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Abstract— The problem of hiding data routes in a wireless
network from eavesdroppers is considered. Using Shannon’s
equivocation as a measure of anonymity of routes, scheduling
and relaying protocols are designed to guarantee anonymity. A
duality of this problem to information-theoretic rate-distortion
is used to maximize network throughput for any specified level
of anonymity. The achievability of this throughput, however,
requires each node to have knowledge of all routes in a network
session. When each node only has access to local information
about routes, a decentralized strategy is proposed, and the
achievable throughput is characterized using a constrained
distortion-rate optimization.

Index Terms— Network Security, Traffic Analysis, Secrecy,
Rate-Distortion.

I. I NTRODUCTION

Passive monitoring of node transmissions in a network
can reveal significant information about network operation
even when packets are encrypted. Although contents of
communication are encrypted, statistical analysis of packet
transmission epochs can reveal critical networking informa-
tion such as paths of data flow and source-destination pairs.
Prevention of transmission time based analysis necessitates
a redesign of network protocols so that the communication
routes appear obfuscated to eavesdroppers at minimum cost
of network performance. In this work, we present a theo-
retical approach to anonymous networking in the context of
multihop wireless networks. In particular we are interested in
the tradeoff between “anonymity” of routes and achievable
network performance.

Prevention of traffic analysis is a classical problem, and
a dominant portion of prior research has centered around
Internet applications [1], [2], [3]. In that regard, an impor-
tant countermeasure was provided by Chaum, through the
concept of the traffic mix [4]. A mix is a special relay node
or router that batches and reorders packets from multiple
sources, thereby decorrelating the timing of incoming and
outgoing packets to the mix. In a multihop network, each
source picks an arbitrary sequence of mixes to relay its
packets and performs layered encryption. Each mix node
has access to one layer, and is only aware of its immediate
neighbours in the route. This ensures that active compro-
mising of one or two mix nodes is not sufficient to reveal
source-destination information of an observed packet.
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In wireless networks, the key challenge in countering
traffic analysis is adhering to the network constraints such
as medium access, latency and stability. Although mixing
was well suited to design anonymous remailers and proxy
systems for the Internet, the batching strategies were found
to be vulnerable to traffic analysis [5] under delay or buffer
constraints. An alternative approach, designed primarilyfor
multihop wireless networks is that of deterministic schedul-
ing [6]. In [6], the authors propose a fixed periodic schedule
for the entire network, wherein nodes adhered to the schedule
by transmitting dummy packets whenever they did not have
actual data. While the fixed scheduling idea can be adapted
to handle delay constraints, the centralized synchronous
implementation renders it impractical for ad hoc wireless
networks.

In [7], we proposed asynchronous scheduling and relaying
strategies for wireless relay nodes such that the incoming
and outgoing streams at the node are uncorrelated, but the
relayed packets satisfied tight delay constraints. In particular,
we characterized the set of achievable rates for a multiaccess
relay when incoming and outgoing schedules are independent
Poisson point processes. Independent scheduling ensures that
the relay operation is “hidden” from an eavesdropper at the
expense of dropped packets and lower relay rates. While a
direct extension of the independent scheduling would guar-
antee perfect secrecy at all times, such a strategy can prove
detrimental to throughput, particularly in large networks. In
this work, we propose a randomized scheduling strategy
where, depending on the active routes, a subset of relay nodes
are chosen to perform independent scheduling (as in [7] so
that performance loss is minimized for any specified level of
anonymity.

A key component in our approach is the analytical model
for anonymity of routes. In the context of mix networks, the
size or entropy of the anonymity set (set of possible source-
destination pairs) of an observed packet has been used to
quantify the anonymity of that packet. The use of anonymity
sets suffers from two weaknesses. First, hiding source-
destination alone may not be sufficient, the direction of
data flow could also reveal critical information. Second, the
measure of anonymity needs to cater to streams of packets
rather than a single packet [5]. The model we propose is
based on the information theoretic notion of equivocation,
proposed by Shannon [8]. While previous applications of
equivocation measured the secrecy of transmitted data on
point-to-point channels [9], [10], we use equivocation to



measure the secrecy of routes in a network. Based on
the defined metric, we are interested in characterizing the
achievable network performance as a function of anonymity.
A key insight in characterizing this tradeoff is the duality
between anonymous networking and rate distortion, which
extends beyond our scheduling strategy, and can be explained
using a general intuition.

The objective of the rate-distortion problem is to generate
fewest number of codewords for a set of source sequences,
such that the corresponding reconstruction sequences satisfy
a specified distortion constraint. The idea is to divide the
set of source sequences into fewest number of bins such
that the distortion between each sequence in a bin and the
reconstruction sequence is less than the specified constraint.
Alternatively, if the code rate is fixed, then the number
of bins is fixed. Then, the sequences are placed optimally
within each bin such that the corresponding reconstruction
sequences minimize the expected distortion.

In the anonymous networking setup, let the set of active
routes at any given time be referred to as a network session.
The key idea is to divide the set of all possible network
sessions into bins such that, for each bin, there exists a
scheduling strategy that would make the sessions within
that bin indistinguishable to an eavesdropper. The level of
anonymity required determines the number of bins, and the
optimal scheduling strategy plays the role of the reconstruc-
tion sequence by minimizing the performance loss across
sessions within the bin.

In the remainder of this paper, we provide the formal
setup of the problem, describe our randomized scheduling
strategy and characterize the throughput-anonymity tradeoff
using the duality to rate distortion. Further, we also propose a
decentralized solution to the anonymous networking problem
and characterize the corresponding throughput. The paper is
organized as follows. In Section II, we describe the system
model and define the analytical measure of anonymity. In
Section III, we describe our randomized scheduling strategy
to provide anonymity to routes. In Section IV, the dual-
ity to rate-distortion is used to characterize the achievable
network performance. The decentralized approach and the
corresponding performance characterization are presented in
Section V.

II. PROBLEM SETUP

Let the network be represented by a directed graphG =
(V, E), whereV is the set of nodes in the network andE ⊂
V ×V is the set of directed links. If(A,B) is an element of
E , then nodeB can receive transmissions from nodeA. A
sequence of nodesP = (V1, · · · , Vn) ∈ V∗ is a valid path
in G if (Vi, Vi+1) ∈ E , ∀i < n. The set of all possible paths
in G is denoted byP(G).

We assume that during any network observation by the
eavesdropper, a subset of nodes communicate using a fixed
set of paths. We call this set of pathsS ∈ 2P(G) a network
session. The set of all possible sessions is denoted byS.

Consider the exampleG1 shown in Figure 1. LetS1, S2 be
the sources andD1,D2 the destinations. Further, letS1, S2
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Fig. 1: Two Node Switching Network:G1 = (V, E),
V = {S1, S2, B,D1,D2},
E = {(S1, B), (S2, B), (B,D1), (B,D2)}.

always communicate with distinct destinations. Here,

P(G1) = {(S1, B), (S1, B,D1), (S1, B,D2), (S2, B),

(S2, B,D1), (S2, B,D2), (B,D1), (B,D2) } .

However, since destinations are always distinct,

S = { {(S1, B,D1), (S2, B,D2)}

{(S1, B,D2), (S2, B,D1)}}.

The information that we wish to hide from the eavesdropper
is the network sessionS. We modelS as an i.i.d. random
variableS ∼ p(S), where the priorp(S) is obtained using
the topology and applications of the particular network.
We assume that the prior probabilities are available to
the eavesdropper as well. For the purpose of obtaining an
analytical characterization of throughput-anonymity tradeoff,
we have used a mathematical abstraction that might deviate
from the real network operation. We do believe that the
insights obtained in this restricted setting will provide design
guidelines for real applications.

Transmission SchedulesThe eavesdroppers’ observation
comprise of the packet transmission epochs in a session.
Since it is not possible to determine the location of the
eavesdroppers, we assume that all transmissions are being
monitored. Depending on the physical layer model, it may
be possible to infer partial information about sender-receiver
nodes of packets by merely detecting a transmission. The
physical layer we consider is a transmitter directed signaling
model.

Transmitter Directed Signaling:All packets transmitted by
a particular node are modulated using the same spreading
sequence, and each transmitting node is associated with
a unique orthogonal spreading sequence. Under this
transmission scheme, an eavesdropper would be able to
“tune” his detector to a particular spreading sequence
and detect the transmission times of packets sent by the
corresponding node. Although he knows the transmitting
node of each packet, we assume that headers are encrypted,
so he would not know the intended recipient of any packet.

Observable SchedulingLet YA represent the transmission
epochs of nodeA. The scheduleYA is given by a point
process

YA = {YA(1), YA(2), · · · },

where YA(i) represents the transmission epoch of theith

packet sent by nodeA. Since we cannot determine which



nodes are being monitored, the eavesdroppers’ complete
observation is assumed to beY = {YA : A ∈ V}.

We model Y as a sequence of random variables with
conditional distributionq(Y|S). The idea is to designq(Y|S)
such that eavesdroppers obtain minimum information about
the sessionS by observingY.

A. Anonymity Measure

We define anonymity using the notion of equivocation [8],
which measures the uncertainty of the information we wish to
hide (S) given the complete observation of the eavesdropper
(Y).

Definition 1: A distribution q(Y|S) is defined to have
anonymityα if

H(S|Y)

H(S)
≥ α.

When α = 1, the distributionq(Y|S) is defined to have
perfect anonymity. It is easy to see that the scheduleY does
not provide any information about the routes. In other words,
H(S|Y) = H(S). For a generalα, the physical interpretation
comes from Fano’s Inequality [11]: If the error probability
of the eavesdropper in decoding the sessionS is Pe, then,

Pe ≥
H(S|Y) − 1

log |S|
≥

αH(S) − 1

log |S|
.

Therefore, ifS is a large set with uniform prior, thenPe

is lower bounded byα.

B. Network Constraints and Throughput

Wireless networks, due to shared bandwidth and power
limitations, pose constraints on transmission rates and la-
tency of packets. The challenge in designing the schedule
distribution q(Y|S) with provable anonymity is to sacrifice
minimum performance under these constraints. In this work,
we measure performance using network throughput subject
to medium access and delay constraints, which are described
as follows.

Medium Access ConstraintsWe consider long streams of
packets, and measure the packet transmission rate of nodeA
as

TA = lim
n→∞

n

YA(n)
. (1)

Owing to transmitter directed signaling, transmission rateTA

of each nodeA ∈ V is bounded independently by a constant
CA, which depends on characteristics of the medium and
transmission capability of nodeA. If TA ≤ CA, successful
reception is guaranteed at nodeA. We assume that the
network operates in full duplex mode, where every node can
transmit and receive packets simultaneously as long as the
transmission rates are within the specified bounds. Therefore,
Y is a valid network scheduleif and only if TA ≤ CA for
every nodeA.

Latency Constraint: We consider delay sensitive traffic,
where the packet delay at an intermediate relayA is bounded
by ∆A. Each relay is allowed to reencrypt packets, reorder

arrived packets and transmit dummy packets. However, each
received data packet at a nodeA is required to be forwarded
within ∆A time units of arrival, or otherwise, dropped.
Such a delay constraint is of particular importance to
time-sensitive network applications such as target tracking
in sensor networks or streaming media on peer-to-peer
networks. In general, a strict delay constraint would also
ensure stability, albeit at the cost of dropped packets.

Relaying Strategy The schedules inY only denote when
packets are transmitted by each node, and do not specify the
routes or indicate which packets actually travel from source
to destination on each route of a session. For every schedule,
we therefore specify a relaying strategy, which is expressed
as a set of subsequences from the scheduleY. This set of
subsequencesZ contains the transmission epochs of packets
that are relayed from sources to destinations within the delay
constraints, and is a function of the routes in the session.

Definition 2: Let a sessionS = (P1, · · · , P|S|), where
eachPi = (A(i, 1), · · · , A(i,m(i))) is a valid path of length
m(i), andA(i, j) ∈ V represents thejth node in pathPi. A
set of subsequencesZ = {Zi,j : i ≤ |S|, 1 ≤ j < m(i)} of
Y is a valid relaying strategyfor S if:

1) ∀i ≤ |S|, 1 ≤ j < m(i), Zi,j ⊂ YA(i,j).
2) For everyi ≤ |S|, {Zi,j : j < m(i)} satisfy

0 ≤ Zi,j(n) − Zi,j+1(n) ≤ ∆A(i,j), ∀n. (2)

3) If (A(i, j), A(i, j +1)) = (A(l,m), A(l,m+1)), then
Zi,j ∩ Zl,m = φ.

In the above definition, condition 2 guarantees that the
relayed packets satisfy the delay constraint at every interme-
diate relay. Condition 3 ensures that, if any pair of nodes is
common to multiple routes, the subsequences picked from
the transmission schedules are mutually exclusive.

C. Performance Metric

For a given level of anonymityα, we are interested in
designingY,Z for every sessionS, such that the network
throughput is maximized. We define network throughput as
the mean sum-rate of packets relayed from the sources to
the destinations in a session.

It is possible that the set of subsequencesZ are a strict
subset of the transmission scheduleY, or in other words,
there are epochs inY that do not represent any relayed
packets. Those transmission epochs would correspond to
dropped packets or dummy packet transmissions. Since all
epochs inY do not represent relayed packets, the network
performance is measured by the rates of relayed packets in
Z. The rates of relayed packets in sessionS are denoted by
a vectorλ(S,Z) = (λ1, · · · , λ|S|), where

λi = lim
n→∞

n

Zi,1(n)
, ∀i.

Note that since all the subsequences on any particular route
have same length, it is sufficient to useZi,1 to compute the
rate.



Definition 3: R is defined to be anachievable throughput
with anonymityα if ∃q(Y|S) with anonymityα such that

1) For every sessionS = {P1, · · · , P|S|}, every realiza-
tion of Y given S is a valid network schedule.

2) For every realization of(S,Y), there exists a valid
relaying strategyZ, such that

E





|S|
∑

i=1

λi(Z,S)



 ≥ R, (3)

where the expectation is over the joint pdf ofY and
S.

Note that design of probability distributed functionq(Y|S)
has an inherent assumption of centralized scheduling where
knowledge of the entire session is used to generate the
transmission schedulesY. In Section V, we propose a
decentralized scheduling strategy where each node indepen-
dently decides its transmission schedule based on the local
information available, at the cost of lower throughput.

III. A NONYMOUS SCHEDULING STRATEGY

Our approach to designing schedules and relay strategies
derives its motivation from Mix networks, but differs in
several key aspects related to wireless networking. First,
owing to encrypted packet headers, if incoming and out-
going schedules at a particular node are uncorrelated, an
eavesdropper would not be able to detect the flow of traffic
through that node. Therefore, it is not always required to
Mix multiple flows to hide the relaying operation. Second,
depending on the level of anonymity, it may not be necessary
to hide every link of communication. It is possible to reveal
certain portions of the routes to the eavesdropper without
giving information about the sessionS.

VisibleCovert

CorrelatedUncorrelated

Fig. 2: Visible and Covert Relaying

Specifically, in a sessionS = (P1, · · · , P|S|), we let each
relay node to operate in one of two transmission modes,
covertandvisible, which are defined as follows.

Covert Relays:A relay B is covert, if its outgoing trans-
mission schedule is statistically independent of the trans-
mission schedules of all nodes occurring previously in the
paths that containB. Since nodes employ transmitter directed
scheduling, when a relay is covert, it would be impossible
for an eavesdropper to correlate the outgoing transmission
schedule of the preceding node in the path and the outgoing
schedule of the relay.

Visible Relays:A visible relay B generates its schedule
depending on the arrival times of packets atB. For every
received packet, the relay schedules an epoch after a pro-
cessing delay (negligible compared to∆). It is evident that

the schedules of streams transmitted by a preceding node in
the path and the relay would be highly correlated, and the
eavesdropper would detect the relay operation∗. Note that
some of the arriving packets to the relay could be dummy
packets, which are also relayed by a visible relay.

By appropriately selecting which relays should be covert
in a session, we guarantee the required level of anonymity
to the routes. A trivial strategy would be to let all nodes
act as covert relays in a session. However, each covert relay
incurs a loss in relay rates, which would accrue at every
covert relay thereby reducing network performance [12] It
is, therefore, necessary to pick the covert relays optimally
so that anonymity is guaranteed with minimum loss in
throughput. In the following exposition, we first present the
achievable rate region for a covert relay (from [7]) and then
discuss the randomized strategy to choose covert relays in a
session.

A. Covert Relaying

In [7], we had considered a general multiaccess relay (see
Figure 3), and provided covert relaying strategies to satisfy
a strict delay constraint. We characterized achievable rate
regions analytically, when the sources and the relay generate
independent Poisson transmission schedules.

S1

Sm

D1

Dm

B

Fig. 3: Two Hop Network: SourceSi transmits packets to
Di throughB

Specifically, consider a multiaccess relay as shown in
Figure 3, where source nodesS1, · · · , Sm transmit to des-
tinations D1, · · · ,Dm respectively through relayB. Let
CA denote the transmission rate constraint on nodeA.
If the transmission rates of packets from the sources are
TS1

, · · · , TSm
respectively, then let the achievable relay rates

be denoted byλ(S1, B), · · · , λ(Sm, B). We restate one of
the results in [7], albeit worded a little differently:

Theorem 1:(from [7]) If λ(Si, B) = TSi
(1− ε(Si, B)),

then
1) {λ(Si, B)} is achievable if

ε(Si, B) ≥ fe(
∑

j

CSj
, CB)∀i. (4)

where

fe(x, y) =







CD1
−CB

CD1
e
−∆(CB−CD1

)
−CB

CB 6= CD

C2
B∆

1+CB∆ CB = CD1

,

∗By tuning the detector to the spreading sequences of successive nodes in
a path, the eavesdropper can detect the correlation in schedules to identify
the path of traffic flow through the relay.



2) {λ(Si, B)} is not achievable if
∑

i

ε(Si, B) ≤ fe(
∑

i

CSi
, CB), εi ≤ fe(CSi

, CB).

(5)
The results in [7] have been generalized to an average

delay constraint in [13], and similar results have been derived
for a receiver directed signaling model in [14]. Although the
independent Poisson scheduling results in dropped packets,
it is possible to achieve the stated relay rates reliably by
performing forward error correction on a sufficiently long
stream of packets [7].

B. Covert Relay Selection

To optimize the choice of covert relays in a session, we
assume that the transmission times of packets by source
nodes in a session are generated using independent Pois-
son processes. Accordingly, the covert relays also generate
independent Poisson schedules. Given sessionS and set of
covert relaysB, sequencesY,Z can be obtained using the
relaying algorithms designed in [7] and the achievable rates
at a single covert relay would be given by Theorem 1.

The set of covert relaysB is modeled as a random
variable with a conditional probability mass function
{q(B|S) : B ∈ 2V ,S ∈ S}. We model the choice of relays
as a random quantity because randomization increases
secrecy [10]. The goal is to optimize the conditional p.m.f
{q(B|S)} so that network throughput is maximized for a
given level of anonymityα.

Eavesdropper ObservationWe assume that when a relay is
visible, the eavesdropper perfectly correlates the schedules
transmitted by a preceding node in a path and that of the
relay. As a result, depending on the set of visible relays,
the eavesdropper makes a partial detection on the paths of
a session. We denote this partial session as a set of paths
Ŝ ∈ 2P(G), which is a function of the actual sessionS and
the set of covert relaysB.

We define functiont : 2P(G) ×V → 2P(G) to characterize
the eavesdropper’s observation when at most one relay is
covert. For a set of pathsP, t(P, B) contains the observed
paths when only nodeB is covert. If B = φ, then t(P, φ)
is obtained by removing the destination nodes from every
path in P. This is because, even if all relays are visible,
receiver directed signaling ensures that it is not possibleto
detect the final destination in any route. IfB 6= φ, then a
pathP ∈ P(G) belongs tot(P, B) if and only if it satisfies
one of the following conditions:
1. ∃P ′ = (A1, · · · , Ak, B,Ak+1, · · · , An) ∈ P, such that
P = (A1, · · · , Ak) or P = (B,Ak+1, · · · , An).
2. P ∈ P andB /∈ P .

Condition 1 states that, when a path inP contains a
covert relay, the eavesdropper would observe two different
paths, one terminating beforeB and the other originating
from nodeB. Condition 2 states that a path that does not
contain a covert relay is fully observed. When a subset
B = (B1, · · · , Bm) ⊂ V of relays are covert, then̂S can be
obtained by repeated application oft():

Ŝ = t(· · · (t(t(S, φ), B1) · · · ), Bm)
4
= T(S,B). (6)

For the purpose of optimizing the choice of relays, it is
sufficient to use the derived eavesdropper observationŜ, as
is evident from the following lemma.

Lemma 1: If Ŝ = T(S,B), then

1) Ŝ is a sufficient statistic for detectingS usingY.
2) GivenS, Ŝ is an invertible function ofB.
The above lemma shows that, fo an eavesdropper, the in-

formation contained inY aboutS is completely encapsulated
in the observed session vectorŜ. Further, the pairs(S,S) and
(S, Ŝ) are isomorphic, or in other words, there is a one-one
correspondence between the two pairs of variable. Therefore,
choosing the covert relaysB is equivalent to designing the
eavesdropper observation̂S.

C. Throughput Function

In order to obtain the optimalq(B|S), we need to char-
acterize the throughput under covert relaying. The relaying
strategies in [7] were designed to maximize achievable rates
at a single covert relay. Extending those results to multihop
routes, we can characterize the loss in sum-rate for each
sessionS, when a subset of relaysB are covert.

When anonymityα = 0, the maximum sum-rate in a
sessionS is achieved when all relays are visible. This
maximum sum-rate can be characterized using the max-flow
in S that satisfies medium access constraints. Letλv(S) =
(λv

1, · · · , λv
|S|) represent the vector of achievable relay rates

for the paths in sessionS with no covert relays, andΛv(S)
be the maximum sum-rate. IfS = (P1, · · · , P|S|), then

Λv(S) = max(λv
1 + · · · + λv

|S|), (7)
∑

i:B∈Pi

λv
i ≤ CB , ∀B ∈ V. (8)

The maximum network throughput when anonymityα = 0
is given by the expected sum-rate (expectation overp(S))

R(α = 0) = E(Λv(S)).

When the relays in a subsetB are covert, the loss in
sum-rate depends on the delay requirement at each covert
relay in B. Let λc(S,B) = (λc

1, · · · , λc
|S|) represent the

achievable relay rates from sources to destinations for a
sessionS = (P1, · · · , P|S|), when nodes inB are covert,

and letΛc(S,B)
4
=

∑|S|
i=1 λc

i be the achievable sum-rate. If
A(i, j) represents thejth node in pathPi, then

λc
i = λ0

i

∏

j:A(i,j)∈B∩Pi

(1 − εi(A(i, j − 1), A(i, j))) .(9)

whereεi(A,B) represents the fraction of packets transmitted
by nodeA on pathPi, that are dropped by covert relayB.
Note that Theorem 1 provides the closed form expression for
εi(A,B), if B is the first covert relay in pathPi. Since the
departure epochs of data packets from a covert relay does not
constitute a Poisson process, the expression cannot be applied
to subsequent covert relays. The analytical characterization



of multiple covert relays is generally cumbersome [13], but
can be obtained numerically.

IV. PERFORMANCECHARACTERIZATION

A. Throughput-Anonymity Tradeoff

In order to maximize network performance with
anonymity α, we need to optimize{q(B|S)} for every
sessionS using the derived eavesdropper observation and
throughput characterization. For a givenα, the optimal
distribution q(B|S) can be obtained using a brute force
search over a large dimensional probability simplex. Such
a procedure would be computationally intensive, and im-
practical for large networks. The following result, however,
proves the duality of this problem to information theoretic
rate-distortion, which can then be used to obtain the optimal
strategy efficiently and characterize the optimal throughput
R(α) analytically.

Theorem 2:Let d : 2P × 2P → R s.t

d(S, Ŝ) =

{

Λv(S) − Λc(S,B) ∃B s.t. Ŝ = T (S,B)
∞ o.w.

(10)
Then, a throughputR is achievable with anonymityα if

R(0) − R(α) ≥ D (H(S)(1 − α)) ,

whereD(r) is theDistortion-Ratefunction defined as

D(r) = min
q(Ŝ|S):I(S;Ŝ)≤r

E(d(S, Ŝ)). (11)

Proof: Refer to Appendix.

The above theorem characterizesR(α) using the single
letter representation of a rate-distortion function. The loss
function d(S, Ŝ) in (10) represents the throughput reduction
due to covert relaying. Although the loss function parameters
do not explicitly include the set of covert relaysB, from
Lemma 1 we know that givenS, Ŝ, the set of covert relaysB
is unique. Therefore, the distributionq(B|S) to chose covert
relays is equivalent to the distortion minimizing distribution
in (11). As a result, the Blahut-Arimoto algorithm [15]
provides an efficient iterative technique to obtainq(B|S)
and the achievable network throughputR(α). Note that the
anonymityα is guaranteed assuming that the eavesdropper is
aware of the network topology, the session prior distribution
p(S) and the optimal strategyq(B|S) of choosing covert
relays.

The equivalence between anonymous networking and rate
distortion is not tied to our strategy of choosing covert
relays, as explained in Section I. In our model, the level
of anonymity α directly corresponds to the rate of com-
pression and the performance loss function plays the role
of distortion. Therefore, obtaining the optimal rate-distortion
function is equivalent to obtaining the throughput anonymity
relation. We believe that the consequences of this duality
extend beyond the characterization of the tradeoff between
anonymity and throughput. Rate distortion is a field that
has been studied for many decades [11], and the numerous
models and techniques developed therein, could serve to
design strategies for anonymous networking.

Note that in order to achieve the throughput of Theo-
rem 2, it is necessary that every relay be aware of the
entire sessionS and use an identical random seed. From
a practical perspective, this could be achieved if nodes
exchange local messages with their neighbours such that they
reach a consensus about the session. Since total number of
sessions is finite, perfect convergence can be reached in finite
time, assuming no transmission errors. However, in network
applications where message exchanges across nodes may not
be possible, each node would only have partial information
about the session. This is true of Mix networks where layered
encryption ensures that each Mix only has knowledge of
the neighbouring nodes in the routes. For such situations, a
decentralized approach is presented in the following section.

V. DECENTRALIZED APPROACH

Let the information available to a node in any session be
represented by functionl : V × S 7→ 2V×V , where l(A,S)
represents the localized information of nodeA in sessionS.
If S = (P1, · · · , P|S|) andA(i, j) represent theith node of
pathPj in S, then,

l(B,S) = {(A(i, j − 1), A(i, j + 1)) : A(i, j) = B}.

In other words,l(B,S) is the set of node pairs(A(i, j −
1), A(i, j+1)) such that nodeB relays packets fromA(i, j−
1) to A(i, j + 1) on routePi.

Since there are no message exchanges across nodes with
regard to the session information, we require that each node
makes a decision to be covert based on the local information
function only. Further, we do not assume any common
randomness available to the nodes, and hence, the decisions
of multiple nodes are conditionally independent (conditioned
on the session). Accordingly, we define a covert probability
function

qc : V × 2V×V 7→ [0, 1],

where qc(B, l(A,S)) is the probability that nodeB is
covert in sessionS. Owing to conditional independence, the
probability that nodes in a subsetB are covert in sessionS
is given by:

q(B|S) =
∏

B∈B

qc(B, l(B,S))
∏

B /∈B

(1 − qc(B, l(B,S))). (12)

Let Q∗ represent the set of all conditional probability mass
functions {q(B|S),B ∈ V,S ∈ S}, such that there exists
covert probability functionqc(·, ·) which satisfies (12) for
every pairB,S. From Lemma 1, we know that the pairs of
variables(S,B) and(S, Ŝ) have a one-one correspondence.
Therefore, Q∗ corresponds to an equivalent setQ∗∗ of
conditional probabilities{q(Ŝ|S)}.

Theorem 3:A throughputR(α) that satisfies

R(0) − R(α) ≥ D′ (H(S)(1 − α)) ,

is achievable with a decentralized strategy where

D′(r) = min
q(Ŝ|S)∈Q∗∗:I(S;Ŝ)≤r

E(d(S, Ŝ)). (13)



Proof: Since the minimizing distributionq(Ŝ|S) is an
element ofQ∗∗, it corresponds to a conditional distribution
q(B|S) that is expressible in the form (12), which in
turn provides the decentralized strategy through the covert
probability function qc(). The achievability ofR(α) then
follows from the proof of Theorem 1.2

Note that the minimization in (13) is over a subset of the
probability simplex, and could therefore result in a lower
throughput than that of Theorem 2. Even ifl(B,S) uniquely
identifies the session for allB,S, the throughput may not
reach the optimal value of Theorem 1 owing to lack of
common randomness. This is illustrated in the following
example.

A. Example

S1

S2 S3

D1

D2

D3

M1

M2

Fig. 4: Example Network: Sources:S1, S2, S3

Destinations:D1,D2,D3 Relays:M1,M2. S1, S2

can talk to all3 destinations.S3 can only talk to
destinationsS2, S3.

Consider the example of a network as shown in Fig-
ure 4. SourcesS1, S2 can talk to all destinations, namely
D1,D2,D3 while sourceS3 can only talk to destinations
D2,D3. During any given session, each source picks a
distinct destination. Therefore, there are4 possible sessions
in S

S =

[{(S1,D1), (S2,M1,M2,D2), (S3,D3)}
{(S1,D1), (S1,M1,M2,D3), (S3,M2,D2)}
{(S1,M1,M2,D2), (S2,D1), (S3,D3)}

{(S1,M1,M2,D3), (S2,D1), (S3,M2,D2)}]

.

For this example, Figure 5 plots the throughput versus
anonymity, when the sessions are equally likely. The per-
formance of the centralized approach is a convex function
of anonymity, which is a result of the average nature of
the metrics, namely equivocation and throughput. As can be
seen, the decentralized strategy performs strictly worse than
the centralized one. The losses due to local information and
common randomness can be clearly observed in the Figure.
Even when the relays are provided complete information
about the session, the performance of the decentralized
strategy is lower than the centralized throughput, particularly
for high anonymity. This is because a low value of anonymity
can be satisfied by making only one of the relays covert, in
which case the lack of common randomness does not affect
the performance.
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Fig. 5: Throughput vs Anonymity for example network
with equally likely sessions. Partial decentralized
strategy represents situation when relays have
complete information on sessions but no common
randomness.

VI. CONCLUSIONS ANDFUTURE DIRECTIONS

One of our key contributions in this work is the theoretical
model for anonymity against traffic analysis. To the best of
our knowledge, this is the first analytical metric designed to
measure the secrecy ofroutes in an eavesdropped wireless
network. Based on the metric, we designed scheduling and
relaying strategies to maximize network performance with a
guaranteed level of anonymity. Although we consider specific
constraints on delay and bandwidth, the ideas of covert relay-
ing and the randomized selection are quite general, and apply
to arbitrary multihop wireless networks. The throughput-
anonymity tradeoff we obtain reiterates the known paradigm
of inverse relationship between communication rate and
secrecy in covert channels.

In this work, we used throughput as an indicator of
network performance, to optimize the selection strategy.
However, the framework we establish extends beyond maxi-
mizing throughput. In fact, the loss function we define in (10)
can be redefined to represent the loss in any convex function
of the achievable relay rates. In our model, we fixed the
packet delay and analyzed the loss in relay rates at a covert
relay. Alternatively, we could fix the rates of transmission
and analyze the increase in latency at every covert relay due
to independent scheduling. By optimally designing the loss
function to reflect the increase in overall network latency,we
would be able to derive the relationship between latency and
level of anonymity.

Our current model of independent sessions of observa-
tion may not apply to the scenario where an eavesdropper
monitors the network for long periods of time. In that case,
we would need a stochastic model to account for session
changes, depending on when nodes start or stop communi-
cation. In this regard, if we adopt a Markovian model for
the sessions, we believe that techniques in causal source
coding [16] would apply to our problem as an extension
of the proven duality.
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APPENDIX

A. Proof of Lemma 1

1. Let Ŷ be the schedules generated assumingŜ were a
session and none of the nodes were covert. The transmission
rates of nodes in̂Y are assumed identical toY. For the nodes
that are the sources inS, the schedules are independent
in Y and Ŷ. SessionŜ has additional sources due to the
broken paths which also generate independent transmission
schedules. The set of these additional sources is identical
to the set of covert relays inS. Therefore, the schedules
are independent inY as well. Since the remaining nodes
relay all received packets within negligible processing delay,
q(Y|S) = q(Ŷ|S). Therefore, using the data processing
inequality (S − Ŝ − Ŷ)

H(S|Y) = H(S|Ŷ) ≤ H(S|Ŝ).

2. Suppose∃B1 6= B2 such thatŜ(S,B1) = Ŝ(S,B2).
Then, we can writeB1 = (B,B′

1),B2 = (B,B′
2)

where B
′
1 = (B11, · · · , B1m), B

′
2 = (B21, · · · , B2n) and

B
′
1

⋂

B
′
2 = φ. We know that

Ŝ(S,B1) = t(· · · t(T(S,B), B11), · · · ), B1m)

= t(· · · t(T(S,B), B21), · · · ), B2n) = Ŝ(S,B2).

Suppose none of the paths inT(S,B) containB
′
1

⋃

B
′
2,

then it does not matter if those relays are covert or
not, in which case the subset of covert relays would be
B. If ∃P ∈ T(S,B) that contains (w.l.o.g)B11, then
Ŝ(S,B1) would contain a path that ends inB11, whereas
Ŝ(S,B2) cannot contain such a path. Therefore, we have a
contradiction.2

B. Proof of Theorem 2

Consider the optimal solutionq∗(Ŝ|S) of the distortion
rate problem,

D = min
q(Ŝ|S):I(S;Ŝ)≤(1−α)H(S)

E(d(S, Ŝ)).

From the definition ofd(S, Ŝ), it is easy to see that
if @B s.t. Ŝ 6= T(S,B), then q∗(Ŝ|S) = 0. Given
S, Ŝ, we know from Lemma 1 that the set of covert
relays B are uniquely determined. In other words, we
can equivalently writeq∗(Ŝ|S) = q∗(B|S). Therefore,q∗

specifies a valid selection strategy. SinceH(S) is fixed
apriori, I(S; Ŝ) ≤ (1 − α)H(S) ensures that an anonymity
α is guaranteed. Further, for everyB, the functiond(S, Ŝ)
evaluates the difference in achievable sum-ratesΛ0 and
Λc(S, B). Taking expectation overq∗(B|S), it is easy to
see that the distortionD is achievable with anonymityα. 2


