n digital communications, data signals are
transmicted through linearly distortive
analog channels such as telephone, cable,
and wireless radio. I genereal, the sin-
glc user system model is an accurate description
of point-to-point, time division multiple access
(TDMA), and frequency division multiple ac-
cess (FIIMA) comnmumication systems. Two
major sources of lincar channel distortion in
(single-user) digital communications systems
are multipath propagation and limited band-
width. Lincar channel distortion leads to
intersymbol interference (ISI) at the receiver
whicl, in tirn, may lead to high error rates in
symbel detcction. Bqualizers are designed to
compensate for these channel distortions. One
may dircctly design an equalizer given the re-
ceived signal, or one may ficst estimate the chan-
nel impulse response and rhen design an
equalizer based on the estimated channel. Tradi-
tionally, reccivers or equalizers rely on a trans-
mitter assisted training session to extract the
desired reference signal for channel estimation
and equalization, Such receivers continue to be
highly important rescarch subjects because of
practical obstacles such as channel variation and
nenlinearity,

Muore recently, there has been much interest
in blind (sclf-recovering) channel estimation
and blind equalization where ne training se-
quences are available or used. In multipoint net-
warks, whenever a link from the server o one of
the tributary stations is interruptred, it is clearly
not feasible {or desirable) for the server to start
sending a training sequence to re-establisi a par-
aeotar link, In digital connmunicadions over fad-

imation and

t I

ing/multipath channels, a restart is required fol-
lowing a temparary path interiuption due to se-
vere fading, During online transmission im-
pairment monitoring, the training sequences are
obviously not supplicd by the transmitter, Con-
sequently, the importance of blind channel com-
pensation rescarch s also strongly supported by
practical needs,

In this avticle, we present a comprehen-
sive summary of recent rescarch develop-
ment on single-user channel estimation and
equalization, focusing on both training-based
and blind approaches. Our emphasis is on lin-
car time-invariant channels; linear time-vary-
ing as well as nonlincar channels are ouside
the scope of this article

System Models

In this scction we first describe the models that
arc used to characterize the wireless and mobile
communications channels, Then we rn o a
brief discussion of the various equalizer strue-
tures that are used to undo the signal distortions
caused by the chaniel.

Channel Models

The propagation of signals through wircless
channels (indoers or outdoors) results in the
transmitted signal acriving ar the receiver
through multiple paths. These paths arise due to
reflection, refraction, or diffiaction in the chan-
nel. Multipach propagation results in a received
signal that is a superposirion of several delayed
and scaled copies of the transmitred signal giv-
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While the ML astimator is
conceptually simple and it
usually has good performance
when the sample size is
suificiently large, the
implementation of the ML
estimator is sometimes
computationally intensive.

ing rise to frequency-seiective fading. Frequency-selec-
tive fading (defined as changes in the received signal
level in time) is caused by destructive interference
among multiple propagation paths. The eavironment
around the transmitter and the receiver can change over
time, particularly in a mobile sctting, [cading to varia-
tions in the channel response with time. This gives rise
to time-sclective fading. Alsa, the channels may have a
dominant path {direct path in line-of-sight channels) in
addition to several secondary paths, or they may be char-
acterized as having multiple “random” paths with ne sin-
gle dominant path.

Multipath propagation leads to IST at the receiver which,
in e, may lead to high crror rates in symbol detection.
Equalizers ave designed to compensate tor these channel dis-
wrtions. One may directly design an cqualizer griven the re-
ceived signal, or one may first estimare the channel impulse
response and then design an equalizer based on the esti-
mated channel, After some processing (matched filtering,
tor instance), the continuaus-time received signals are sam-
pled ar the baud {symbol) or higher {fractional) rate before
processing them for channel estimation and/or cqualization,
It is therefore convenient (o work with 2 baseband-cquiva-
lent discrete-time channel model, Consider a baud-rate sam-
pled system, Let s[k] denote the kth information symbol,
and let #| £ denote the sampled received signal during the
kth received symbol, Then the two are related via a
time-varying lincar system tesponse as

¥[n]= Ek: Bsy R)s|n — k] win] "

where b#; £)is the channel response at time » to a unit in-
put at time 2~k and w[z#] represents the additive noise
(and interferences) at the receiver, Model {1 represents a
time- and frequency-sclective linear channel, A tapped
delay line snructure for this model is shown inFig, 1, Fora
slowly (compared o the baud rare) time-varying system,
ene often stmplifics (1) to a time-invariant system as

rla]= Z b k]s[r — k] +w(n) @)
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where b k| =H5[0; k] 18 the time-invariant channel response
to a unit input at time ¢, Model (2) represents a fre-
quency-selective linear channel with no time selectivity. It
is the most commonly used model for receiver design.
Suppose that bfw;k|=k[#10[£0] where 8[20] is the
Kronecker delta locared at 0, L.e., 8 £,0]=1 for k=0and
8[£,0]=0 for »=0. Then we have the time-selective and
trequency-nonselective channel whese outputis given by

v[#]=hin]s(n]+ wr]. 3

Linally, a time-nonsclective and frequency-nonselective
channe] is modeled as

R HEARSYE (4)

where 4 is a random variable (or a constant).

All of the channel response functions (13-(4) may be
modeled as deterministic or random. Alsa, {1)-(4) result
in a single-input single-outpur (S1S0) complex dis-
crere-time  bascband-cequivalent channel maodel. When
the channel of {2} is deterministic, the output sequence
{#|#n]} is discrere-time starionary. When there is excess
channel bandwidth [bandwidth > 172 x {(baud rate)],
baud rate sampling is below the Nyquist rate leading to
aliasing and depending upon the symbol timing phase, in
cermain cases, causing deep spectral norches in the sam-
pled, aliased channel transfer function [3]. Linear cqual-
izers designed on the basis of the band-rate sampled
channe] response are quite sensitive to symbol timing er-
rots. Initially, in the rrained case, fractional sampling was
investigated to robustify the cqualizer performance
against cming ercors. For linear cime-invariant fre-
quency-selective deterministic channels [as in (2)], when
sampled at higher than the baud rate (cypically an integer
multiple, p, of baud rate), the sampled signal is dis-
crete-time scalar cyclostationary, and equivalenty, it may
be represented as a discrete-time vecror stationary se-
quence with an underlying single-input amitiple-outpur
{SIMO) model where we stack @ consecutive veceived
samples in the sth symbol duration to form a p-vector
Flul:

#ln] =3 Blk]s[n — k] + (], )
3 B

Tnn (5}, h| k] is a p vector,

For more details on fading multipath channels, see [4]
and |5]. For modeling saturation nenlinearitics of power
amplifiers, nonlincar channcls of Volterra type have also
been used [1]. A discussion of basis expansion medels for
time-varying channels may be found in [ 2] where, by a suit-
able selection of the basis functions, a time-varying channel
cant be “pranstormed” into a time-invariane channel,

Equalizer Struciures
The most common channel equalizer structute is a linear
transversal filter. Given the baud-rate sampled reccived
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signal |sec (2}] #|#], the lincar transversal equalizer out-
pur y[#]is an estimate of s[#], given by

N

[i2]= ¥ e[kl [n— %]
g k;\' (6)

where {¢] 2] } are the (2N + 1) rap weight coefficients of the
equalizer; see Iig, 2. As noted earlier, lincar equalizers de-
signed on the basis of the baud-rate sampled received sig-
nal are quite sensitive to symbol timing errors [3].
Therefore, fractionally spaced lincar equalizers (typically
with twice the baud-rate sampling: oversampling by a
factor of two) are quite widely nsed to mitigate sensitiviry
to symbol timing crrors. A fractionally spaced cqualizer
(FSLE) in the lincar transversal structure has the output

N

ylwl= S i [EF[m -k
k= 3 [T~ o

where we have p samples per symbol, #[#] and ¢)#] arc
f-volumn vecrors [¢f, (5)], {7]#]} are the (2N +1) vector
tap [or p2N +1) scalar rap] weight coclficients of the
FSKE, and the superscript T denotes the transpose apera-
tion, Note that thie FSE outputs data at the symbol rate.
Various crireria and cost flnctions exist to design the lin-
ear cqualizers in both batch and recursive (adaptive)
form: we discuss these Jater, The linear equalizers can
also be implemented as a lattice fileer [4]. Tattice equaliz-
crs exhibit faster convergence and beeter numerical prop-
erties [4].

Linear equalizers do nor perform well when the under-
lying channels have deep spectral nulls in the passband.
Several nonlinear equalizers have been developed ro deal
with such channels, Two effective approaches are:

& Decision Feedback Equatizer (DFE): DFE is a nonlincar
equalizer chat cmploys previously detected symbols o
eliminace the IS8T due ro the previously detecred symbols
on the current symbol to be derected. The use of the pre-
viously detected symbols makes the equalizer output a
nonlincar function of the data. DFLE can be sym-
bol-spaced or fractionally spaced.

& Maxinnm-Likelthood Seguence Detector: This estimates
the information sequence to maximize the joint probabil-
ity af the received sequence conditioned on the informa-
tion scquence,

A detailed discussion may be found in [4].

Channel Estimation

One of the objectives of receiver design is to minimize the
detection crror. In general, the design of optimal detector
requites the knowledge of the channel, Often unknown in
practice, channel parameters need to be estimated, prefer-
ably using only a limited amount of data samples. In
communication applications, especially for packet trans-
missions, the efficiency (a measure of how effectively an
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algorithm utilizes the available data) of the estimaror is
particularly important.

We consider in rhis secrion theee types of channel esti-
mators based on the framework of maximizing the likeli-
hoad function, Referred to as the training-based channel
estimation, the first type described consists of the classt-
cal techniques that estimate the channel from a known
training scquence and its corresponding observation. The
mode of operation is “train-before-transmir,” which is ef*
fective when the channel does not have significant time
variations as in the case of voiceband communication
over telephone channels, Tor rapidly varying chanoels,
however, such an approach is not efficient because teain-
ing has to be performed repeatedly, which reduces the
available time for transmitting infornation. Next we de-
scribe the approach of blind chanuel estimation, which
means that the channel estimation is performed while in-
formation signals are being transmitted. In other words,
the goal of blind channel estimation is “train-while-trans-
mit.” The major advantage of these techniques is the im-
proved bandwidth utilization for time-varying channcls.
Finally, we consider the class of techniques that fall in be-
tween the fraining-based and blind channel estimation
techniques, Referred to as the semiblind channel estima-
tian, these techniques aim to estimate the channel using
not only the known data in the transmitted signal and its
corresponding observation, but also the observation cor-
responding ro the unknown data, The semiblind channel
cstimation becomes training-based estimarion when only
the ebservation corresponding to the known data is used,
and it becomes blind-channel estimation when the obscr-
vation is restricred to that corresponding to the unknown
part. Semiblind channel estimation is motivated by the
fact that, in data transmission, there are always some
known symbals that shonld be incorporated to improve
the performarnce.

The Maximum-Likelihood Estimator
One of the most popular parameter estimation algo-
rithms 15 the maximum-likelihood (M1.) merhod. The
ML estimators can be derived in a systematic way. Per-
haps more importantly, the class of M1, estimators are op-
rimal asymptotically [7].

Tet us consider the p-vector channel model given in
{5)where we now assume that the channel has a finire im-

sinf .

& 1. Tapped delay line modef of frequency and time selective
channel with finite impulse response. z™' represents a unit
(symbol duratien) delay.
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A 2, Structure of @ baud-rate linear transversal equalizer,

pulse response of order L. Suppose that we have collected
N samples of the observation ¥ = [7| N —1],...,#10]]7
then have che following lincar mode!:

SIN-1T, s|N-2]2, SIN-L-1]I,
F= Block Hankel Mairix
0L, si-111, s[-L]7,
BOI) (%[N -1]
A |+ E
AL} (0]
=H(§)Nx(l.+1)}; +
(8)

where I is a px p identity maimx, § and % are vecrors
consisting of samples of the input sequence s[#] and noisc
wln], respectively, and f is the vector of the channel pa-
TAMCLELS,

Let B be the vector of unknown. parameters that may
include the channel parameter 4 and possibly the entire or
partof the input vector 5. Given the probability space that
describes jointly the noisc vector # and possibly the input
data vector ¥, we can then obtain, in principle, the proba-
bility density function (pdf)—assuming it exists—of the
observation 7, As a function of the unknown parameter 8,
the pdfofthe observation f(7 ;) is referred to as the likeli-
hood function. The M1, estimaror is defined by the fol-
lewing optimization:

O=arg thax FF®

%

where @ defines the domain of the optimization,

While the ML cstimator is conceprually simple and it
nsually has good performance when the sample size is suf-
ficiently large, the implementation of MI. estimator is
sometimes compuaationally intensive. Furthermore, the
optimization of the likelihood foncdon in (9) is often
hampered by the existenee of Jocal maxima. Thereforc, it
is desirable that cffective initialization rechniques are used
in conjunction with the ML estimation.

We now apply the principle of maximizing the likeli-
hood Gmction te the three channel estimation problems:
the training-based channel estimation, the blind chanael
estimation, and the semiblind chanpel estimation.
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Training-Based Channel Estimation

The training-based channe] estimation assumes the avail-
ability of the input vector ¥ (as training symbals) and ies
corresponding observation vector #. When the noise
samples are zero mean, white Gaussian, i.e., # is a Zero
mean, Gaussian random vector with covariance ¢ £, the
ML estimator defined in {10y, with 8=4, is given by

= 2
b= argm__in”i" - H(5 )FJH =H" (5
[ {10
where H' (s is the pseudo-inverse of the H(5) defined in
(8). This is also the classical lincar least squares estimator
which can be implemented recursively, and it turns out o
be the best (in terms of having minimum mean square cr-
ror) among all unbiased cstimators and ie is the most effi-
cient in rhe sense that it achieves the Cramér-Rao lower
bound. Various adaptive implementations can be found
in [17].

Blind Channel Estimation

Now suppose that both the input vector 5" and the channel
vectar 4 are unkoown, The simultaneous estimation of
the input vector and the channel appears to be ill-posed;
how is it possible that the channel and its input can be dis-
tinguished using only the observation? The key in blind
channel estimation is the utilization of qualicative infor-
mation about the channel and the input. To this end, wc
consider two difterent types of MT. techniques based on
different models of the input sequence,

Stochastic Maximum-Likelihood Estimation

While the input vector § is unknown, it may be modeled
as a random vector with a known distribution. In such a
case, the likclihood function of the unknown parameter
6=/ can be obrained by

F(Fh)=[ F(Rsh)f s

where f(£) is the marginal pdf of the input vector and
FFS:8) 18 the likelihood function when the input is
known. Assume, for example, that the inpur dara symbal
s[#] takes, with cqual probability, a finite number of val-
ues. Consequently, the input data veetor § also takes val-
ucs from the signal set {§,..,5,. 3 The likelihood
function of the channel parameter is then given by

o510

(1)

¢ b JProb(;r' = 3,.)

”1» HE

= 2 CXp<—

(12)

where C is aconstant, and the stochastic M1, estimatoy ig
given by
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el ]
= 1|gmm§ exp - o

(13)

The maximization of the likelihoed function defined
in (11) is in general difficult because (7 :0) is nonconvex.
The expectation-maximization {EM) algorithm [6], [12]
can be applied to transform the complicated optimization
to a sequence of quadratic optimizations. Kaleh and
Vallet {18] first applicd the EM algorithm to the equal-
ization of commumeation channels with inpur sequence
having finite alphabet property. By using a hidden
Markov model (HMM) madel, they developed a batch
{off-line) procedure that includes the so-called forward
and backward recursions [21], Unfortunately, the com-
plexity of this algorithm increases exponentially with the
channel memory.,

To relax the memory requirements and facilitate chan-
nel tracking, “on-line” sequential approaches have been
proposed in [30], [34], and [29] for general inpurand in
[19] for input with finite alphabet propertics under a
HMM formulation, Given the appropriate regularity
conditions |29} and a good initialization guess, it can be
shown that these algorithms converge {almaost surcly and
in the mean square sense) to the true channel value,

Deterministic Maximum-Likelihood Estimation

The deterministic ML approach assumes no statistical
model for the input sequence s[#]. In other words, both
the channel vectar 4 and the input source vector § arc pa-
rameters to be cstimated. When the noise 18 zero-mean
Gaussian with covariance 6° I, the ML estimates can be
obtained by the nenlincar least squares optimization

{}9,?} =argmin

The jointminimization of the likelihood function with re-
spect to both the channel and the source parameter spaces
is difficulr. Fortunately, the observation vector 7 is linear
in both the channel and the input parameters individu-
ally, In particolar, we have

Y]

‘? —H(E)i

a (14)

P i =T (R )3+ .

where

r(h)= 3
BO] - B[L] (16)
is the so-called filtering matrix. We therefore have a sepa-

rable nonlinear least squares problem that can be solved
sequentially
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2o L2
{b o5 } =arg mi n{m_inl’i" —H{5)h }
T : (17)

} (18)

If we arc only interested in estimating the channel, the
above minimization can be rewritten as

=arg l'[]ll]{['ﬂl[‘l

2

s - - ~ 2
b =a1’gm{jn (I ~T{T" (b))i" =arg n}iﬂ”?’(!ﬁ)ﬁ
: ;
2U5} (19)

where P(h) is a projection transform of # into the or-
thogon"ll complement of the range space of T(h), or the
noise subspace of the observation. Discussions of algo-
rithms of this type can be found in [31].

The finite alphabet properties of the input sequence,
similar to the HMM for statistical ML approach, can also
be incorparated into the deterministic ML micthods.
These algorithms, first proposed by Seshadri [22] and
Ghosh and Weber [15], iterate between estimates of the
channel and the inpur. Ariteration £, with an inirial guess
of the channel 5, the algouthm estimates the input se-

quence 5 and the channel*+) for the next itcration by
FP = avg min|lF - T(h'”')

fes (20)
Lik+l} IR ?
BV =argmin|F —H( S bH

B (=) @an

where Sis the (discrete) domain of ¥, The optimization
in (21} is a linear least squares problem whereas the opti-
mization in (20) can be achieved by using che Viterbi al-
gorithim [13]. The convergence of such approaches is not
guaranteed in general,

The Method of Moments
Although the MI. channel estimator usually provides
better performance, the computation mmplulry and the
existence of Jocal optima are the two major difficulties.
The method of moments, on the other hand, often has a
closed-torm identification by exploiting the relationship
between the channel paramerer and moments of the ob-
servation vecror #,

Second-Ovder Statistical Methods: In general, che sec-
and-crder moment of the observation carries only the
magnitude information of the channel. It is theretore in-
sufficient for channel identification, For SIMO vector
channels, however, the autocorrelation fimetion of the
observation is sufficient for the identification of the chan-
nel impulse response up to an unknown constant [32].
This obscrvation led to a number of techniques under
both statistical and deterministic assnmptions of che in-
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put sequence [31]. By cxploiting the multichannel as-
pects of the channel, many of these techniques lead to a
constrained quadratic optimization

fr= arg 1111|1§’Q(17)];
i (22)

where Q(F}is a positive definite matrix constructed from
the observation. Asymptotically (either as the sample sive
increases to infinity or the noise variance approaches to
zero), these estimates converge to true channel parame-
ters.

Here we present a simple yet informative approach
[35] that illustrates the basic idea. Suppase that we have
only two channels with finite impulse responses b, [#] and
#, [#], respectively. If there is no noise, the received sig-
nals from the two channels satisfy

nlnl=hn}*slnl, v [nl=k, 2% (2]

where * is the lincar convolution, Consequently, we must
have

{23)

* —_ *

7 [1]* b, [B]=r, [n]* b, [1]. (24)
Since the convalution operation is linear with respect to
the channel and #,[#] is available, (24} is equivalent to
solving a homogencous linear equation
RE=0 (25)
where 1L is a matrix made of abservations from the two
channels, It can be shown thar under cerrain
identifiability conditions [31], the null space of R has di-
mension 1, which means that the channei can be identi-
fied up to a constant, When chere is noise, the channel
estimtator can be abtained from a constrained quadratic
optimization

:’;:arg mink* R’ Ris
-t (26)

A

which implies that / is the cigenvector corresponding to

the smallest cigenvalue of Q=R'R.

Alrernatively, one can also cxploit the subspace strnc-
ture of the filtering matrix. For example, it'itis possible to
construct a matrix N, from data ditectly, such that

NT(J}) =0

(27)
due to the structure of ’T(f;), we then have
G(N)r =0=lr =argmink’ (GIN)G* (N) ).
- (28)

Onxe such subspace technique was presented in [24].
Morerecently, the problem of blind channe! identifica-
tion has been formulated as prablems of linear prediction
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[23], [14], [66] and smoothing [33] which have simple
adaptive implementations [36].

Higher-Order Statistical (HOS) Methods: Given the
mathematical model, there are two broad classes of ap-
proaches to channe] estimation, the distinguishing fea-
ture among then being the choice of the optimization
criterion, All of the approaches involve (more or less) a
least-squares error measurc. The error definition differs,
however, as follows:

& Figring Evror: Match the model-based higher-order
(typically fourth-order) statistics to the cstimated
{data-based) statistics in a Jeast-squares sense to estimare
the channel impulse response, as in [64] and [65], for ex-
ample. This approach allows consideraton of noisy ob-
servations. In general, it results in a nonlinear
optimization problem, It requires availability of a geod
initial guess to prevent convergence to a local minimum,
Iz yields estimates of the chaanel impulse response.

A Henation Errer: Ttis based on minimizing an “equation
error” insome equation which is satisfied ideally. The ap-
proaches of [69] and [68] (among others) fall in this cate-
gory. In general, this class of approaches results in a
closed-form solution for the channel impulse response so
that a global extremum s always guaranteed provided
that the channel length (order) 8 known. These ap-
proaches may also provide good initial guesses for the
nonlincar fitting evror approaches. Quite & fow of these
approaches fail if the channel length is nnknown.

Further details may be found in [67] and references
therein.

Semiblind Channel Estimation

Scmiblipd channe! estimation has attracted considerable
attention recently due to the need for fast and robust
channel estimation and the fact that, for many packet
transmission systems, there are embedded known sym-
bols that can be exploited for channel estimarion and
tracking. We present here a brief discussion about the
idea and refer the reader to a recent survey [9] for details.

Semiblind channel estimation assumces additional
knowledge of the input sequence. Specifically, part af the
input data vecror is known, Both the statistical and deter-
ministic ML estimators remain the same except that the
lilelihood function needs to be modificd to incorporate
the knowledge of the input [L1 ], [10]. Semiblind channel
estimation may offer significant performance improve-
ment, however, over cither the blind or the train-
ing-based methods as demonstrated in the evaluation of
Cramér-Rao lower bound in [11].

There are many gencralizations of blind channel esti-
mation techniques o incorporate known symbols. In
[8], Tsatsanis and Cirpan cxtended the approach of
Kaleh and Vallet by restricting the transition of hidden
Markov model. In [201, the knowledge of the known
symbol is used to avoid the local maxima in the maximi-
zation of the likelihood function. A popular approach s
to combine the abjective function used to derive blind
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channel estimaror with the least squares cost in the
raining-based channel estimation. For cxample, a
weighted linear combination of the cost for blind chan-
nel estimator and that for the training-based estimator
can be used [16].

Direct Equalization and Symbol Estimation

For the purpase of communicating, digital receivers need
to recover channel inpur symbols from received signals
that may suffer from noise and channel distortions, Di-
rect channel equalization and symbol estimation are com-
monly adopted in practical syswems. Recall that data
communicatien input s[ k| comes from a known constella-
tion S that has finite number of possible symbols, ‘This
important informartion forms the basis for many direct
equalization and symbol estimation approaches to the
channel equalization problem.

1 this section, we describe several types of approaches
o the problem of directinpursignal recovery under lincar
rime~invariant channels. First, we consider the classical
appraach of adaptive channel equalization based on train-
ing. This approach relies on an available sequence of
training data rhat is fransmiteed by the mansmitter during
the setup stage and is known to the receiver. This training
approach can be applied for T-spaced equalizers {TSE) as
SISO feed-forward fileers, for BSE as SIMO feed-forward
filters, and for DFE. We then outline the basic principle
of blind adaptive equalization based on implicit HHOS cri-
teria, Next, we explain the principle of some simple algo-
rithms for blind symbol estimation exploiting secand
order statistics, Finally, we revisit the method of symbol
estimation via iterative least square criterion and some
variations.

Equralizer Adaptation Based on Training
Channel output (affer matched filter) sampled ar band
rate is

7] :kgh[k]s[ﬂ — k] +w#n) 29)

Problems occur when the original analog channel does
not satisfy the Nyquist [ crirerion. Consequently, unde-
sirable IS is introduced as the channel outpur #[#] de-
pends on multiple symbols {s[7] 1. IST is usually caused by
limited channel bandwidth, multipath, and channel fad-
ing. One of the simplest and most cffect approach to re-
covermg §[xn| trom #[#] 1 the vse of lincar channel
equalization,

Following the successtul application of adaptive fileers
by 1.ucky [37], equalization parameters are often updated
through the minimum mean square ervor criteria, "This re-
quires that a known channel input sequence be transmie-
ted initially, Bqualization with training is common to
many digital communication systems such as high speed
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relephone modem, satellite communication systems, and
digital cellular systems.

The general structure of a channel equalizer is shown
in Fig. 3. Adaptive channel equalizers begin adaptation
with the assistance of a known training sequence hrans-
mitted during the initial stage by the rransmiteer. Since
the input signal is available, adaptive algorithms can be
used to adjust the equalizer paramcters by minimizing a
mean square error {MS81i) berween the equalizer ourpur
¥[n] and the known channe] input with a delay 5]z —v].
After training, equalizer parameters should be sufficiently
close to the desired settings such that much of the IST is
removed. As the channel input can now be correctly re-
covered from the equalizer cutput through a memotyless
decision device (slicer), the second stage of real daa
transmission can begin. In the operational stage, the re-
ceivers typically switch to a decision-directed mode
where the equalized signal y[»]is sent to a symbol detec-
tor and the detecred symbols are used as a {pseudo-reain-
ing sequence to update equalizer cocfficients.
Vieedforward I'SE, FSE, as well as 1DFE can be updated.
During cither session, the equalizer tileer parameters can
be determined wsing the well known recursive least
square (RLS) or least mean square (LMS) algorithm,

Maximum-Likelilood Sequence Estimation
Channiel equalization followed by a symbol-by-symbol
cstimation slicer does not take into consideration the fact
that the cqualized noise is no longer whize. Thus, perfor-
mance loss is often encountered in feed-forward and feed-
hack cqualizers. A more effective but more costly
approach is the use of Virerbi algorithm for MT. estima-
tion of the input sequence.

Assume that the SISO channel has finite impulse re-
spanse

r[p]= gh[k_mw — k] +wln| (30)

As the noisc w[#] is often white Gaussian, ML estimate
of the channel input s[#] based on a sequence of channel
output #|#| can be obtained if the channel impulse re-
sponse is known or has been cstimated via training or
blind channel estimation. The input sequence can be es-

LI a

riifny

Faadforward FSE
1

wilfn]

r{m}m i

w™in]

& 3. reedforward and decision feedback channel equalization
fifters.
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timated by maximizing the likelihood function or,
cquivalently, by minimizing

o1

DY

=1 (3] )
Sinced has only A symbols, the Viterbi algorithm can be
implemented by denoting M* states as all possible
Letuples of (s[# |, 5|7 — 1],..,s]p — L+1]} The teellis is de-
termined by & while the metrics of the Viterbi algorithm
depends on the estimared channel b{£).

The ML Viterhi sequence estimator is optimum since
it provides the minimum probability of symbol error un-
der white Gaussian noise. Itis a nonlincar equalizer, how-
ever, and is quite complex if the number of states M * is
large. The DFE can be considered as a suboprimum:
scheme thar assumes all past decisions as correct and only
cstimates the most recent symbel. To obrin a medhod
simpler than MLSE and yet more accurate than DFE, a
reduced state Viterbi algorithm was proposed by
Duel-Hallen and Heegard |38] that assumes some past
decisions as correct while estimating several most recent
symbols. This reduced state approach gives a nice com-
promisc berween complexity and performance. It pro-
vides good performance when che channel impulse
response has long but small tails.

SISO Blind Equalization Based on HOS

In many communication systems, transmission of train-
ing sequences is either impractical or too costly, Blind
adaptive channel equalization algorichms thar do not rely
on training signals have been developed. This property
can be helpful in broadeast and multicast systems where
training sequence for one new wser can be distuptive to
currently connected vsers.

Generally there are two types of approaches to this
problem: blind channel estimation or direce blind equal-
ization. Blind channel estimation issues have been dis-
cussed previously, Divect blind equalization sccks
optimum parameter values for blind equalizer fileers so
that the eye pattern at the equalizer output is open to al-
low correct slicer decision. Because of the nonlinear na-
tre of DFL, adaptive blind equalizers are generally
implemented as feed-forward.

The key to designing a blind equalizer is to design rules
of equalizer parameter adjustment. With the lack of train-
ing sequence, the receiver docs not have access to the de-
sired equalizer output s[r] to adopt die traditional
minimum mean square error criterion. Evidently, blind
cqualizer adaptation needs to minimize some special,
non-MSE type cost function which implicitly involves
higher order statistics of the channel ountput signal. ‘The
design of the blind equalizer thus translates into defining
a mean cost function E{M(yI#])} where W{x) is a scalar
function. Thus, the stochastic gradient descent
minimization algorithm is casily deteemined by the deriv-
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ative fanction y(x)29 (x). Henee, a blind equalizer can
cither be defined by the cost funcrion W(x) or, equiva-
lently, by its derivativey(x) funcrion. Ideally, the function
() should be selected such that local minima of the mean
cost correspond to a significant removal of 18T in the
equalizer oueput y|#).

We summarize several blind adapration algorithms de-
sigmed for feed-forward equalizers,

Decision Directed Algorithm

The simplest blind equalization algorithn is the deci-
sion-directed algorithm withont teaining sequence. It
minimizes the mean square error berween equalizer out-
put y[#] and the slicer output §|z — v}, The performance
of the decision-directed algorithm depends on how close
the initial parameters are to their optimum settings, The
closer they are, the more accurate the slicet output is to
the true channel input s[z - v]. On the other hand, local
convergence is highly likely if initial parameter values
cause significant number of slicer ervors [39], [40].

Sato Algorithm and Some Generalizations

The first truly blind algorithm was introduced by Sato
[41]. For M-level PAM channel input, it is defined by

47 12
wix)=x-— R sgnix), where R éi;[?]]!l.
s[n.

(32)
The Sato algorithm was extended by Benveniste et al.
[42] into a class of error functions given by

v, nl)=w, (¥]n])~ R, sgn(y[#]),
where R, %M‘
el (33)

The gencralization uses an odd functiony, (x)whose sec-
ond derivative is nonnegative for x 20,

Stop-and-Go Algorithm

Another idea called the “stap-and-go” algorirhm was in-
troduced by Picchi and Prati [43] to allow adaptation “to
go” only when several derivative functions agice in sign
for the current outpue y[z]. Given several criteria for
blind equalization, one can expect a more accurate de-
scent direction when more than ane of the existing algo-
rithms agree on sign of their error funcrions. When rhe
crror signs differ for a particular outpur y[»], paramerer
adaptation is “stopped” to maintain cheir corrent values.
A similar idea was exploited in [53].

Bussgang Algorithm

The so-called Bussgang algorithims are derived from the
maximium & pasteriori (MAD) formulation [44], |45]. De-
fine the impulse response of the channel-equalizer combi-
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nation as C[R]|=A[k)%c[k]. If &v has the largest
magnitude, then the equalizer output y[#] is

yln]= ig[z']s[n —i|+ wln]

fry

=EVs[k— ]+ Y EliJsTe —i] + wlm].

covolating noise

Assuming that the probability distribution of noise is
Gaugsian, the MAP estimate of s[# —v)

Mal

S~ v =arg max_ fy|n]]s[m-v]) (34)

i{w-vies

can be nsed as a reference signal for LMS equalizer updare
in the Bussgang algovithm.

Constant Modulus Algorithm and Extension
The best known blind algorithms were presented in [46]
and [48] with cost functions

1
¥ ()= E(J s7-R,),

g
s Bls[a]™ 12,

where R, Bs(n]

(35)

"This class of Gadard algorithms is indexed by the positive
integer 4. Using the stochastic gradient descent approach,
cqualizer parameters can be adapted accordingly.

For g =2, the special Godard algorithm was developed
as the “consrant modulus algorithm” (CMA} independ-
ently by Treichler and co-workers [48] using the philoso-
phy of property restoral. For channel input signal chat has
a constant modulus|s|#]|* =R, the CMA cqualizer pe-
nalizes output samples y[#] rhat do not have the desired
constant madulus characteristics. The modulus crror is
simply e(n)=| y[#]|> ~R,, and the squaring of this error
yields the constant modulus cost function that is the iden-
rical to the Godard cost function with g =2.

This modulus restoral concept hag a particular advan-
tage in that it allows the equalizer to be adapted inde-
pendent of carrier recovery. A carrier frequency offser of
A, causes a possible phase rotation of the equalizer
output. Because the CMA cost function is insensitive to
the phase of y[#], the equalizer parameter adapration can
occur independently and simultaneously with the opera-
tion of the carricr recovery system. This property also al-
lows CMA to be applied to analog medulation signals
with constant amplitide such as those using frequency or
phase modulation [48],

The methods of Shalvi-Weinstein [49] generalize
CMA and ave explicitly based on higher order sratistics of
the equalizer outpur. Define the kurtosis of the cqualizer
output signal y|#] as

K, 2 E|y[m)*| -2 |y(n)* |~

E{y|n}’ }!2

{30)
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For the puipose of
conpnunicating, digital receivers
need to recover channel input
syrnbols from received signals
that may suffer from noise and
channel distortions.

The Shalvi-Weinstein algorithm maximizes | K || sub-
jeet to the power constraint E{|y[#]|* } = E{|s[»]}? ).

SIMO Equalization Symbol Estimation

Biind SIMO Linear Equalization

Any adaptive blind equalization algorithm can be casily
adopted for lincar SIMO cquatizers [50]. SIMO blind
equalization may ofter a convergence advantage giventhe
subchannei diversity |51]. While algorithms such as
CMA in 8]50 cqualization may sufter from local conver-
gence [52], CMA and the snper-exponential method [54]
are shown to converge to compleie IST remowal uader
noiseless channels [50], [55]. Furtherimore, there is a
close relationship between CMA and the nonblind mini-
mum MSE cqualizer [71], [72].

Blind Closed-Form Symbot Estimation
Joint blind channel estimation and symbol cstimation
methods based on a deterministic framework were pre-
sented carlier. It should be noted, however, that local
convergence and high complexity are their norable disad-
vantages. A subspace method was presenced in [56] that
leads go closed-form solutions without high complexity.
Following (8) and (15}, multiple snapshots of # can
be colicered as

i Y R = T{h¥7 v .3

H(} )N‘;JXU,-.-N] '_[/"‘l u?»—l 1:1'-}11 ]_T(b)[sujn—l LT ]
.~ - . 4
Tl BN Y b1}

(37)
Under the conditien that 7() bas full column rank, the
span of 74(F) is identical to the span of H{¥). Tt was shown
[56] that so long as H{F) has more modes than the rank of
T{h), then H(E) can be uniquely determined from the
mullspace U, of H(7). The input symbals can be found by
solving a set of linear equations

Ff T

UH(E=0. (38)
Some approaches do not require that the spectrum of §[#]
be known. A computationally more efficicnt row span in-
tersection implementation of the above linear algorithm
was given by [57].
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Viterbi Algorithm for Blind Sequence Estimation

The Viterbi algorirhm can also be applied for blind se-
quence estimation based on a statistical preprocessing
step [58]. Assuming that ’T(b is full rank and s]#] is whitc

 2u{7,7 Y =1(B)7 () T el

When the channel is noiscless, 62 =0and singular value
decomposition yields

{39}

R, =U, diag(?ﬁ .

I

. (40)

where A=L+N is rank of T(4). The Mahalanobis

orthogonalization transform can be used to preprocess
the received data vector by

2 )ur

y”éA'I'U!”'F”. (41)
Thus, when there is no noisce

() A g i

K 57— Yo Yy ™ Sl:n_ijl 5[?3—}3—3.].
20 5Y0Y b = A En )

A direct application of the Viterbi algorithm to 4(" can
be used to cstnnatc the unknown data scquence
{s[#],5[n—-1],...s[n—-bk-d +l]} To reduce the number
of srates, select k=1 and estimate the unknown input se-
quence via Viterbi algorithm

i

gl
P 12
Emls[]”}h‘ 5[11”;}:} és[% i) s[n—h—i)|*. (43)

Refer to [58] for a more generalized Mahalanobis trans-
torm when noise is present.

Iterative Blind Symbol Estimation

The iterative channel and symbol estimation method, as
summarized carlier, also allows divect channel input esti-
mation, Both the iterative least squares with enumeration
(ILSE) and iterative least squares with projection (ILSP)
cxploit the finite alphabet nature of the channcl input sig-
nals, Given that clements in § come from 8, the task of im-
plementing

i)~

can be iteratively implemented to improve the estimare in
cach step, as in (20) and (21). ILSP simply replaces the
complex symbol estimation step of (20) by a simpler pro-
jection [59]

8 = proj, (T(ﬂ‘“)fﬁ}

2

min
bocs

(44)

(45)
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In [60], a decision feedback method was presented.
This method utilizes the intermediate smoothing crror of
the least squares smoothing (LSS} approach, Assuming
past decisions are correct, decision of the latest symbol is
based on the dosencss (10 terms of angle) between the lin-
ear prediction (least square sinoothing) errorand the pro-
jection of the inpur signal vector onro a pierced
obscrvation subspace Z_ (n).

Clapp and Godsill also successfully exploited the se-
quential importance sampling idea tor blind scquence es-
timation [61].

Applications of Blind Equalization

Cominercially, blind equalization has found new applica-
tions in the digital IIDTV system and the digital cable
modem | 70]. More recently, pronyising results have also
been reported on the application of blind equalization in
the popular wireless GSM cellular system [62] using
higher-order statistical deconvolution methad [62] as
well as CM A and second-order statistical channe] identifi-
cation |63].
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