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n 1982, Lamport et al. presented 
the so-called Byzantine generals 
problem as follows [1]: “a group 
of generals of the Byzantine 
army camped with their troops 

around an enemy city. Communicat-
ing only by messenger, the generals 
must agree upon a common battle 
plan. However, one or more of them 
may be traitors who will try to con-
fuse the others. The problem is to 
find an algorithm to ensure that the 
loyal generals will reach agreement.” 
The authors gave a sharp character-
ization of the power of the Byzantine 
generals. It was shown that if the 
fraction of Byzantine generals is less 
than / ,1 3  there is a way for the loyal 
generals to reach a consensus agree-
ment, regardless of what the Byzan-
tine generals do. If the fraction is above / ,1 3  consensus can no 
longer be guaranteed.

It is not difficult to relate the Byzantine generals problem to 
a variety of applications in cybersecurity, where Byzantine gen-
erals play the role of internal adversaries. There are many 
diverse behaviors that a Byzantine entity may engage in, such as 
a node (or sensor) may lie about connectivity, flood network 
with false traffic, attempt to subjugate control information, 

falsely describe opinions of another 
node (e.g., peer to peer), or capture a 
strategic subset of devices and col-
lude. This article examines the Byzan-
tine generals problem in the context 
of distributed inference [2], where 
data collected from remote loca-
tions are sent to a fusion center (FC) 
for processing and inference. The 
assumption is that the data are poten-
tially tampered or falsified by some 
internal adversary who has the knowl-
edge about the algorithm used at the 
FC. We refer to the problem consid-
ered in this tutorial article as distrib-
uted inference with Byzantine data.

The Byzantine data problem in sta-
tistical inference has to take into 
account the inherent randomness in 
the data. Even without the presence of 

an adversary, one cannot expect perfect inference; detections can 
at best be correct in probability as parameter estimates almost 
always are not equal to the true value. Therefore, there is a need 
for a probabilistic approach to the Byzantine data problem.

We shall focus on the two most basic forms of statistical 
inference: detection and estimation. Our objective is to intro-
duce relevant problem formulations for each problem and pres-
ent some related applications.

As an application to distributed detection with Byzantine 
data, we consider the problem of distributed spectrum sensing 
when some participants attack a cognitive radio network (CRN) 
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by sending falsified data to the FC. In this context, Byzantine 
users [marked as red-colored CRs in Figure 1(a)] can affect deci-
sions at the FC by reporting false data. This might result in a 
collision of secondary users with the primary user (PU) (if a 
busy PU is wrongly detected as idle) or in spectrum wastage (if 
an idle PU is detected as busy).

For distributed estimation, we consider the impact of Byzan-
tine data on the state estimation of a power grid as illustrated in 
Figure 1(b). Here an adversary takes control of the “red” meters 
and launches a man-in-the-middle (MiM) attack by substituting 
actual measurements with falsified data. If undetected, state 
estimates at the FC will be altered and subsequent decisions 
using state estimates are affected.

DIstrIbuteD DetectIon wIth byzantIne Data

CharaCterizing effeCts of Byzantine Data
We first consider the classical problem of distributed detection 
in a scenario where a fraction of the nodes may have been 
reprogrammed by an adversary. These adversary-controlled 
nodes may collaborate to mislead the FC by sending Byzantine 
data to the FC, causing increased detection error probabilities. 
The problem is similar to the classical Byzantine generals prob-
lem but has the following two important distinctions: 

1) the information flow is from sensors to only the FC
2) the FC is the sole decision maker. 

Thus, we need to assume that the FC is always honest.
One problem of interest is to characterize the degree to which 

the Byzantines can affect the detection performance of the FC. 
The parallel result in the classical Byzantine generals problem is 
that at most /1 3 of the generals can be Byzantine for possible con-
sensus among loyal generals. Here we are interested in the mini-
mum fraction *a  of Byzantine sensors that makes the detection 
at the FC no better than merely flipping a coin without using any 
data. We call a the attack power of the Byzantine sensors.

Should the attack power be more than /1 3 because we are 
only interested in the decision at the FC or should it be less 
because the presence of randomness in data makes it easier for 
Byzantine sensors to disguise their actions?

If the fraction of Byzantines is greater than /1 2, i.e., / ,1 2$a  
it is evident that sensor observations can be easily made useless. 
This is because the Byzantines may have /1 2 of the total sensors 
send false samples based on an incorrect hypothesis to the FC 
and have the rest of the Byzantines report the observed samples 
truthfully to the FC. Consequently, half of the samples are from 
one hypothesis and the other half from another. Therefore, the 
FC cannot use the sensors’ data to make a final decision.

What happens when the attack power of the adversary is 
less than and equal to /1 2? Here we are interested in two 
related questions: 

■■ What is the minimum power of the adversary to render 
sensor data useless to the FC?

■■ If the power of the adversary is less than this critical value, 
what should be the detection rule at the FC and to what 
degree is the performance affected? 

While these questions are difficult to answer in general, some 
insights can be obtained by examining the classical binary dis-
tributed detection problem that we discuss next; see [3] for 
more details.

HyPOtHESIS ANd AttACK MOdELS
A classical distributed detection system consists of multiple 
remotely located sensors that observe a common phenomenon. 
Some data processing is carried out at the peripheral detectors 
and processed information is sent to a central unit that fuses 
this information to make a decision regarding the presence 

)(H1  or absence )(H0  of the phenomenon.
Suppose that, if a sensor is honest, its observation follows 

the conditional distribution p under H0 and q under .H1  If a 
sensor is Byzantine, it generates false data with distribution pu  
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[FIg1] byzantine attacks on (a) distributed spectrum sensing in crns and (b) system state estimation in smart grids.
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under H0 and qu under .H1  The FC, of course, does not know 
the attack distributions ( , ),p qu u  nor does it know which sensor is 
a Byzantine.

If the FC knows that the maximum fraction of Byzantine 
sensors is ,a  then the distributions of the data from a given 
sensor should come from a restricted set of possibilities, 

( ; )pF a  under H0 and ( ; )qF a  under H1 where ( ; )pF _a

{ : ( ) } .f f p p1 a a= - + u  Note that in the above model, pu  is not 
fixed and, therefore, ( ; )pF a  does not just contain one distribu-
tion of .pu  In fact, it includes cases when Byzantines may use dif-
ferent attacking distributions, in which case pu  and qu  are 
composite distributions from all Byzantines.

FC VERSuS byZANtINE SENSORS
From the perspective of the FC, the problem can be viewed as 
one of robust detection; the data from a sensor is a mixture of 
good and attack distributions. In his seminal paper [4], Huber 
showed the striking result that the optimal detector, in the 
sense of minimizing the worst missed detection probability 
among all possible adversary attacking distributions, is a likeli-
hood ratio test based on a pair of least favorable distributions. 
Intuitively, the least favorable distributions are a pair of distri-
butions ( ; )f pF*

0 ! a  and ( ; )f qF*
1 ! a  such that they are most 

difficult to distinguish, resulting in the highest probabilities 
of error.

From the adversary’s perspective, launching effective attacks 
requires a careful design of the attack distributions pu  and .qu  In 
his paper [4], Huber identified the specific form of the least 
favorable distributions. The detection performance at the FC, 
however, cannot be evaluated easily.

To gain insights into the degree to which an adversary can 
cause performance degradation, we can consider the asymp-
totic regime when the number of sensors N is large. The large 
deviation analysis allows us to approximate the missed detec-
tion error probability by an exponential form. In particular, if 
the adversary uses attack distributions pu  and qu  (and assume 
that they are known to the FC), the optimal likelihood ratio 
detector will have the probability of missed detection that 
decays exponentially

P e ( , , ) ( )logR p q N O N
miss = a- +u u^ h,

where the rate of exponential decay of Pmiss is given by the Kull-
back-Leibler divergence (KLD) [5]. Thus, the adversary can use 
the rate ( , , )R p qa u u  as a proxy to maximize its impact on the 
detection performance of the FC.

CRItICAL POwER OF byZANtINE SENSORS
We can now provide a characterization of the attack power in 
the asymptotic regime. Specifically, given the fraction a of Byz-
antine sensors, the adversary can choose the attack distribu-
tions ( , )p q* *u u  from the optimization ( ) ( , , )R R p q* * *_a a =u u

( , , ) .min R p q,p q a u uu u  Not surprisingly, perhaps, that the optimal 
attacking distributions ( , )p q* *u u  are in fact Huber’s least favorable 
distributions, and there is a “water-filling” interpretation for the 
construction of the optimal attack distributions [3].

The most potent attack by the Byzantine sensors is to make 
the decay rate zero. In this case, it necessarily means that Byz-
antine sensors can make the two hypotheses indistinguishable, 
rendering the decision at the FC no better than flipping a biased 
coin. As in the classical Byzantine generals problem, the small-
est a that makes ( )R 0* a =  represents the critical power of the 
Byzantine sensors. Specifically, the critical power *a  is given by 

{ : ( ) } .min R 0* *a a a= =

Figure 2 illustrates the general shape of the optimized rate 
function ( ) .R* a  The function ( )R* a  can be shown to be convex 
and monotonically decreasing, reaching zero at the critical 
power / .1 2* #a  In addition, the black-hole strategy under 
which Byzantines simply do not send their measurements is not 
at all effective due to the convexity of ( ) .R* a  It can be shown 
that when each sensor reports multiple independent observa-
tions, the gap between *a  and /1 2 shrinks to zero, which means 
that unless more than half of the sensors are made Byzantine, 
asymptotically, the FC can provide reliable detection.

CollaBorative speCtrum sensing
An important recent application of distributed detection is the 
idea of dynamic spectrum access (DSA) using CRNs. In DSA, 
the spectrum is allocated to a licensed PU while the unlicensed 
secondary users, which are incorporated in the system as the 
cognitive radios (CRs), have the capability to sense the spec-
trum for availability. The CRs can transmit their data if PU is 
absent. To mitigate the effect of channels or hidden terminal 
problem on the process of spectrum sensing, collaborative spec-
trum sensing (CSS) has been proposed. CSS works on the par-
allel data fusion model of distributed detection where CRs 
transmit their decisions regarding the availability of the spec-
trum to an FC in parallel.

Rawat et al. in [6] consider the problem of Byzantines in 
CSS and analyze their effect using both KLD and probability of 
error ( )Pe  as the performance metrics. They have generalized the 
results presented by Marano et al. in [3] by relaxing the 
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assumption that the Byzantines have perfect knowledge about 
the true hypothesis. The critical power ( )*a  to “blind” the FC 
has been shown to be
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where ( , )P Pfa
H

d
H  and ( , )P Pfa

B
d
B  are the operating points on the 

receiver operating characteristics (ROC) of the honest sensors 
and Byzantines, respectively. Note that Pd is the probability of 
detection and Pfa is the probability of false alarm. The optimal 
strategy for the Byzantines is to flip their local decisions with 
probability “1” before transmitting to the FC. This results in the 
fewest number of Byzantines to blind the FC.

There are two types of Byzantine attacks [6] that involve 
two extremes of cooperation among Byzantine nodes: indepen-
dent malicious Byzantine attacks (IMBA) and cooperative mali-
cious Byzantine attacks (CMBA). In an independent attack, 
each Byzantine attacks the network independently relying on 
its own observation. Since the Byzantines do not know the 
identity of other Byzantines in the network, P Pd

B
d
H=  and 

P Pfa
B

fa
H= , which gives .0 5*a =  from (1). This implies that the 

number of Byzantines need to be at least 50% to blind the FC 
when the Byzantines attack the network independently. In a 
cooperative attack, Byzantines collaborate to make a decision 
regarding the true hypothesis and use this information to 
attack the network. Using collaboration, the Byzantines can 
reduce the minimum critical power *a  by increasing ( ) .P Pd

B
fa
B-  

The Byzantines are assumed to collude using the “L out of M” 
rule to make their decision. In other words, if more than L out 
of the M Byzantines make a decision, say “1,” then all the col-
laborating Byzantines in the network send a “0.” The value of L 
is often taken to be /M 2, which corresponds to the majority 
rule. Figure 3 shows a plot of KLD against the fraction of Byz-
antines in the network. As the figure shows, *a  decreases with 
collaboration of the Byzantines. Note that one could also define 

a partially cooperative malicious Byzantine attack (PCMBA), 
where some of the Byzantines collude while the others attack 
independently. Such an attack would be more severe than 
IMBA but less effective than CMBA.

Since Byzantines operate in an adversarial manner, one can 
formulate the problem as a game and find the best strategies 
for the Byzantines and the FC when the Byzantines cannot 
blindthe FC ( ) .*1a a  The game can be represented as 

{ , , }G N S U= , where N  is a set of two players who are playing 
the game—Byzantines and the FC, S  is the set of strategies of 
each player which in this case are the local decision thresholds 
( )h  to be used, and U  is the set of utilities of the players. The 
two possible utility functions are KLD and probability of error 
( ) .Pe  The problem is a zero-sum game, and one can find the 
Nash-equilibrium as the saddle point of a minimax game, 
which is given by [6]

 ( , ) ( , ),minmax f* *
h b h b

h b
h h h h=

h h
 (2)

where ( , )f $ $  is either Pe or KLD-  and ,hh  bh  are the local thresh-
olds of honest sensors and Byzantines, respectively. Saddle-
points can be determined numerically for both the performance 
metrics under both independent and cooperative attacks.

mitigation strategies
The previous discussion addresses the issue of Byzantines from 
the attacker’s perspective and the optimal attacking strategies 
are derived for distributed detection. However, one needs to 
look at the possible countermeasures from the network’s per-
spective to protect the network from these Byzantines. Byzan-
tines can be treated as outliers and, therefore, one can use 
signal processing techniques to mitigate their effects. Table 1 
presents a comparison of the mitigation schemes proposed in 
the literature.

A simple and intuitive method to mitigate the effect of Byz-
antines is to identify them. For identification purposes, one 
needs to observe the sensors’ behavior over time. We first dis-
cuss some of the schemes proposed in the literature that treat 
the FC as a watchdog to mitigate the effect of Byzantines.

REPutAtION-bASEd SCHEME 
Rawat et al. in [6] have proposed a simple and effective scheme 
to identify the Byzantines. They define a reputation metric il  for 
every sensor as the number of mismatches in a time interval T 
between ith sensor’s local decision and the global decision made 
at the FC using the majority rule. The local sensors sense the 
spectrum and transmit new data at every time instant t. The 
reputation metric after a time interval T is given by 

,I( [ ] [ ])i u t u tt

T

1 i 0l = !
=
/  where [ ]u ti  is the ith sensor’s local deci-

sion at time instant t, [ ]u t0  is the global decision made at the FC 
at time instant t, and I( )S  is the indicator function over the set 
S. The sensors for which this reputation metric il  is greater 
than a predetermined threshold l are tagged as Byzantines and 
removed from the fusion process. This scheme works only when 
the number of Byzantines in the network is less than 50% of the 
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total number of sensors since the FC uses majority rule for 
fusion. If the Byzantines are in majority, the above reputation-
based scheme identifies the honest sensors as outliers and 
removes them from the network and thereby worsens the infer-
ence performance of the network.

AdAPtIVE LEARNING
An interesting method to improve the performance of the net-
work is to use the information of the identified Byzantines to 
the network’s benefit. Vempaty et al. in [7] use this idea to 
improve the network’s performance. They propose a three-tier 
adaptive learning scheme that learns the parameters of the 
identified Byzantines and uses these parameters in the Chair-
Varshney rule [11] to make the final decision. The three-tier 
scheme can be described as follows: 1) identification of Byzan-
tines in the network, 2) estimation of parameters of the identi-
fied Byzantines at the FC, and 3) adaptation of fusion rule using 
the estimated parameters.

The basic idea of the proposed identification scheme is 
to compare every sensor’s observed behavior over time with 
the expected behavior of an honest sensor. The sensors 
whose observed behavior is too far from the expected behav-
ior are tagged as Byzantines. This scheme works even when 
the Byzantines are in the majority since it does not use the 
global decision for identification purposes. The behavior of 
every sensor is characterized by the probability of sending a 
“1” to the FC. This value is a function of the operating point 
of the sensor (Pfa, Pd) and the prior probabilities of the 
hypotheses ( 0r , 1r ), which are assumed to be known at the 
FC for honest sensors.

At the FC, the expected behavior is estimated for every sen-
sor over time by averaging the number of times a particular 
decision (0 or 1) is made over a time interval of T instants. 
These probabilities can be updated after every time instant. The 
test statistic i

TK  for the ith sensor after time T is the deviation 
between the expected and observed behavior for every sensor. 
The FC declares a sensor as a Byzantine if i

TK  is greater than a 
particular threshold .m  This threshold m is determined as the 
minimum value when the Byzantine’s operating point is in the 
region below the P Pd fa=  line on the ROC.

After identifying the Byzantines, their parameters can be 
estimated by assuming that all the Byzantines have the same 
operating point. This assumption is typically made in the liter-
ature since it is assumed that a single adversary has attacked 
some of the sensors in the network and has reprogrammed 
them to behave as Byzantines. Therefore, it can be assumed 
that all these Byzantine sensors have the same operating point 
on the ROC. These estimated parameters are used in the Chair-
Varshney optimal fusion rule [11] in an adaptive manner to 
find the global decision. It is important to note that this 
scheme works for any fraction of Byzantines in the network 
but assumes the knowledge of honest sensor’s behavior and the 
PU statistics.

CONdItIONAL FREquENCy CHECK
In distributed spectrum sensing (DSS), there is usually memory 
in the spectrum state evolution and researchers fail to exploit 
this state evolution. He et al. in [8] model spectrum state transi-
tions using a Markov model and propose a global decision inde-
pendent method, conditional frequency check (CFC), to counter 
Byzantines in DSS in CRNs.

Let the true spectrum, which has two states: 0 (idle) and 1 
(occupied), be modeled as a homogeneous Markov model with 
state transition matrix [ ],A aij=  where [ | ]a P s j s iij t t1= = =+  
and st denotes the spectrum state at time t. Also assume that 
the FC knows about the presence of one known trusted honest 
sensor and let [ , ]01 10z z z=  denote the flipping probabilities of 
the local sensors where lmz  is the probability of flipping the 
local decision from l to m, { , } { , } .l m 0 1!  A sensor is Byzan-
tine if and only if { , } { , }.0 001 10 !z z  Using this idea, the 
authors propose a two-phase Byzantine sensor detection 
method: conditional frequency check and an auxiliary Ham-
ming distance check.

In the CFC phase, the FC evaluates the two conditional fre-
quency statistics [ | ]P r r1 1t t1 1} = = =-  and [ |P r 0t0} = =  

]r 0t 1 =-  for every sensor individually where rt denotes the sen-
sor’s report at time t. These statistics are related to the system 
parameters: the Markov state transition matrix A and the local 
sensor operating point ,P Pfa d^ h, which are assumed to be identi-
cal for all the sensors. Since these parameters are not known in 
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practice, they are found as an average over a window of time 
interval T as follows:
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where 1,i jd =  if and only if .i j=  These histogram estimators 
converge to the true values as .T " 3

The Byzantine users can be detected after time T using the 
error function ( )e ( ) ( )tr M

2z } }= -  where 2$  is the two-
norm (Euclidean distance), [ , ]( ) ( ) ( )tr tr tr

1 0} } }=  and [ ,( ) ( )M M
1} }=  

]( )M
0}  are the CFC statistics of the trusted sensor and the Byzan-

tine sensor, respectively. If the error function value is greater 
than a predetermined threshold ,CFCb  the sensor is declared as 
Byzantine. However, the CFC approach fails when the flipping 
probabilities of the sensor are [ , ].1 1z =  To address this con-
cern, the sensors identified as honest go through a second 
phase: the Hamming distance check, where a normalized Ham-
ming distance between the sensor k and the trusted sensor, 
defined as ( , ) ( / )d k tr T1 ,h r rt

T

1
( ) ( )
t
k

t
trd=

=
/  is compared against a 

prespecified threshold .HDCb  In this manner, a high Byzantine 
user detection accuracy can be achieved using a trusted sensor 
without relying on the global decision.

wEIGHtEd SEquENtIAL RAtIO PRObAbILIty tESt
The schemes discussed above focus on identifying the malicious 
sensors/Byzantines in the network. One may also consider 
approaches that make the system more robust to adversarial 
actions. Chen et al. [9] consider detector design at the FC, which 
is robust to the Byzantine attacks for DSS in CRNs. They propose 
a weighted sequential probability ratio test (WSPRT) for data 
fusion at the FC. In DSS, one wants to control both the false alarm 
and missed detection probabilities, so the sequential probability 
ratio test (SPRT) can be used for data fusion at the FC. In a nonad-
versarial environment, the SPRT for data fusion is defined as

 [ | ]
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where Sn is the test statistic after n measurements and 
{ , }u 0 1i !  is the local decision of the secondary user. Also, note 

that n, which is the variable number of samples, is different 
from the total number of sensors in the network. The final 
fusion decision is based on the following criterion:
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The values of the thresholds are a function of the tolerated 
false alarm and missed detection probabilities.

Based on the SPRT, the authors propose a two-step WSPRT. 
In the first step, called the reputation maintenance step, a 
reputation value ri is allocated to the local sensors based on 
their consistency with the final global decision made by the 
FC. The initial reputation value is zero for all sensors and is 
either increased or decreased based on its consistency with 
the final global decision. In the second step, the hypothesis 
test is performed at the FC based on modified SPRT [cf. (5)] 
called WSPRT
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where wi  is the weight given to the ith measurement and is 
given as ( ).w f ri i=  The authors in [9] analyze the properties 
required by the function ( )f $  and propose the following function:
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where the positive variable g is chosen to ensure that a “good” 
sensing terminal is not severely penalized when it sends incor-
rect data only due to randomness.

Based on simulations, it has been shown that the WSPRT 
design [cf. (7)] improves the robustness of data fusion against 
Byzantines as compared to the traditional SPRT since it 
includes weights given to the data. These weights are a func-
tion of the reputation and, therefore, make the detector 
robust to Byzantines. However, the authors have also pointed 
out that the proposed WSPRT technique requires an 
increased number of local sensing reports for improved 
robustness. Also, since WSPRT depends on ri, which is based 
on the final global decision, the detector might fail if the Byz-
antines are in majority.

NOISE-ENHANCEd SIGNAL PROCESSING
In [10], Gagrani et al. propose the use of stochastic resonance 
(SR) to make the network robust against Byzantines. SR [12] is 
a counterintuitive physical phenomenon, where the perfor-
mance of some suboptimal, nonlinear systems can be improved 
by adding suitable noise to the input. Gagrani et al. look at the 
possible improvement in system performance in terms of two 
metrics: security metric *a^ h and detection performance metric 
(KLD). When local sensors use threshold quantizers such as 
energy detectors that are nonlinear and suboptimal, the use of 
SR noise at the local sensors can improve the local sensors’ 
detection performance. This is achieved by randomization 
induced by the use of optimal additive SR noise as discussed in 
more detail in [10].

other DistriButeD DeteCtion frameworks
In this section, we briefly discuss some other detection frame-
works in the presence of Byzantines. The goal here is to expose 
the reader to possibilities of performance metrics beyond the 
probability of error related metrics and to network topologies 
other than the parallel topology.
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FALSE dISCOVERy RAtE-bASEd 
dIStRIbutEd dEtECtION
Recently, Ray and Varshney in [13] have proposed the use of 
false discovery rate (FDR) to design distributed detection sys-
tems. Traditionally, multiple comparison procedures and clas-
sical comparison procedures control the family wide error rate 
(FWER). From Table 2, FWER Fb  for k tests is

 ( ) ( ) ,P F 1 1 1F
k$b b= = - -  (9)

where F is the total number of false alarms.
A different and more liberal detection approach controls 

the FDR, defined as the fraction of false rejections among 
those hypotheses rejected. Formally, FDR is defined as the 
expected ratio of the number of false alarms (declared H1 
when H0 is true) to the total number of detections (H1 decla-
rations consisting of both true and false detections). From 
Table 2, the ratio of false alarms to the total number of detec-
tions can be viewed as the random variable,
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FDR Qe^ h is defined to be the expectation of Q,

 ( ).Q E Qe =  (11)

Ray and Varshney [13] have proposed a distributed algo-
rithm to control the FDR value at ,c  which uses linearly 
increasing thresholds on the ordered p-values of the local sen-
sor observations. The p-value is defined as ( ) ,p f t dt

s
0=

3#  
where, ( )f t0  is the pdf of the observation under H0  and s is the 
observation at the local sensor.

Vempaty et al. [14] have analyzed the system in the pres-
ence of Byzantines. The Byzantines are modeled so that they 
employ a flipping strategy based on false p-values as 

( )q h p p1= = -  and send binary quantized data based on the 
transformed p-values. This transformation ensures that the 
Byzantines attack the network in a covert manner. They have 
shown with analytical and numerical results that this attack 
strategy reduces the detection performance of the network 
while controlling the FDR value at the predetermined thresh-
old .c  Hence, the attack strategy ( )h p p1= -  allows the Byz-
antines to reduce the network performance while not 
changing their behavior in a manner that they can be detected 
by observers such as the FC. To improve system performance, 
they also proposed a learning based adaptive system design 
approach which estimates the fraction of Byzantines a^ h in the 
network and adaptively changes the system design parameter 
to improve the system detection performance. Figure 4 shows 
the improvement in detection performance when an adaptive 
scheme is used against a nonadaptive scheme.

dIStRIbutEd dEtECtION IN tREE-bASEd tOPOLOGIES
In a scenario when the FC may be outside the communication 
range of local sensors, a multihop network, where sensors are 
organized hierarchically into multiple levels (tree networks) 

are needed. Kailkhura et al. in [15] examine tree-topology-
based distributed detection in the presence of Byzantines and 
analyze the susceptibility of such tree networks to Byzantines. 
The sensors in the network act as relays and forward the deci-
sions of their children sensors to the FC. The Byzantines flip 
all their children’s decisions and due to the tree topology, 
there are more parameters for analysis than the parallel fusion 
network. The authors come up with the condition on these 
parameters that blind the FC and make it incapable of making 
a decision. They have shown that 50% or more sensors in the 
network need to be covered by Byzantines to blind the FC 
where the covered sensors for a sensor i are defined as the sen-
sors in the subtree formed with sensor i as the root.

Due to the tree nature of the topology, there are many ways to 
have the same impact in terms of inference performance degrada-
tion. If the cost of each sensor being a Byzantine is different, 
there are tradeoffs that one can study. The authors formulate a 
minimum Byzantine attack problem as a bounded Knapsack 
problem. Let there be K levels in the tree with Nk sensors at each 
level , ..., .k K1=  The minimum Byzantine attack is to determine 
Bk for , ,...k K1=  such that at least 50% of the sensors in the 
network are covered and the total cost incurred is minimized. 
Hence, the bounded knapsack optimization problem is
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where ck is the cost associated 
with attacking each sensor of level 
k and Pk is the profit associated 
with attacking each sensor of level 
k, which is the number of chil-
dren it covers. This problem is 
NP-hard in general, but by exploiting the specific cost and profit 
structure, the authors propose a polynomial time algorithm for 
finding the optimal Byzantine attack.

DIstrIbuteD estImatIon wIth byzantIne Data
We now consider the problem of distributed estimation with 
Byzantine data. As before, we assume that a fraction of sensors 
are controlled by an adversary who substitutes measurements at 
these sensors by data designed to perturb the estimate at the 
FC. Such an attack is also referred to as the MiM attack.

Similar to the corresponding detection problem, we would 
like to quantify the critical power of Byzantine sensors. The 
classical Byzantine generals problem and distributed detection 
are decision problems on a finite action space. For the distrib-
uted estimation problem, the decision space is uncountable, 
which requires a different measure of performance. To this end, 
the critical power of a set of Byzantine sensors is characterized 
by the condition under which the presence of Byzantine sensor 
makes the estimation error arbitrarily large.

In this section, we discuss the effect of Byzantine data on 
state estimation, using power system state estimation as an 
example followed by a brief discussion on the problem of esti-
mating the location of a target.

power system state  
estimation with Byzantine Data
The power grid is an interconnections of large number of 
generators, loads, transmission lines, and transformers. It can 
be abstracted as a graph G with vertices representing buses 
(substations) of the grid and edges representing the transmis-
sion lines that connect the buses.

The state of the power grid is defined by the vector x of 
voltage phasors at the network buses. Efficient operation of 
the power grid depends critically on monitoring of the system 
state, which is accomplished by using measurements 
collected from sensors deployed throughout the network. 
Typically, sensor measurements include the real and reactive 
power injections and branch power flows. When phasor 
measurement units (PMUs) are used, the power system states 
are measured directly.

A fundamental property of a power grid is the instantaneous 
balance of power flow governed by the Kirchoff current and 
voltage laws. The steady state representation of the power flow 
is given by a nonlinear equation

 ( ; ) ,z h x G w= +  (13)

where z is a vector of power flows at branches of the power grid, 
x the state vector, G the graph representing the power grid, 
and w the measurement noise.

A fundamental problem of 
power system operation is state 
estimation [16] in which the 
supervisory control and data 
acquisition (SCADA) system col-
lects measurement data z from a 

large geographical area and form a state estimate .xt  A standard 
technique is the weighted least squares based on (13)

( ( ; )) ( ( , ))arg minx z h x G W z h x G
x

T= - -t ,

where W is the weighting matrix.

byZANtINE dAtA MOdEL
We model Byzantine data by adding an attack vector a

( , )z h x G a w= + + ,

where a A!  is a sparse vector representing data falsely injected 
by the adversary. For the nonlinear model, the design of attack 
vector a and analysis of the impact of attack is difficult. In [17], 
Liu et al. first considered the problem of data falsification attack 
based on the linearized power flow equation [the so-called direct 
current (DC) model] given by

,z Hx a w a A!= + + .

The key observation is that, if a can be chosen in the column 
space of H, i.e., ,a Hc A!=  then ( ) .z H x c w= + +  Thus, the 
state estimator will not be able to distinguish between the 
actual state x and the adversary intended value .x c+  Indeed, 
the magnitude of c can be scaled arbitrarily, and the resulting 
estimation error at the FC can be arbitrarily large.

A key insight is to connect the problem of data falsification 
attack with the classical notion of observability [18]. Intuitively, 
the adversary can simply remove the attacked meters. In the 
absence of these meter data, the model becomes one with rows 
of H removed. When enough rows are removed, the state vector 
becomes unidentifiable. Of course, if the adversary does take 
such an approach, the control center would have detected and 
remedial actions would have been taken. It is shown in [19] that 
choosing a Hc=  is simply a smart way of evading detection by 
the state estimator. The Byzantine data attack is equivalent to 
removing rows corresponding to the attacked meters and make 
matrix H column rank deficient.

A number of questions can be formulated from here.
■■ Given the network topology, what is the minimum number 

of meters (and which meters) that the adversary has to attack? 
■■ If the adversary has only access to a fixed set of meters, to 

what degree can the adversary affect the performance of the 
state estimator? 

■■ Since the network topology is also estimated from data 
collected from the field, what happens when the adversary 
attacks the topology? 

■■ How effective are such attacks when the linearity assump-
tions are removed? 

These questions have been addressed to different degrees of sat-
isfaction recently. We highlight a few such results.

a Key InsIght Is to connect the 
probLem oF Data FaLsIFIcatIon 

attacK wIth the cLassIcaL notIon 
oF observabILIty.
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CRItICAL POwER OF byZANtINE SENSORS
We can define the critical power | of Byzantine sensors as the 
minimum number of meters that have to be compromised so 
that the network becomes unobservable. Finding |  for a given 
network is nontrivial and is made possible through the con-
nection of a Byzantine attack and network observability. 
Checking the rank of H by exhaustively searching rows to 
remove has exponential complexity and is also sensitive to 
numerical errors.

From the classical results of Krumpholz et al. [20], Kosut et 
al. developed a graph theoretic approach [19] to find | with 
polynomial complexity. Interestingly, this approach uses only 
the network topology and does not depend on the specific sys-
tem parameters. In [19], Kosut et al. find | and the set of most 
vulnerable meters by maximizing a submodular function, which 
has a polynomial time solution.

If the attacker cannot alter enough meter data, the attacker 
is operating in the weak attack regime, and the power grid 
remains observable to the control center but the accuracy of the 
estimator is affected. Furthermore, the power system state 
estimator is equipped with a bad data detector that detects the 
presence of data anomalies. Thus, the adversary risks the 
possibility of being detected. The 
adversary then needs to make the 
tradeoff on the curve of attack 
operating characteristic that 
relate the mean squared error 
(MSE) of the state estimator and 
the probability of being detected, 
while the bad data detector 
operates on the ROC curve [19].

tOPOLOGy AttACKS
In addition to meter data, the control center also needs circuit 
breaker status for state estimation. In particular, the circuit 
breaker status data are used to construct network topology 
based on which state estimation follows. In fact, circuit breaker 
status changes from time to time, and the state estimator has to 
update the network topology accordingly. The breaker status is 
measured based on the level of physical contacts and is subject 
to error, which causes topology errors at the state estimator. 
The impact of topology error on state estimation has long been 
recognized. The state of the art is to detect topology error as 
part of the bad data detection and, in the event of topology 
error, jointly estimate topology and the state.

A more sophisticated data falsification attack is to attack 
both the meter and the circuit breaker status data. Such an 
attack can be quite effective in both evading detection by the 
control center and affecting system operation. For instance, the 
adversary may disguise a connected transmission line as discon-
nected, causing the control center to shed load to ensure stabil-
ity. Similarly, the adversary may falsely mask a disconnected 
line thereby delay the necessary response by the control center 
to prevent cascading blackout. The effect of topology attacks on 
real-time pricing was also shown to be significant [21].

AttACK ON REAL-tIME ELECtRICIty MARKEt
While state estimation serves as an important monitoring func-
tion, its use in real-time control is limited. However, the state 
estimate plays a critical role in computing the real-time price of 
electricity in the wholesale market. Therefore, a Byzantine attack 
can affect the real-time electricity price, proving an economic 
incentive to the adversary by raising electricity prices at certain 
locations. It is shown [22] that the state space of the power sys-
tem is partitioned into price regions, and the price in each 
region depends on the congestion pattern of transmission lines 
and network topology. The adversary can affect the price by mov-
ing the estimated system state from one price region to another 
or creating a different congestion pattern thereby changing the 
price in a price region. Mechanisms of attacking real-time elec-
tricity market and counter measures are considered in [22]–[24].

tHE uSE OF NONLINEAR EStIMAtORS
A less understood problem is the efficacy of attack in the pres-
ence of network nonlinearity and the use of nonlinear state esti-
mator and the bad data detector. To this end, there is a lack of 
theoretical understanding of many issues mentioned above. 
There are, however, practical approaches that have been 

proposed, and simulation studies 
seem to suggest that some of the 
conclusions based on linear (DC) 
models may not hold. Indeed, 
most sensors used today (with the 
exception of the PMUs) give non-
linear measurements, and the 
state estimators used in the 
control center are variants of 

nonlinear least squares types. It is shown in some simulations 
that the effect of data falsification attacks on state estimates is 
limited when the nonlinear least squares method is used. The 
effect of topology attack remains substantial [25], [21].

loCalization using quantizeD Data
Here, we provide another illustrative distributed estimation 
problem with Byzantine data. In particular, we discuss target 
localization in a wireless sensor network, where sensors send 
quantized data to the FC [26]. Vempaty et al. in [27] analyze the 
effect of Byzantines on target localization. Under an isotropic 
attenuation model of signal power from the target, a Monte 
Carlo-based minimum mean square error (MMSE) estimator is 
employed at the FC using the binary quantized data (u) from 
the local sensors. Since the local sensors send binary quantized 
data, the strategy of the Byzantines is to flip their local deci-
sions. Let the Byzantines flip their local decisions with probabil-
ity “p.” For a Bayesian estimation problem, the performance is 
evaluated by the estimation error, which is lower bounded by 
the posterior Cramér Rao lower bound (PCRLB),

 [ ( ) ] [ ( ) ] ,E u u FT 1$i i i i- - -t t" ,  (14)

where ( )uit  is the estimate of the target location given by i and 
F is the Fisher information matrix (FIM). Using the PCRLB and 

thereFore, a byzantIne attacK  
can aFFect the reaL-tIme 

eLectrIcIty prIce, provIng an 
economIc IncentIve to the 

aDversary by raIsIng eLectrIcIty 
prIces at certaIn LocatIons.
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FIM as the performance metrics, the FC is defined to be “blind” 
when the data’s contribution to the Fisher information (FI) 
becomes zero. The FIM consists of data’s contribution FD and 
prior’s contribution FP as follows:

[ ( , )],
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where ( | )P u i  is the conditional probability density of the quan-
tized data and ( )p0 i  is the prior probability density function of 
the target location. Therefore, the FC becomes blind when the 
posterior FI becomes the same as the prior FI. For an indepen-
dent attack model of the Byzantines, the optimal attacking strat-
egy of the Byzantines has been found by modeling the effect of 
Byzantines as a binary symmetric channel (BSC). The optimal 
strategy is to flip with probability “1” and the minimum fraction 
of sensors that need to be Byzantines (attack power) to blind the 
FC is . .0 5*a =  When the fraction of Byzantines ,*1a a  there 
exists a zero-sum game between the honest sensors and the Byz-
antines and the optimal thresholds to be used by the local sen-
sors are found as the saddle-point of the minimax game. 
Figure 5 shows the saddle point of the zero-sum game repre-
senting the optimal strategies of both honest and Byzantine sen-
sors. Vempaty et al. [27] have also found a lower bound on *a  for 
the collaborative attack case by assuming that the Byzantines 
can learn the true location of the target perfectly.

MItIGAtION tECHNIquES
In [27], Vempaty et al. propose two mitigation techniques to 
nullify the effect of Byzantines. In the first approach, an identifi-
cation scheme similar to [7] has been proposed for the target 
localization framework. In such a scheme, each sensor’s behav-
ior is observed over time and the sensors that do not behave as 

expected are tagged as the Byzantine sensors. The rationale 
behind such a formulation is that in traditional classification/
pattern recognition problems, the decision regarding the type 
(of a sensor) is made by observing the behavior (of the sensor). 
A sensor is declared as Type A, if it behaves closer to the 
expected behavior of Type A. They show with simulations that 
the proposed scheme detects most of the Byzantines. However, 
the proposed scheme has some shortcomings and declares a few 
sensors to be ambiguous when a clear decision regarding a sen-
sor being Byzantine cannot be made. To mitigate the effect of 
Byzantines completely, they formulate the design of dynamic 
nonidentical thresholds using calculus of variation that maxi-
mizes the posterior FI. The threshold design corresponds to 

âi
T

i
T1h =+ , where âi

T is the estimated amplitude at this sensor at 
the time instant T. This means that the threshold of the ith sen-
sor at time T 1+^ h is the estimated amplitude at this sensor at 
the previous time instant T. This amplitude is estimated by 
using the previous time instant’s location estimate, ,Tit  which is 
broadcast by the FC to the local sensors. They show that this 
design of nonidentical thresholds can be implemented in a 
dynamic manner and the design not only reduces the location 
estimation error but also makes the Byzantines “ineffective” in 
their attack strategy.

summary anD open probLems
In this article, we have presented a tutorial discussion on dis-
tributed inference with Byzantine data and surveyed some 
recent results. While the results describe the importance for 
security in distributed networks, there are still a number of 
interesting questions that need to be addressed. Some examples 
are as follows: 

■■ the issue of uncertainties such as imperfect channels, i.e., 
consideration of the reliability/imperfectness of the messen-
gers in the Byzantine generals problem
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■■ ensuring reliability in the presence of Byzantine sensors, 
which requires more sophisticated design across multiple 
layers of the networking protocol stack: advanced distributed 
inference at the physical layer, sophisticated network coding 
schemes for large networks, and a variety of cryptographic 
techniques for different applications

■■ development of a coherent theory and methodology that 
guides practical design for networks robust to Byzantines, and 
fundamental characterizations of communication rate in the 
presence of Byzantines in the general case

■■ development of network-wide capability to detect and miti-
gate Byzantines by deriving new networking protocols that 
facilitate distributed inference at all internal sensors under the 
assumptions that some internal sensors may themselves be 
Byzantines

■■ development of complex Byzantine misbehavior models and 
methods to detect and mitigate such Byzantines.
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