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Abstract—Anonymous wireless networking is studied when an
adversary monitors the transmission timing of an unknown subset
of the network nodes. For a desired quality of service (QoS), as
measured by network throughput, the problem of maximizing
anonymity is investigated from a game-theoretic perspective.
Quantifying anonymity using conditional entropy of the routes
given the adversary’s observation, the problem of optimizing
anonymity is posed as a two-player zero-sum game between the
network designer and the adversary: The task of the adversary
is to choose a subset of nodes to monitor so that anonymity of
routes is minimum, whereas the task of the network designer is
to maximize anonymity by choosing a subset of nodes to evade
flow detection by generating independent transmission schedules.
In this two-player game, it is shown that a unique saddle-point
equilibrium exists for a general category of finite networks. At
the saddle point, the strategy of the network designer is to ensure
that any subset of nodes monitored by the adversary reveals an
identical amount of information about the routes. For a specific
class of parallel relay networks, the theory is applied to study
the optimal performance tradeoffs and equilibrium strategies. In
particular, when the nodes employ transmitter-directed signaling,
the tradeoff between throughput and anonymity is characterized
analytically as a function of the network parameters and the
fraction of nodes monitored. The results are applied to study the
relationships between anonymity, the fraction of monitored relays,
and the fraction of hidden relays in large networks.

Index Terms—Anonymity, eavesdropper, saddle-point equilib-
rium, traffic analysis, wireless networks.

I. INTRODUCTION

A. Motivation

T HE PACKET transmission times1 of nodes in a network
can reveal significant information about the source–des-

tination pairs and routes of traffic flow in the network [1], [2].
Equipped with such information, a malicious adversary can
launch more powerful attacks such as wormhole, jamming,
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1Transmission time in this paper refers to the time point of transmission, not
the duration or latency.

or denial of service. Anonymous networking is the act of
communicating over a network without revealing the identities
of source–destinations or the path of flow of packets.
The typical design of anonymous networking protocols

models adversaries as omniscient and capable of monitoring
every single transmission in the network perfectly. From a
practical standpoint, this is far too conservative, and such
universal information would be available only to the network
owner or a centralized controller. In this paper, our goal is
to study the problem of anonymity in networks under a more
general adversary model, where an unknown subset of the
nodes is monitored by the adversary. The subset of monitored
nodes could depend on the physical location of the adversary or
partial knowledge of network transmission protocols. It is also
possible that in some public wireless networks, certain nodes
may have weaker physical protection than others and are hence
more vulnerable to transmission monitoring.
From a network design perspective, the goal is to design

transmission and relaying strategies such that the desired
level of network performance is guaranteed with maximum
anonymity of network routes. Providing anonymity to the
routes of data flow in a network requires modification of packet
transmission schedules and additional transmissions of dummy
packets to confuse an external observer. These modifications,
however, reduce the achievable network performance, particu-
larly in ad hoc wireless networks, where the scheduling needs
to satisfy medium access constraints on the shared channel.
Therefore, depending on the desired quality of service (QoS),
it is necessary to pick the optimal set of nodes to modify trans-
mission schedules so that anonymity is maximized without
violating QoS requirements.
If the network designer were aware of which nodes of the

network were being monitored by the adversary, the optimal
set of nodes can be chosen such that minimum information is
revealed through the monitored nodes. However, if the adver-
sary is aware of the set of nodes that the network designer has
chosen to protect, then he can alter his choice of nodes to mon-
itor so that maximum information about the network routes is
retrieved. This “interplay” between the network designer and
the adversary is the main subject of this paper, and it is studied
using a game-theoretic approach.
Since the set of monitored nodes is unknown to the net-

work designer, a conservative approach would be to design
the scheduling strategy assuming an omniscient adversary.
However, since the power of the adversary, i.e., the maximum
fraction of monitored nodes, is bounded, we would like to
investigate if the strategies of the network designer and the ad-
versary can be analyzed jointly to get a better tradeoff between
anonymity and network performance compared to that under
the omniscient assumption (see Fig. 1). To this end, we propose
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Fig. 1. Anonymity–performance tradeoff. As the fraction of monitored nodes
gets smaller, we wish to compute the improvement in the performance tradeoffs.

Fig. 2. 2-relay parallel network: two possible sessions, each con-
taining two paths.

.

a two-player zero-sum game between the adversary and the
network designer, where the payoff is anonymity, the action of
the adversary is to choose which nodes to monitor to minimize
payoff, and the action of the network designer is to choose
which nodes of the network to “hide” from the adversary to
maximize the payoff subject to the QoS constraint.
The game-theoretic perspective can be understood using an

example of a 2-relay parallel network as shown in Fig. 2. During
any period of observation of the adversary, we assume that the
network operates in one of two configurations or (see
Fig. 2) wherein

are the set of active routes in each configuration (henceforth re-
ferred to as a network session). The adversary’s goal is to iden-
tify which of these sessions is currently active in the network by
monitoring the transmission timing of the monitored nodes.
Consider a transmitter-directed signaling model, where

each node transmits on a unique orthogonal channel such that
transmissions of multiple nodes are noninterfering. Under this
signaling scheme, merely detecting the transmission times of
packets by a node will not reveal the identity of the intended
receiver. Suppose in this setup, the adversary can only afford to
monitor the transmissions of two nodes. An adversary would
therefore have to detect correlations across transmission sched-
ules of a source and a relay to identify the flow of traffic. For
example, if forwarded packets as and when they arrived

from the source, then during network session , the trans-
mission schedules of and would be highly correlated,
whereas during , the schedules of and would be
statistically independent. An adversary who merely monitors
nodes and would therefore be able to identify the net-
work session perfectly by detecting the dependence between
schedules. Suppose, instead, the relays and always use
transmission schedules that are statistically independent of the
arrival schedules from the sources. Then, no information about
the session can be obtained by monitoring the transmission
schedules of any pair of nodes. Using independent schedules,
however, requires dummy transmissions by the relays, thus
reducing the rate of data packets forwarded by each relay.
Consider a scenario when the throughput requirement man-

dates that at most one relay can generate independent schedules
(using dummy transmissions). If only relay generates a
transmission schedule that is statistically independent of that of
and , then the optimal strategy for the adversary would

be to monitor or , either of which would
help him perfectly determine the session. However, given
the knowledge that the adversary would monitor
or , the optimal strategy of the network designer
would be to make the schedule of always independent thus
maximizing anonymity.
A natural question that arises is the following: Is there a pair

of strategies for the network designer and the adversary that nei-
ther has any incentive to modify? In other words, if formulated
as a two-player zero-sum game between the adversary and the
network designer with anonymity as the payoff, does a Nash
equilibrium exist? As will be shown in Section III, a saddle-
point equilibrium does exist in the class of mixed strategies. For
this example, at the equilibrium point, the optimal strategy for
the network designer is to choose one of the relays with prob-
ability to generate independent schedules, and the optimal
strategy for the adversary is to monitor each source–relay pair
with probability . By definition, at this operating point, nei-
ther the network designer nor the adversary have any incentive
to modify their strategies (see Theorem 3).
The example discussed above involves a simple scenario with

only two possible network sessions, and the adversary has two
kinds of observations: a pair of dependent or a pair of indepen-
dent schedules. In a general multihop network, anonymity based
on partial information about the session can be quantified using
Shannon’s equivocation [3], [4], and our goal in this work is to
optimize the tradeoff between the desired network throughput
and the achievable anonymity as a function of the adversary’s
monitoring capability.

B. Main Contributions

In this paper, we consider a game-theoretic formulation of
anonymous networking in a general class of finite wireless net-
works when the number of nodes monitored by an adversary
is bounded by a known constant. We pose the design problem
as a two-player zero-sum game with equivocation (conditional
entropy) of the network session as the payoff. The adversary’s
strategy is to pick a random subset of nodes to monitor, and the
network designer’s strategy is to pick a random subset of nodes
to generate independent schedules, thus avoiding detection. For
the class of finite multihop networks considered, we prove that
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a saddle-point equilibrium always exists in the class of central-
ized strategies 2. Note that since anonymity, as defined by con-
ditional entropy, is a nonlinear function of the probabilities of
mixing multiple strategies, the existence of Nash equilibria in
classical two-player zero-sum games [5], where payoff of mixed
strategies is the weighted sum of pure strategy payoffs, does not
directly apply.
To demonstrate the applicability of the game-theoretic

model, we consider a general class of parallel relay networks.
For a symmetric relay model, we characterize analytically the
throughput–anonymity tradeoff as a function of the adversary’s
power and, using the results on player strategies, derive the
saddle-point strategies that are understandably symmetric. We
then introduce asymmetry into the properties of the relay rate
and the information model and, using the derived results on
saddle-point strategies, demonstrate the gain of the game-theo-
retic approach over naive intuitive strategies. We also show that
the game-theoretic approach can be used to study large parallel
relay networks by characterizing the asymptotic relationships
among anonymity, the fraction of monitored relays, and the
fraction of covert relays.

C. Related Work

Anonymous communication over the Internet is fairly well
studied, where many applications have been designed based on
the concept of traffic mixes proposed by Chaum [6]. Mixes are
routers or proxy servers that collect packets from multiple users
and transmit them after reencryption and random delays so that
incoming and outgoing packets cannot be matched by an ex-
ternal observer. While mix-based solutions have been used in
applications such as anonymous e-mail or browsing, it has been
shown that when long streams of packets with latency or buffer
constraints are forwarded through mixes, it is possible to corre-
late incoming and outgoing streams almost perfectly [7].
In wireless networks, an alternative solution to mixing is the

use of cover traffic [8], [9], which ensures that, irrespective of
the active routes, the transmission schedules of all nodes are
fixed a priori. If a node does not have any data packets, the
transmission schedule is maintained by transmitting dummy
packets. While the fixed scheduling strategy provides com-
plete anonymity to the routes at all times, it was found to be
inefficient [8] due to high rate of dummy transmissions, and
the implementation required synchronization across all nodes,
which is not practical in ad hoc wireless networks. In this paper,
the technique used to provide anonymity is similar to that
in [10], where a subset of relays (referred to as covert relays)
generates independent transmission schedules using dummy
transmissions.
The general adversary model considered here necessitates a

game-theoretic formulation of the problem. Game theory [11]
has been used in a wide range of multiagent problems from
economics to networking. In the context of network security,
earlier applications were focused on jamming. Basar con-
sidered the problem of jamming in Gaussian channels [12],
where it was shown that the optimal jamming strategy is ei-
ther a linear function of jammer’s observation or an additive

2Centralized strategies are strategies that require coordinated action across all
nodes of the network. Such strategies can be implemented using a single cen-
tral controller, the use of shared randomness across nodes, or limited message
passing between nodes.

independent Gaussian noise. Borden et al. [13] considered
the information-theoretic saddle points of the jamming game
under hard/soft quantization schemes. More recent work along
this line includes [14]–[16]. Game-theoretic models have also
been used to model problems related to distributed intrusion
detection [17], [18], where the goal is to design attacking
and detection strategies with probability of detection as the
payoff. In [19], game theory was used to study attacker and
defense strategies on a graphical model of a network, where
the attackers choose nodes to compromise, while the defender
picks links to “clean up.” To the best of our knowledge, ours
is the first application of game theory to hide traffic flows in
the presence of eavesdroppers. The work closest to ours in this
regard is that of information concealing games using finite-di-
mensional data [20] where one of the players (the adversary)
chooses a subset of available resources to hide, while the oppo-
nent (the network user) chooses a subset of resources based on
the revealed observation to maximize his utility. The authors
identify conditions under which Nash equilibria exist and
provide approximation techniques to compute the equilibria.
Conceptually, this problem has some similarities to our strategy
of choosing covert relays, where the network designer chooses
to hide a subset of relays, whereas the adversary chooses a
subset of relays to monitor. In our model, the adversary’s
observation depends on the actions of both the players, which
are decided a priori, and the payoff is a nonlinear function
of the probabilities of mixing strategies, thus different from
classical mixed strategy models [5].
Our mathematical model for anonymity is based on the

framework proposed in [10], where conditional entropy of the
network session was proposed as a metric for anonymity. En-
tropy and measures related to entropy such as K-L divergence
have been proposed as payoffs in games of complexity [21].
Entropy in such contexts were however used as metrics of
complexity rather than a measure of uncertainty.

II. SYSTEM MODEL

Notation: Let the network be represented by a directed graph
, where is the set of nodes in the network and
is the set of directed links. is an element of

if and only if node can receive transmissions from node .
A sequence of nodes is a valid path in if

. The set of all loopless paths is denoted
by .

A. Adversary Observation and Inference

During any network observation by the adversary, a subset of
nodes communicate using a fixed set of paths. This set of paths

is referred to as a network session. The adversary’s
goal is to use his observation to identify the session.Wemodel
as an i.i.d. random variable . The prior on sessions
is assumed to be available to the adversary. The set of possible
sessions is given by . (See
example sessions in Fig. 2.)
Transmitter-Directed Signaling: The adversary’s observation

would depend on the underlying physical-layer signalingmodel.
In this paper, we consider orthogonal transmitter-directed sig-
naling at the physical layer, where each node utilizes a unique
orthogonal signaling scheme such that a transmission schedule
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Fig. 3. Switching network. transmit to through relays .

detected by the adversary would reveal only the transmitting
node and not the intended receiving node.
Observable Session: The goal of the network designer is to

modify transmission schedules of the nodes in every session
such that the monitored nodes reveal as little information about
the actual session as possible. For instance, if a subset of relays
always generates independent transmission schedules, then it is
not possible for the adversary to determine which paths pass
through them. In effect, the set of (broken) paths observable
would be a distorted version of the actual session. Let (hence-
forth referred to as observable session) denote the set of paths
as observed by an omniscient adversary.
For example, consider the switching network in Fig. 3, where

every session is defined by a unique pairing of sources and des-
tinations (each sends packets to a unique through inter-
mediate relays). In this network, consider a session given by
the set of paths

Suppose node generated an independent schedule regardless
of the arrival times from . Then, an omniscient adversary
would not be able to identify the paths of the packet streams
from and after they reach . Therefore, the observable
session would contain the set of paths

(1)

Adversary Observation: Under a general adversary model,
packet transmission times of a subset of nodes are observed
by the adversary. Specifically, the adversary randomly chooses
any subset of nodes, denoted by , to monitor. The maximum
number of monitored nodes is denoted by (also referred to
as power of the adversary). We model as a random variable
where the random distribution of is chosen by the adversary
to maximize his payoff. Depending on the observable session
and the set of monitored nodes , the adversary’s observa-
tion would be a further distorted version of the underlying
session . The adversary’s net observation can be represented
by a set of paths and would be given by a deterministic func-
tion . (Note that .)
In the switching network example of Fig. 3, let be covert

in session . Then, (1) provides the observable session (omni-
scient adversary). If the adversary monitors nodes ,
and , then

B. Performance Metrics: Anonymity and Throughput

The task of the network designer is to design the probability
distribution of observable sessions, denoted by , such
that a desired QoS is achieved while the adversary obtains min-
imum information about the session by observing . The
task of the adversary, on the other hand, is to design the proba-
bilities of choosing nodes to monitor s.t. maximum in-
formation is obtained by observing .
Anonymity: We quantify anonymity using Shannon’s equiv-

ocation [3], which measures the uncertainty of the underlying
session given the adversary’s observation.
Definition 1: We define the anonymity for a net-

work strategy w.r.t. adversary strategy as the
normalized conditional entropy of the sessions given the adver-
sary observation

(2)

The normalization ensures that the anonymity is always
between 0 and 1. The motivation behind the above definition
comes from Fano’s inequality, which lower-bounds the adver-
sary’s probability of error by the conditional entropy [22]. Note
that previous entropy-based definitions of anonymity [4], [10]
in the context of omniscient adversaries are special cases of
Definition 1 (when ).
Throughput: Since distorting the observable session requires

modification of transmission schedules, the latency and band-
width constraints in the network would require transmission of
dummy packets and result in a reduced rate of data packets de-
livered from the sources to destinations. Let represent
the sum-rate of packets deliverable from sources to destinations
when the actual session is and the observable session is . Note
that .
Definition 2: The throughput of a scheduling strategy

is defined as

(3)

where the expectation is over the joint probability density func-
tion (pdf) of and .
Anonymity and throughput are essentially two opposing

paradigms in the design of the optimal scheduling strategy:
Transmitting more dummy packets increases anonymity,
whereas higher throughput necessitates fewer dummy trans-
missions. Unlike the omniscient adversary setup, since the
power of the adversary is bounded, the uncertainty in the
identities of the monitored nodes, i.e., the randomness in ,
necessitates the game-theoretic formulation, as was illustrated
in the example in Section I. In Section III, we formulate this
problem as a two-player zero-sum game and establish the
existence of a saddle-point equilibrium.

III. TWO-PLAYER GAME USING COVERT RELAYING STRATEGY

Consider a two-player zero-sum game , defined by a
3-tuple , where and denote the action spaces
of the network designer and the adversary, respectively, and

is the payoff function for the network
designer (the adversary’s payoff is ).
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A. Action Spaces

In its most general form, the action space for the network
designer would include the set of all probability distribu-
tions over the space of all loopless paths . In this
paper, we restrict the set of observable sessions to those achiev-
able using the set of covert relaying strategies, where each
relay node belongs to one of two categories: covert or visible.
Covert Relay: A covert relay generates an outgoing trans-

mission schedule that is statistically independent of the sched-
ules of all nodes occurring previously in paths that contain .
Due to statistical independence, no adversary can detect the flow
of traffic through a covert relay. Covert relaying is a modifica-
tion to the transmission scheduling that provides anonymity and
yet adheres to the medium access and delay constraints of the
system.
Visible Relay: A visible relay transmits every received

packet immediately upon arrival, thereby ensuring all arriving
packets are relayed successfully within the latency constraint.
However, the traffic flow through the visible relay operating
under this highly correlated schedule is easily detected by an
eavesdropper. (A statistically consistent detector for this pur-
pose has been designed in [23].)
In a given session , if the set of covert relays is , then

the observable session can be expressed as a deterministic
function . For a transmitter-directed signaling model,

is a set of paths such that for every path in that has
covert relays, contains paths, each beginning

at the source or a covert relay and terminating one relay before
the subsequent covert relay or the destination. This is because
covert relay schedules prevent the adversary from detecting any
correlation between the schedule of a prior node in the path with
that of the relay.
We model the set of covert relays in a session by a random

variable with conditional distribution , and the
class of covert relaying strategies is defined by the set of all
probability distributions . Note that this is a restric-
tive action space where it may not be possible to realize all ob-
servable sessions in for any session .
As expected, maintaining independent schedules would re-

quire covert relays to drop packets or add dummy packets con-
sequently reducing the rate of relayed data packets, whereas vis-
ible relays can relay every packet that arrives without any loss
in rate. The loss in rate at a covert relay would be a function
of the probability distributions of transmission schedules, delay
and bandwidth constraints, and the relaying strategy. In a ses-
sion , let denote the achievable sum-rate when the
relays in the set are covert. Note that since perfectly de-
termine the observable session

The characterization of the exact rate loss is not necessary for
this exposition, and we will treat it as an abstract quantity. In the
subsequent section, where we study parallel relay networks, we
shall use specific scheduling and relaying strategies and provide
an analytical characterization of the rate loss for that class of
networks.
For a given strategy , the throughput can be ex-

pressed as a linear function

By restricting ourselves to the class of covert relaying strate-
gies, we define the action spaces for the network designer and
the adversary in the game as follows.
The action of the network designer is to select the probability

mass function that chooses covert relays in each ses-
sion . The key constraint in this design is the throughput re-
quirement . Accordingly

The action of the adversary is to design the probability distri-
bution of picking nodes to monitor during the session,
subject to the constraint on the maximum number of monitored
nodes . Therefore

B. Payoff and Saddle Point

For a given observable session , the adversary
observation would be restricted to the paths between moni-
tored nodes in . In other words

Define to be the adversary’s
uncertainty set

In other words, if the adversary monitors is the
set of possible pairs of session and covert relays that would lead
to the observation through the nodes .
For a given pair of strategies , the payoff

function is the anonymity which from Definition 1 is
given by

(4)

where

(5)

is the aposterior probability that the current session is given
the adversary observes through the nodes .
In a zero-sum game, we know that the interests of the net-

work designer and the adversary are exactly opposite: While
the network designer would prefer to make the monitored nodes
covert, the adversary would prefer to monitor the visible nodes.
We wish to determine if there is an operating point in the pair of
action spaces, where neither the network nor the adversary has
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any incentive to change their strategy—in other words, if this
game has a saddle-point equilibrium.
Definition 3: A pair of strategies consti-

tutes a saddle-point equilibrium if

(6)

Note that, although it is well known that two-player zero-sum
standard matrix games as defined in [5] always have a Nash
equilibrium in the class of mixed strategies, the result does not
extend to the game defined here. In fact, even if modeled as a
continuous-kernel game as in [24], the existence of saddle-point
equilibrium when action spaces are compact does not directly
apply here. The reason being is that the payoff for a mixed
strategy in such two-player games is a weighted sum of pure
strategy payoffs; in our setup, the payoff is a nonlinear func-
tion of the pure strategy payoffs and the mixing probabilities
[see (4)]. The existence of a saddle point in this game is shown
in the following theorem.
Theorem 1: For the two-player zero-sum game defined

by the action spaces and payoff function , there exists
a saddle-point equilibrium.

Proof: Refer to the Appendix.
The equilibrium condition guarantees that at the operating

point, the adversary can use no other strategy to decrease the
anonymity of the session. In addition to proving the existence
of a saddle point, characterizing the optimal strategy for the ad-
versary is also important, and particularly helpful in network
scenarios where additional protection can be provided to nodes
that are more likely to be monitored.
Note that the omniscient adversary setup is a specific instance

of this game, when the adversary has exactly one action:monitor
all nodes. The existence of an equilibrium is trivial, and the
operating point is given by the rate distortion optimization [4]

(7)

The uniqueness of the equilibrium follows from the zero-sum
property of the game. Note that while the pair of strategies that
achieves the saddle-point anonymity is not unique, the saddle-
point anonymity in the two-player zero-sum game is indeed
unique. This game is also an example of an incomplete infor-
mation game [18], where the adversary does not have complete
access to the session or the realization of the network designer’s
randomness, while the network designer does not have access to
the realization of the adversary’s randomness.
Although computing saddle-point strategies is hard since the

action spaces are continuous, properties of player strategies can
be derived by studying the conditions.

C. Insights Into Player Strategies

In this section, we investigate the properties of the saddle-
point player strategies using the conditions for equilibrium.
Partial Information: For a given subset of nodes , we define

the partial uncertainty from the adversary’s perspective as

where is the aposterior probability defined in (5). The partial
uncertainty represents the uncertainty of the session when the
adversary monitors a particular subset of nodes.
Information Leakage Rate: For a given action by the network

designer—making a set of relays covert in a session —the
rate of information leakage is defined as

(8)

Theorem 2: For the two-player zero-sum game , at the
saddle point :
1) s.t.

2) , if , s.t. and
, then

(9)

3) , if , s.t. and
, then

is a constant. (10)

Proof: Refer to the Appendix.
The above theorem states that, at the saddle point, for every

subset of nodes monitored by the adversary (with nonzero prob-
ability), the partial uncertainty of the underlying session is iden-
tical. In other words, the set of covert relays is chosen such that
any monitored subset reveals equal information about the ses-
sion. At this operating point, from the perspective of the ad-
versary, any probability distribution over these “degenerate”
subsets would give rise to the same anonymity. There, how-
ever, exists a unique distribution to choose nodes to monitor,
which, when employed, gives the network designer no incentive
to deviate. At this point, the difference in information leakage
rates for any pair of actions is proportional to the difference in
throughput. In other words, the throughput cost per unit change
in uncertainty is identical for every choice of covert relays (by
the network designer).
Although the conditions in (9) and (10) appear complicated

to analyze owing to aposterior probabilities, in many net-
works it is possible to utilize network structure and session
models to analyze the condition and characterize the optimal
throughput–anonymity tradeoffs.
In Section IV, we consider one such class of parallel relay

networks to demonstrate the applicability of the game-theoretic
approach. Specifically, we use the derived results on saddle-
point strategies to study the optimal behavior of network nodes
and the adversary and, in the process, demonstrate the perfor-
mance improvement due to the game-theoretic approach over
naive intuitive player strategies. We also apply the formula-
tion to characterize fundamental asymptotic relationships be-
tween anonymity, throughput, and adversary capability in par-
allel relay networks. The asymptotic relationships are useful in
the design of strategies in large networks where numerical com-
putation becomes practically infeasible. In fact, we demonstrate
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Fig. 4. Parallel relay network model.

that the maximum loss in using the asymptotic results on an
-node parallel relay network is bounded by .

IV. PARALLEL RELAY NETWORKS

A. Network Model

Consider a parallel relay network as shown in Fig. 4, where
the set of nodes in the network can be divided into three sub-
sets such that is the set of source
nodes, is the set of destination nodes, and

is the set of intermediate relay nodes the
network. The set of edges can similarly be divided into two
sets , where denotes the set of edges between source
nodes and relays, and is the set of edges between relays and
the destinations.
We make the following two assumptions in the model.
1) Full connectivity: Every source is connected to every relay,
and every relay is connected to every destination.

2) Symmetry: The probability of a source–relay–destina-
tion connection is identical across sources, relays, or
destinations.

Note that these assumptions, while not critical to the analyt-
ical tractability, help to provide broader insights into optimal
strategies for the network designer and the adversary.
Session Model: In each session, every source in picks a

distinct destination in and a distinct intermediate relay in
to forward its packets, such that all sources and relays are trans-
mitting in every session. From a graph-theoretic perspective,
each session corresponds to a unique pair of bipartite match-
ings from the sources to the relays and from the relays to the
destinations.
Owing to the symmetry assumption, each session has an

identical prior probability

Medium Access Constraints: We consider a transmitter-di-
rected signaling model, where every node (source or relay) has
an independent transmission rate constraint. Let denote the
transmission rate constraint for any source, and let denote
the transmission rate constraint for any relay.
Transmission and Relaying Strategy: For purposes of analyt-

ical characterization, we consider independent Poisson sched-
ules, where all source schedules and covert relay schedules are
generated according to independent Poisson processes. The re-
laying strategy used by any covert relay is the Bounded Greedy
Match algorithm [25], which was shown to maximize the sum-
rate of relayed data packets.

Throughput: Given the transmission rates of the relay and
the source nodes, [4, Theorem 1] characterizes the maximum
achievable data rate when the BGM algorithm is used as the re-
laying strategy. Since all routes in the parallel relay network are
2-hop routes, the sum-rate in a session when relays
in are covert is expressible as a sum of achievable rates for
each source–destination pair

where

is the maximum achievable rate for a covert relay using in-
dependent Poisson schedules under a strict delay constraint of
seconds per packet [4].
The throughput, as defined in Section II, is given by

The maximum achievable throughput when all relays are
visible is given by

Note that sum-rate here is used as a specific scalar measure of
performance to define the strategy space of the network nodes.
In general, any function of capacity region can be used to define
the strategy space of the network, and the results here can be
extended to such models as well.
Adversary Model: The adversary monitors a subset of the

nodes, which we denote by a pair of random variables ,
where and denote the sources and relays that are moni-
tored, respectively. For every monitored node, the adversary has
perfect knowledge of the packet transmission times. We know
that .
Given the bipartite session model, at every monitored relay,

the schedule observed by the adversary is either correlated to
that of a monitored source node or is independent of every
monitored source node. In effect, the adversary observation

, where we have the
following.
1) is a set of source–relay pairs with dependent
schedules.

2) is a set of source nodes whose schedules are not corre-
lated with that of any monitored relay.

3) is a set of relays whose schedules are not correlated with
that of any monitored source.

For example, consider a session in a three-source par-
allel-relay network, where source communicates with
destination through relay . Let the network designer
make relay covert and the adversary monitor the nodes

, and . In this example, the adversary obser-
vation can be written as , where

Anonymity: By merely monitoring the transmissions of
the nodes in the network, an adversary can at most identify
every source–relay pair. Since the network utilizes trans-
mitter-directed signaling, using transmission timing alone, it
is impossible to determine any final destination. We therefore
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measure anonymity using the set of source–relay pairs per-
fectly identifiable by the adversary. Let denote the set of
source–relay pairs in the session. We can write

Since contains all the source–relay pairings and contains
no information about destinations, ,
which is a constant irrespective of the set of monitored nodes.
We therefore modify the payoff in the two-player game as

It is easy to see that the total anonymity as defined in Section II
has a monotonic one-to-one relationship to the above definition.
Our goal is study the saddle-point strategies and throughput-

anonymity tradeoffs of this networkmodel by jointly optimizing
the covert probability function and the adversary
strategy subject to the throughput constraint
and the adversary power . If denote the NE proba-
bility distributions of the network designer and adversary, re-
spectively, then let

represent the NE anonymity–throughput tradeoff.
Theorem 3: For an omniscient adversary, the NE throughput

anonymity tradeoff is given by

where

Proof: Refer to the Appendix.
The throughput–anonymity tradeoff under an omniscient ad-

versary is linear, which is a consequence of the 2-hop nature and
symmetry in the network model. The constant represents the
per-node rate loss. As mentioned earlier, this operating point
represents a trivial equilibrium. Against an omniscient adver-
sary, the optimal strategy for the network designer is to make
all relays covert together with probability

The general idea behind this strategy is as follows: If in a ses-
sion, relays are covert, then the anonymity from an omniscient
adversary’s perspective would be restricted to the relays and
cannot exceed . The corresponding loss in throughput for
the network designer is . The optimal network design strategy
would therefore correspond to minimizing the throughput cost
per unit gain in anonymity.

B. General Adversary Model

Consider the simplest case of . When , the
only way the adversary can obtain nonzero information is if
one of the monitored nodes is a relay and the other is a source.
Due to the symmetry assumption, intuition suggests that the
optimal strategy for the adversary would be to monitor every
source–relay pair with equal probability.
When , there is an additional challenge in deter-

mining the ratio of relays and sources that should be moni-
tored by the adversary. In general, the optimal ratio need not
be fixed and could be a random quantity, as long as the total

number of monitored nodes does not exceed . However, op-
timizing the adversary and network strategies reveals that the
optimal strategy would in fact have a fixed ratio. This is shown
in the following theorem, which characterizes the equilibrium
throughput–anonymity tradeoff for the general adversary.
Theorem 4: Let , and

o.w.

Then, there exists a unique equilibrium throughput–anonymity
tradeoff that is given by

Proof: Refer to the Appendix.
The anonymity at the saddle point is composed of two com-

ponents. The first term represents the uncertainty in determining
which of the monitored relays is covert; since only a subset of
sources are monitored, independence across schedules does not
necessarily imply that the relay is covert. The remaining compo-
nent of the anonymity is the uncertainty due to the unobserved
nodes in the network. The quantity represents the average
probability with each a relay is covert, and this probability is
influenced by the level of throughput required. The relationship
is similar to the omniscient adversary case. As the network size
increases, the first component converges to a constant, and the
anonymity is dominated by the missing information from unob-
served nodes (see Section V).
Saddle-Point Strategies: The optimal strategy for the adver-

sary at the saddle point, as revealed in the proof, is to monitor an
equal number of relays and sources such that each -size sub-
sets of relays and sources are chosen uniformly randomly.When
is odd, the adversary monitors one additional relay. The in-

tuitive argument for this strategy is as follows: If the number of
sources monitored exceeded the number of monitored relays by
2 or more, then by removing one monitored source and adding
a monitored relay, the number of possible routes that can be dis-
covered only stands to increase.
The optimal strategy for the network designer is to make all

the relays to be covert with probability

At first glance, this may be surprising since the adversary only
monitors a subset of nodes in any session. However, if all relays
were not covert, then the fraction of monitored relays that are
visible provides more information per unit cost in throughput
than that obtained from sessions when none of the relays are
covert. Furthermore, uniform probabilities across ses-
sions result in a uniform aposterior probability over all sessions,
which maximizes entropy.
Fig. 5 plots the throughput-anonymity tradeoff for two par-

allel relay networks. The gain in anonymity due to the game-the-
oretic approach over the omniscient strategy is evident from the
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Fig. 5. Tradeoffs for parallel relay networks. (a) 5-relay parallel network:
. (b) 60-relay parallel network: .

plots. Note that in the small network, while the tradeoff is linear
for an omniscient adversary (Theorem 2), it is not so in general.
For a large network, however, the tradeoffs are mostly linear, ex-
cept for small values of . This “asymptotic” linearity is shown
analytically in Section V.

C. Asymmetric Networks

In the results thus far, the symmetry in the underlying net-
work model resulted in symmetric strategies for the adversary
and the network designer. When asymmetry is introduced in
the networks, naive intuitions may not provide the saddle-point
strategies. To understand the effect of asymmetry on the strate-
gies, we consider two kinds of asymmetric networks: networks
where the transmission capacities of the relays are unequal, and
networks where the numbers of sources catered by the relays
are unequal.
Asymmetry in Covert Relay Rates: Consider first the case of

an -parallel-relay network, where the transmission capacities
of relays are unequal. Specifically, there exist at
least two relays such that the loss in data rates .
Theorem 5: For an -relay parallel network, where an adver-

sary monitors nodes, if rate losses due to covert relaying

Fig. 6. Asymmetric rate loss model with relays: comparison with naive
strategies.

for the relays are given by , respectively, there exists
a unique saddle point where we have the following.
1) .

2) .

Proof: Refer to the Appendix.
Interestingly, although the model is asymmetric, the covert

relaying strategy is symmetric. This is because each relay, when
visible, reveals an equal amount of information. Therefore, any
asymmetry in the retrievable information from the two relays
induced by the network strategy would automatically force the
adversary to monitor the less protected (or more informative)
relay exclusively. Such a pair of strategies cannot constitute a
saddle point.
When the network design strategy is symmetric, the payoff

is a constant regardless of the adversary’s probability of mon-
itoring each source–relay pair. However, there is only one
strategy, at which point the optimal strategy for the network
is symmetric, thus resulting in an equilibrium. In particular,
the probability of monitoring a relay is proportional to the rate
loss at the relay. As intuition would suggest, the more rate
loss, the less likely a relay is to be covert and, consequently, a
greater incentive for it to be monitored. In effect, at the saddle
point, the adversary’s strategy is to choose the probabilities of
monitoring each relay so that the network is forced to make all
relays covert with equal likelihood.
Under such an asymmetric model, if a network designer were

to assume naively that the adversary’s strategy were symmetric,
then for a required level of throughput, the optimal strategy
would be to make relays with lower throughput loss covert
with higher probability so that the same level of throughput can
be achieved with higher anonymity (w.r.t. the uniform adver-
sary). However, the optimal adversary would then employ un-
equal probabilities of monitoring the relays, which would even-
tually result in lower-than-expected anonymity. The difference
between the anonymity due to the naive networking strategy and
the equilibrium strategy is shown in Fig. 6 and clearly demon-
strates the benefit of using the game-theoretic approach. The
figure also plots the tradeoff when the adversary employs the
naive strategy of uniform monitoring, and the network designer
optimizes the choice of covert relays assuming the uniform ad-
versary.
Asymmetry in Relay Information: In the asymmetric model

discussed above, the saddle-point strategy for the network
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Fig. 7. Asymmetric relay informationmodel with four sources and three relays:
comparison with naive strategies.

designer was symmetric since each relay, when monitored,
provided the same amount of information. We now consider
a modification of the parallel network structure and introduce
asymmetry in the amount of information provided by a relay.
Specifically, let the number of relays be , where relays
are multiplexing relays with two sources transmitting to each
of them every session, and the remaining relays are
nonmultiplexing relays with exactly one source transmitting
to each of them in every session. The capacities of relays are
chosen such that each relay, when covert, incurs an identical
throughput loss . We consider a two-player game where the
adversary monitors at most two nodes.
Theorem 6: For an relay asymmetric parallel relay net-

work, where an adversary monitors nodes, there exists
a unique saddle point, where the following applies.
1) The optimal strategy of the network is to make a nonmulti-
plexing relay covert with probability and a multiplexing
relay covert with probability , where

2) The optimal adversary strategy is to monitor a source-mul-
tiplexing relay pair with probability and a source non-
multiplexing relay pair with probability such that

Proof: Refer to the Appendix. .
In this setup, the theorem states that the optimal strategy for

the network designer is asymmetric as well. A naive adversary
would choose to monitor nonmultiplexing relays with higher
probability since they provide more information, whereas a
naive network designer would choose to hide all relays with
equal probability since all relays provide identical throughput
loss. Fig. 7 plots the improvement in anonymity over naive
strategies due to the game-theoretic approach.

The intuition behind the optimal strategies is similar to the
asymmetric rate loss model. The more information provided by
a relay, the more likely the adversary is to monitor that relay,
and a greater incentive to make it covert. At the saddle point,
the network increases the probability of nonmultiplexing relays
being covert just enough so that the adversary obtains equal in-
formation from any relay.

D. Large Networks

In this section, we use the derived results to study equilibria
in large networks. When the fraction of monitored nodes is
a constant, the anonymity monotonically increases with , but
asymptotically converges toward a constant.
Theorem 7: If is a constant, then the anonymity for

a fixed throughput ratio converges as

Proof: Refer to the Appendix.
According to the theorem, for a fixed throughput, the loss

in anonymity is proportional to the square of the fraction of
monitored relays. Put in another perspective, for a fixed number
of monitored relays, the anonymity asymptotically converges
to 1 as

The intuition for this relationship can be understood by looking
at the maximum throughput case: . At that operating
point, . In the large regime, the total uncer-
tainty is approximately . Every monitored relay reduces
uncertainty by if the corresponding source is also moni-
tored. If the corresponding source is not among the monitored
nodes, then the reduction in uncertainty is negligible. For every
relay, the corresponding source would be monitored with ap-
proximate probability . Since relays are monitored, the net
reduction in uncertainty is approximately , thus resulting in
the square law of the theorem.
Asymptotic relationships can be used to design approximate

strategies for large networks. In particular, it would be useful
to characterize the asymptotic relationship between the fraction
of covert relays and the fraction of monitored relays. As the
number of monitored relays increases, the fraction of relays that
are covert per session would also increase. We can use Theorem
4 to obtain the asymptotic relationship. Specifically, for a fixed
anonymity , the fraction of covert relays per session is given
by

Furthermore, if is the exact fraction of covert relays re-
quired for a network of size , it is easily shown that

This is of particular relevance to large wireless sensor net-
works where the number of covert relays (relays generating
dummy transmissions) is directly related to energy overhead.
Fig. 8 plots this relationship for finite networks in comparison
with the asymptotic relationship.
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Fig. 8. Covert versus monitored relays. The three sets of curves are plotted for
.

V. CONCLUDING REMARKS

In this paper, we considered the problem of providing
anonymity to network communicationwhen adversariesmonitor
or compromise an unknown subset of nodes in the network. We
presented a game-theoretic formulation and proved the existence
of saddle-point equilibria. Using the class of parallel relay net-
works, we demonstrated that this approach can be used to obtain
optimal strategies for the network designer and the adversary,
as well as provide insights into anonymity–throughput tradeoffs
in large networks. The problem of computing the equilibria
has not been dealt with in this paper, but efficient algorithms
for this purpose would fortify the results here and are part of
ongoing research. In this paper, we have used specific classes of
networks and assumed knowledge of topology and sessions. A
similar approach for random networks with random connections
could shed valuable insights into scaling behavior of anonymous
networking.

APPENDIX

A. Proof of Theorem 1

In order to prove the existence of a saddle point in the two-
player game, it is sufficient to show the following.
1) and are closed convex and bounded sets.
2) The payoff is continuous in the domain .
3) For every is concave in .
4) For every is concave in .
If the two-player game satisfies the above conditions, then

it constitutes a general two-player concave game, which was
shown to have a guaranteed Nash equilibrium in [26].
1) Convexity of action spaces: The space is a finite-dimen-
sional simplex, which is closed, bounded, and convex.
is a subset of the simplex with the additional constraint

Since the constraint is not a strict inequality, the space is
closed. is a linear function of . Therefore, for any
pair of probability vectors

which proves the convexity of .

2) Since the payoff is linear in and is an entropy function
of , the continuity of the payoff can be easily shown (the
details are omitted here).

3) In order to show the concavity of w.r.t. to , we need
to show that for any ,

Consider the following modification to the setup, where
apart from the topology and set of network sessions, the
network designer and the adversary are given access to a
common Bernoulli random variable . Consider
any . The network designer utilizes the fol-
lowing strategy: If the observed variable , then the
distribution is used to make relays covert, and if
is used. Since is observed by the adversary as well,

this strategy would amount the anonymity being equal to
the conditional entropy .
Now, suppose the Bernoulli variable were only available
to the network designer, and he utilizes the same strategy.
Since the adversary has no knowledge of , his entropy
would be , where the distribution of covert relays
would be the effective distribution

Since conditioning reduces entropy,
, and therefore

4) For any is a linear function of , and
therefore

which establishes the required concavity.
For uniqueness, consider two pairs of strategies and

that achieve saddle-point equilibrium. By the definition
of saddle point, we know that

The above sequence of inequalities establishes the uniqueness
of the payoff.

B. Proof of Theorem 2

According to the definition of payoff

(11)

From the adversary’s perspective, the goal is to choose such
that is minimized. Since is a probability distribu-
tion, using Lagrange multipliers, we can write
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At the minimizing distribution, we know that

Therefore, for any subset of nodes for which

is a constant

which proves the first part of the theorem.
From the network designer’s perspective, the goal is to design

such that is maximized, while maintaining a
throughput . Again, using Lagrange multipliers, we can define

At the maximizing distribution, for every

Equating the values of , the conditions are obtained.

C. Proof of Theorem 3

Define . Due to the symmetric
rates, the throughput achievable by a strategy is

where .
For a given strategy , the anonymity for an omniscient ad-

versary can be written as

For a given realization of , the omniscient adversary can per-
fectly correlate the flows through all relays in , there-
fore the information lost due to independent schedules can be
upper-bounded by

Consider maximizing subject to

If , it is easy to see that . When
, since is increasing in , the maximizing is

given by

Therefore, for any throughput

The above inequality is achievable by making all relays covert
with probability , and hence proves the theorem.

D. Proof of Theorem 4

Consider the following adversary strategy: During every ses-
sion, the adversary picks source–relay pairs with uniform
probability. We characterize the optimal network strategy for
this adversary and show that the adversary can do no better by
changing his strategy, thus proving equilibrium.
For a given set of monitored nodes , let
be a random variable that denotes the set of communicating

source–relay pairs within the set of monitored nodes. Then, for a
given covert relaying strategy , the anonymity for the spec-
ified adversary can be expressed as

where the second equality is because, given the communications
within the monitored nodes, the uncertainty of the rest of the
network does not depend on the observation.
Furthermore, given the set of communicating pairs within the

set of monitored nodes, the uncertainty in the unobserved por-
tion of the network would be independent of any strategy, and
therefore a constant.
Accordingly, consider maximizing subject

to the throughput constraint. This maximization is akin to the
omniscient case; the uncertainty refers to the communications
within the monitored nodes. The difference comes from the fact
that since there are unobserved nodes in the network, some of
the monitored sources or relays can communicate with nodes
outside the set of monitored nodes. Nevertheless, it can be
shown that the optimal network strategy is not affected by this
modification. We prove this for ; the proof for general
is a straightforward generalization. Define

In other words is the probability that a flow through is
visible. Therefore
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where is the binary entropy function. Due to the throughput
requirement, we know that is a constant. Since finite
entropy is bounded by the size of the alphabet

where the equality is achieved when is identical.
Furthermore, since is independent of

which is independent of the covert relaying strategy.
The optimal covert relaying strategy is therefore symmetric

across all relays and sessions. Using the two derived conditions,
the maximizing anonymity is given by

For the derived covert relaying strategy, the anonymity w.r.t. to
a general adversary can be written as

where is the probability that the adversary monitors the
source–relay pair . Due to the symmetry in covert relaying
strategy, and are identical across pairs .
Therefore, for any probability mass function , the total
information gained (or lost) would be no different for the adver-
sary. In other words, there is no incentive for the adversary to
deviate from the uniform monitoring strategy, and that pair of
strategies is therefore a saddle point. .

E. Proof of Theorem 5

Since uniform probability maximizes entropy, we can write

Then, . If the adversary monitors
with probability , then

If , then is optimal for the adversary. However,
if , then the optimal network strategy is to make ,
which is a contradiction. Hence

If is the saddle-point strategy for the adversary, then
must necessarily satisfy (from Theorem 2)

where . It is easily verified that is the
unique solution to the above equation.

F. Proof of Theorem 6

The adversary has two choices: either monitor a source and
a nonmultiplexing relay, or a source and a multiplexing relay.
Within the set of relays, condition 1 in Theorem 2 requires
that the amount of information available through each relay is
identical. In other words, within the set of multiplexing relays,
the probability of covertness would be identical. Consequently,
within the set of multiplexing relays, the probability of an ad-
versary monitoring any particular multiplexing relay would be
identical. Likewise, the argument applies to the set of nonmul-
tiplexing relays as well. Therefore, if refers to the respec-
tive probabilities of monitoring a nonmultiplexing and multi-
plexing relay, and if refers to the respective probabilities
of an adversary monitoring a nonmultiplexing and multiplexing
relay, then

where is the total number of sessions. Applying the
conditions in Theorem 2 to the expression above, the theorem
is proved. Details are omitted due to paucity of space .

G. Proof of Theorem 7

We know from Theorem 3 that the anonymity can be
written as

where

Using Stirling’s approximation for large , we can write

for any

Therefore (12)



VENKITASUBRAMANIAM AND TONG: GAME-THEORETIC APPROACH TO ANONYMOUS NETWORKING 905

Using Stirling’s approximation on , for large

Since , we can write

(13)

Combining (12) and (13), the result is proven. .
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