cessing. For example, in digital communications, when source
shaping [3] is used for transmission of high-order constellations
to achieve optimum transmitted signal power, this signal has an
approximately Gaussian distribution. In this case, well-known
criteria like the constant modulus (CM) criterion fail to equalize
the channel [2].

Thevectorconstantmodulus(VCM)costfunctionwasrecently
introduced in [1]asanextensionof thewell-knownCMcost func-
tion. [1], [5] give intuitive considerations emphasizing the ability
ofVCMtoequalizedatawithGaussiansourcedistributions.

Thecontributionofthisletter istoprovideananalyticaldescrip-
tion of the robustness of the VCM cost function. More precisely,
wederive theconditionsunderwhichVCMadmitsstableminima
corresponding to zero-forcing (ZF) combined channel-receiver
responses, in a noise-free scenario, for arbitrary source distri-
butions and a channel-receiver response of finite dimension. It
appears that the robustness of VCM with respect to Gaussian
source distributions stems mainly from the fact that VCM can be
seenasacompositecriterion involving theCMcost functionanda
cross-correlationconstraint in thetimedomain.
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We show that VCM admits stable ZF receivers associated with
input/output transmission delays at the extremes of the range
of possible delays for Gaussian and super-Gaussian sources.
Surprisingly, the condition of stability of these extrema, based on
thekurtosisof thesource,dependsonthe lengthof thechannel-re-
ceiver response. In fact, the kurtosis of the source must be smaller
than a constant, which decreases when the length of the channel
increases. This constant is equal to 3 (when all the variables are
real valued) in the limit case, where the channel length is infinite.
For sub-Gaussian sources, it is shown that all ZF receivers, which
are stable minima of the CM cost function, are also stable minima
of theVCMcost function.

II. PROBLEM FORMULATION

A. Criterion Definition

The relation between the received signal (the observa-
tions) and the source signal, in a noise-free scenario, is given by

(1)

(2)

where denotes the channel-convolution matrix and
corresponds to additive noise. We assume that the combined
channel-receiver response is an -dimensional
vector.

Linear estimates of , the th component of the unknown
source signal , are provided by the minima of the VCM
cost-function defined by

(3)

where is the so-called dispersion con-
stant introduced in the CM criterion. We assume, moreover,
that the source is an independent and identically distributed
(i.i.d.) zero-mean process of variance and kurtosis

, and that is a full-column rank. All the
variables are assumed to be real valued.

VCM will be compared to the well-known CM criterion, de-
fined by

(4)

Notice that the VCM cost function is equal to the CM cost func-
tion when . The choice of this parameter for the VCM cost
function will be addressed in the sequel.

B. Example

From the definition (3), it is not clear that the VCM cost
function admits stable minima leading to the estimation of a
Gaussian source. In order to illustrate the difference between
the CM and VCM cost functions, we consider an example of a
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Fig. 1. VCM versus CM cost function forN = 2, P = 2, and� = 3.

two-tap, channel-receiver impulse response with
and a Gaussian source . We will characterize the

extrema of each cost function.
When the input signal is Gaussian, is equivalent to an

output power constraint. The CM cost function admits infin-
itely many minima, which are solutions of the equation

. In spite of the Gaussianity of the input signal, the
VCM cost function admits distinct extrema, which are split into
four global minima and
leading to the estimation of source or and four
unstable extrema corresponding to saddle points given by

, as is shown in Fig. 1.

III. I NTERPRETATION

According to the relation (5) below, the VCM criterion (3)
can be expressed as a composite criterion involving the CM cost
function and a penalty measure based on the cross-correlation
of the square of the outputs.

(5)
Composite criteria involving the CM cost function and decorre-
lation-like regularization constraints on the outputs are usually
introduced in order to avoid possible local minima of the CM
cost function, when all global impulse-response parameteriza-
tions are not achievable (i.e. when the channel-impulse matrix

is not full-column rank) under the assumption that the source
is sub-Gaussian . The idea, based on a noise-free sce-
nario, is to penalize the minima of the CM cost function, which
differs from ZF receivers [7], [4].

The question addressed herein, concerning VCM, is rather
different. We investigate the effect of the cross-correlation con-
straint, giving the composite VCM cost function, in order to de-
rive the conditions on stability of ZF receivers when the source
has an arbitrary distribution. Note that this question has not been
investigated previously in the literature (to our knowledge) for
other similar composite criteria.

Before addressing this problem, let us consider the CRIMNO
cost function defined in [4] by

(6)

for which the coefficients are free parameters not
explicitly defined. Clearly, the CRIMNO and VCM criteria are

TABLE I
CLASSIFICATION OF THE EXTREMA OF

VCM FORN = 3.

comparable, the difference between them being mainly in the
squaring introduced in the penalty measure.

When the source is Gaussian, the CM cost function is equiva-
lent to an output power constraint. Therefore, is basically
a decorrelation criterion with a norm constraint on. It has been
emphasized by several authors that output decorrelation is a suf-
ficient criterion for equalization when the channel-matrix re-
sponse is full-column rank [9]. Therefore, we realize that condi-
tions on can be derived to guarantee the stability of all pos-
sible ZF receivers in the noise-free scenario for sub-Gaussian
and Gaussian sources whenis full-column rank.

In the next section, we show that behavior of the VCM
cost function is, surprisingly, significantly different from the
behavior of the CRIMNO criterion. This result stems from the
fact that the decorrelation argument cannot be used for the
VCM criterion (because differ from a
decorrelation measure) to explain its ability to admit stable ZF
solutions when the source is Gaussian.

IV. STABILITY OF ZF SOLUTIONS

Next, we prove that VCM admits ZF extrema, and we derive
the conditions of stability of these solutions.

According to the assumptions introduced in the introduction,
characterization of the VCM extrema can be equivalently given
in terms of the channel-receiver response. Let us consider the

th component of the gradient given by

(7)

where is the th component of . The terms (with
) are defined by when , when

and , when , and 0 else-

where. Since the contributions of and of
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(7) are equal to zero whenhas only one nonzero component,
the ZF solutions that are the extrema of (5) also correspond to
the ZF solutions zeroing the gradient of the CM criterion.

The result concerning the stability of these solutions is sum-
marized in the theorem that follows.

Theorem 11: The cost function admits extrema of

the form , where is the th
component of for

and (8)

The stability of the previous solutions is related to the sign of the
quadratic form , where is the Hessian of
of dimension of entries
and is an arbitrary vector.

Under the assumption (i.e., when the averaging
window in (3) matches the combined channel-receiver length),
we have the following.

1) For , .
Therefore, is a maximum.

2) Let

where (9)

When , admits positive and negative eigen-
values for with , these solutions
correspond to saddle points. When , for

and . All other solutions correspond
again to saddle points.

3) Under the condition , the Hessian
for and . These two vectors are thus

stable minima of . When , admits
positive and negative eigenvalues for with

. These solutions are thus saddle points. When
, for with .

4) Under the condition , for with
. All these solutions correspond to global

minima.

The bound (9) is the admissible maximum source kurtosis
for which the VCM cost function admits global stable minima,
leading to the perfect estimation of the input signal, indicating
that the source could be Gaussian as well as super-Gaussian.
For example, with , we have . Interesting be-
havior occurs when , where the only stable ZF solu-
tions are those leading to the estimation of the source and

. When , the stability of the zero-forcing
receivers corresponding to other transmission delays is not well
defined due to the presence of zero eigenvalues. This specific
behavior, emphasizing the role of the two delays at the edges of
the combined channel-equalizer response, stems from the prop-
erty of symmetry of the constraint term appearing in the com-
posite criterion (5). The constraint can be seen as cross-correla-
tion penalization of with respect to the past observations

for , or equivalently, a cross-correlation pe-
nalization with respect to future observations

for . Comparable behavior occurs, for instance,

1The proof is available on request.

for linear-prediction methods that lead to the estimation of the
source of delay zero (i.e. [6], [8]).

Notice that the upper bound depends implicitly on the
channel length. When , we have . This shows,
in particular, that when the channel and receiver have a double
infinite response, VCM does not admit stable ZF minima for
Gaussian and super-Gaussian sources.

V. OTHER EXTREMA

In this section, we address the problem of the characterization
of extrema that differ from ZF solutions. We focus on the special
case of Gaussian sources (i.e. ).

The location of all VCM extrema and the analysis of their
stability for arbitrary and (where denotes the dimension
of the channel-receiver response) is not a trivial problem. We
give insight on the behavior of VCM through characterization
of all the extrema for . Two different situations
and , have to be considered separately for the analysis
of VCM.

For , all the extrema of VCM are shown in the
Table I. The stable solutions corresponding to ZF estimation of
the source that are associated with delays at the edges of the
channel-equalizer response are given in boldface. The Hessian
for the ZF center-spike solution has one zero eigenvalue so that
stability of this solution is not well defined, as is mentioned in
Theorem 1. The other extrema are split into a global maximum

and saddle points, and are thus unstable.
For , it is easy to characterize for subsets of

extrema that do not correspond to ZF receivers. For example,
for and , with
denotes a continuum of solutions as extrema of the VCM cost
function. However, the stability of these solutions for VCM are
not clearly defined, in contrast with the CM cost function for
which these solutions (up to a scale factor) correspond to a set of
stable minima. In fact, the eigenvalues of the Hessian for these
solutions are given by . Thus, the Hessian
could be semi-positive definite or semi-negative definite. We get
arrive at similar conclusions for the general case .
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