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Abstract

The problem of security against timing based traffic
analysis in multihop networks is considered in this work. In
particular, the relationship between the level of anonymity
provided and the quality of service, as measured by network
latency, is analyzed theoretically. Using an information
theoretic measure of anonymity of routes in eavesdropped
networks is considered, and packet scheduling strategies
are designed to guarantee any desired level of anonymity.
In particular, for individual relays, scheduling strategies
based on mixing are designed so that the incoming and out-
going transmission epochs do not reveal any information.
The proposed strategies utilize a limited fraction of dummy
transmissions, and a significant reduction in packet latency
at individual relays is demonstrated analytically for Poisson
distributed arrivals. To minimize overall network latency, a
randomized selection strategy is considered to choose the
set of relays that use the designed scheduling strategies.
The random selection is optimized for the desired level of
anonymity using a well known distortion rate optimization
in information theory. The tradeoff between overall network
latency and anonymity in the network is characterized for
centralized and decentralized scheduling strategies.

†This work is supported in part by the National Science Foundation
under awards CCF-0635070 and CCF-0728872, and the U. S. Army Re-
search Laboratory under the Collaborative Technology Alliance Program
DAAD19-01-2-0011.

1 Introduction

Anonymous networking refers to communication on a
network without revealing the source-destination pairs or
the paths of traffic flow. While contents of a message can
be protected using encryption, hiding the act of communi-
cation requires a redesign of underlying network protocols.
Changes in communication protocols can affect the quality
of service in a network and it is necessary to minimize the
loss in network performance while providing anonymity. In
particular, protection against information retrieval from ar-
rival and departure times of packets requires modification to
the transmission schedules of nodes, which in turn increases
network latency. In this paper, we consider the design of
node transmission schedules that provide anonymity to net-
work routes with minimum increase in network latency. In
particular, we are interested in characterizing the tradeoff
between the level of anonymity that can be provided and
the average latency incurred in a multihop network.

Anonymous communication systems have typically been
designed using Chaum Mixes [1]. A Mix is a node or server
that collects packets from multiple users and outputs them
in a manner that makes it infeasible to correlate an outgoing
packet with a unique incoming packet. Specifically, a Mix
performs re-encryption and packet padding to obfuscate the
contents of each packet. Further, the Mix also changes the
timing pattern of arrived packets by reordering and batching
packets from multiple users together. According to the orig-
inal batching strategy as proposed by Chaum, the Mix waits
until at least one packet arrives from n different users before
transmitting them all together in a batch. As is evident, the
delay incurred by this Mix is potentially unbounded. Al-
though improved batching strategies have been designed,

2008 IEEE Symposium on Security and Privacy

978-0-7695-3168-7 /08 $25.00 © 2008 IEEE
DOI 10.1109/SP.2008.18

18

Authorized licensed use limited to: Cornell University. Downloaded on October 7, 2008 at 15:29 from IEEE Xplore.  Restrictions apply.



notably by maintaining a pool of packets and flushing a
fraction of them periodically [2, 3], the delay incurred due
to the mixing strategies has not been analyzed or optimized.
In fact, many of the known batching strategies were found
to be vulnerable to flow correlation when long streams of
packets were transmitted under strict delay constraints [4].

A common technique used in low latency anonymous
communication is the transmission of dummy packets to
“cover” the actual flow of traffic. Systems that use this ap-
proach such as ISDN Mixes [5] and Web-Mixes [6] require
users to maintain a constant transmission rate of packets ir-
respective of whether they have actual data to communicate
or not. This ensures that, to an external eavesdropper, the
observed pattern of traffic is fixed irrespective of the routes
of communication. A similar approach was also consid-
ered for a wireless multihop network in [7], where bounds
were derived on the efficiency of using a fixed transmis-
sion schedule. Although fixed scheduling ensures complete
anonymity, the high rate of dummy transmissions required
makes it energy inefficient and unattractive for large net-
works. In the context of bandwidth constrained multihop
networks, the following questions are yet to be addressed,
particularly from a theoretical perspective. If the fraction
of dummy transmissions were to be fixed, what is the min-
imum delay incurred at a Mix? If overall network latency
were to be bounded, what is the maximum anonymity that
can be achieved? More generally, what is the relationship
between the achievable anonymity and network latency?

In this work, we address these issues using a theoreti-
cal foundational approach with emphasis on wireless mul-
tihop networks. The key to answering these questions is to
quantify the anonymity achievable in a multihop network.
Metrics of anonymity that have been proposed [8, 9] in the
context of Mix networks are typically based on anonymity
sets of individual packets. The anonymity set refers to the
collection of all possible source-destination pairs of an ob-
served packet. While these metrics quantify the anonymity
provided by Mixes to individual packets, they do not ap-
ply to streams of packets and cannot be used to measure the
overall anonymity of routes in the network. The approach
we adopt is motivated by information-theoretic secrecy pi-
oneered by Shannon through the concept of equivocation
[10]. Equivocation has subsequently been used to measure
the secrecy of messages transmitted over channels such as

wiretap channel [11] and broadcast channels [12], where
the goal was to maximize reliable information rate while
providing a given level of secrecy. We use equivocation to
measure the anonymity of the routes in a network, and the
problem we address is to minimize network latency while
guaranteeing a given level of anonymity.

1.1 Main Contributions

The goal of this work is to design scheduling strategies
that minimize overall network latency for any desired level
of anonymity. Assuming a passive omniscient adversary
who has access to packet headers and transmission epochs∗

of all nodes in the network, we measure the anonymity of
the network routes using information-theoretic equivoca-
tion. We then propose scheduling strategies for interme-
diate relays in the routes, and characterize the relationship
between achievable anonymity and the incurred network la-
tency. Our mathematical model and approach is based on
our previous work in [13] where we considered optimizing
the throughput-anonymity tradeoff in wireless networks un-
der specific medium access models.

Our scheduling strategy has two important design com-
ponents. First, for any individual node that relays pack-
ets from multiple users, we propose modifications to ex-
isting batching strategies of Mixes by adding a fixed rate
of dummy transmissions; we demonstrate a significant re-
duction in average packet delay without compromising
anonymity of the relay. In particular, when arrival schedules
are distributed as Poisson processes, we provide an analyti-
cal characterization of the relationship between the incurred
latency at a relay and the rate of dummy transmissions re-
quired. Second, depending on the level of anonymity re-
quired, we choose a random subset of relays to use the de-
signed batching strategies, while the remaining relays do
not modify their schedules and hence do not increase net-
work latency. We optimize the distribution of the random
subset of relays such that the overall network latency is min-
imized while achieving the desired level of anonymity. In
particular, this optimization is shown to be equivalent to a
distortion-rate optimization in information theory.

∗The terms transmission epoch or transmission time refers to the time
point of transmission of a packet.
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1.2 Other Related Work

Subsequent to the original work by Chaum, the con-
cept of Mixing has been successfully utilized in design-
ing anonymous remailers such as Mixmaster and Mixmin-
ion [2, 14], and anonymous low-latency systems such as
Tor [15]. From a system design perspective, Mix based
anonymous systems broadly fall under two categories: mix-
cascades and peer-to-peer systems. In a Mix-cascade, a
dedicated set of servers are employed to mix traffic flows,
and every packet is transmitted through the predefined set of
Mix servers until it reaches the intended destination. Exam-
ples of Mix-cascade systems include JAP [6] and Reliable
[16]. A peer-to-peer system does not have dedicated Mix
servers, and every user independently mixes incoming traf-
fic. The routes are therefore not predetermined at sources.
Freenet [17] and Tarzan [18] are examples of peer-to-peer
anonymizing systems. The approach we adopt is similar to
peer-to-peer systems although we do not consider the opti-
mal design of routes to maximize anonymity. The advan-
tages of one approach versus the other are well summarized
in [19]. Some anonymizing systems that do not use Mixes
include DC-nets [20] and Crowds [21].

2 System Model

We represent the multihop network using a directed
graph G = (V, E), where V is the set of nodes in the
network and E ⊆ V × V is the set of directed links. If
(A,B) ∈ E , then node B can receive transmissions from
node A. A sequence of nodes P = (V1, · · · , Vn) ∈ V∗ is a
valid path in G if (Vi, Vi+1) ∈ E , ∀i < n.

We assume that during any network observation by the
eavesdropper, a subset of nodes communicate using a fixed
set of paths. We call this set of paths S ∈ (V∗)∗ a network
session. We use the notation |S| to denote the number of
paths in session S, and |P | to denote the number of nodes
(including the source and destination) in path P . The in-
formation that is to be hidden from the eavesdropper is the
network session S. Let S denote the set of all possible ses-
sions which is a subset of (V∗)∗. For example. consider
the network G1 shown in Figure 1. Let S1, S2 always be the
sources and D1, D2 the destinations. Further, let S1, S2 al-
ways communicate with distinct destinations. In that case,

the set of all possible sessions is given by

S = { {(S1, B,D1), (S2, B,D2)}

{(S1, B,D2), (S2, B,D1)}}.

We model S as an i.i.d. random variable S ∼ p(S).
During any period of observation by an eavesdropper, she
observes a random session (drawn i.i.d from p(S)) where
the paths do not change. We assume that the eavesdropper
is aware of the prior p(S), which would aid in determining
the session. In the example network G1, if the probability of
one session were much higher than the other, then the un-
certainty of the eavesdropper would be considerably smaller
than if each session were equally likely. This intuition will
be reflected in our definition of anonymity.
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Figure 1: Two Node Switching Network: G1 = (V, E),
V = {S1, S2, B,D1, D2},
E = {(S1, B), (S2, B), (B,D1), (B,D2)}.

In this work, we do not consider the design of routes be-
tween sources and destinations. We assume that the set of
possible sessions are given, and design transmission strate-
gies for nodes so that an eavesdropper cannot determine the
session S. Note that although we assume a fixed set of paths
in each session, this does not discount the possibility of hav-
ing multiple paths between nodes.
Eavesdropper Observation: We consider a global passive
eavesdropper who observes the packet transmission times
of each node during a session. We assume that packet head-
ers are decoded by the eavesdropper, and for each observed
packet, the headers specify the transmitting and receiving
nodes †. On each link (A,B), the eavesdropper observes a
sequence of transmission times:

τA,B = (TA,B(1), TA,B(2), · · · ),

where TA,B(i) is the transmission time of the ith packet
†We assume a system similar to Mix networks where layered encryp-

tion would ensure headers only reveal links and not end-to-end routes
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from node A to node B. Since we assume a global adver-
sary, she has access to all the transmission schedules:

τ = {τA,B : (A,B) ∈ E}.

Let L denote the set of all links observed by the eavesdrop-
per. It is easy to see that L is a deterministic function of the
session S.

Note that L provides a minimum amount of information
about the session, unless all sessions have an identical set of
active links. To make any further inference about the end-
to-end routes in the session, an eavesdropper would need to
correlate transmission schedules in τ across multiple links.
We model τ as a sequence of random variables with con-
ditional distribution q(τ |S). The goal is to design q(τ |S)

such that the eavesdropper obtains minimum information
about the session S by observing τ .

2.1 Anonymity Measure

We define anonymity using equivocation [10], which is
the conditional uncertainty of the information we wish to
hide (S) given the observation of the eavesdropper (τ,L).

Definition 1 A distribution q(τ |S) is defined to have
anonymity α if

H(S|τ,L)

H(S|L)
≥ α,

where H(X|Y ) is the entropy of random variable X given
random variable Y :

H(X|Y ) = −E(log p(X|Y )).

The normalized metric lies between [0, 1]; a value of
α = 0 denotes no anonymity and α = 1 denotes maximum
anonymity. To understand the physical meaning, consider
the maximum value α = 1, which implies that

H(S|τ,L) = H(S|L).

H(S|L) is the uncertainty in the session if the eavesdrop-
per ignored the knowledge of transmission schedules, and
was to guess the session using the set of observed links L

and the prior probability p(S). Therefore, α = 1 implies
that knowledge of the schedule τ does not provide any ad-
ditional information about the routes in the session.

For a general α, the physical interpretation comes from
Fano’s Inequality [22], which shows that the error probabil-
ity is lower bounded by a monotonic function of equivoca-
tion. Specifically, if the error probability of the eavesdrop-
per in identifying the session S is denoted by Pe, then,

Pe ≥
H(S|τ,L) − 1

log |S|
≥

αH(S|L) − 1

log |S|
,

where S is the set of all possible sessions. Since H(S|L)

and log |S| are constants, a higher level of anonymity im-
plies a higher error probability for the eavesdropper.

Conditional entropy has been used previously to mea-
sure anonymity [8, 9] in the context of Mix networks. In
[8, 9], the authors used equivocation to measure the un-
certainty of source-destination pairs of individual packets.
Since the measure did not cater to streams of packets where
inter-packet timing reveals significant information, it can-
not be extended to measure the overall anonymity of the
routes in the network. To the best of our knowledge, ours is
the first definition of anonymity of network routes based on
streams of transmitted packets. The defined metric assumes
an omniscient adversary and also does not take into account
the possibility of active compromising of nodes. In Section
4.1, we discuss possible methods to extend this model to in-
corporate constrained adversaries and compromised nodes.

2.2 Relaying Strategy

The set of transmission schedules τ at most specifies
when packets were transmitted between successive nodes
in the path and do not indicate which packets were relayed
from source to destination. In fact, some of the transmission
times would represent dummy transmissions. Therefore, in
addition to τ , we provide a set of schedules τR that indicate
the transmission times of the relayed data packets. Note that
τR would be a subset of τ and is not available to the eaves-
dropper. τR is indexed using the set of routes in the session
and will be referred to as the relaying strategy.

Consider a session S = {P (1), · · · , P (|S|)}, and where
P (i) = (A(i, 1), A(i, 2), · · · , A(i, |P (i)|)). The relay-
ing strategy is denoted by τR = {τR

i,j} where 1 ≤

i ≤ |S| and for every i, 1 ≤ j < |P (i)|. Each se-
quence τR

i,j = (TR
i,j(1), T

R
i,j(2), · · · ) represents the trans-

mission times of data packets between nodes A(i, j) and
A(i, j + 1) on path P (i). Therefore, for a path P (i), the
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sequence {T R
i,1(n), T R

i,2(n), · · · , T R
i,|P (i)|−1(n)} denote the

times when the nth packet in the stream was transmitted by
the nodes {A(i, 1), · · · , A(i, |P (i)| − 1)} respectively.

Given transmission schedule τ and session S, a relaying
strategy τR is valid iff it satisfies the following conditions:

1. ∀i ≤ |S|, 1 < j ≤ |P (i)|, τR
i,j ⊆ τA(i,j),A(i,j+1).

2. If (A(i, j), A(i, j+1)) = (A(l,m), A(l,m+1)), then
τR
i,j ∩ τR

l,m = φ.

3. For every i ≤ |S|, {τR
i,j : j < |P (i)|} satisfy

TR
i,j+1(n) − T R

i,j(n) ≥ 0. (1)

Condition 2 states that if two paths share a common pair
of nodes, then the relaying strategy for each of the paths
should pick mutually exclusive subsets of τ . In other words,
each element of the transmission schedule represents a sin-
gle transmitted packet‡. Condition 3 is a causality condi-
tion; it ensures that a packet cannot be relayed by a node
prior to its arrival time.

Since we allow relaying nodes to transmit dummy pack-
ets, the set of schedules τR would be a proper subset of
τ . The transmission epochs in τ that are not in τR represent
dummy transmissions. For a given transmission schedule τ ,
and a relaying strategy τR, we characterize the fraction of
dummy packets transmitted by each relay and the average
latency of packets from source to destination as follows.
Dummy transmission rate: If A(i, j) represents the ith

node of path P (j) in session S, then the dummy transmis-
sion rate from node V1 to node V2 during session S is given
by:

dV1V2
=

|τV1,V2
| −

∑

i,j:(A(i,j),A(i,j+1))=(V1,V2)
|τR

ij |

|τV1,V2
|

.

Latency Overhead: If the length of the packet stream on
path P (i) is n packets, then the average latency overhead
on path P (i) is the sum of delays incurred at each relay in
P (i) due to the scheduling strategy, given by:

δ(P (i)) =
1

n

|P (i)|−1
∑

j=2

n
∑

k=1

(TR
ij (k) − T R

i,j−1(k))

=
1

n

n
∑

k=1

(τR
i,|P (i)|−1(k) − τR

i,1(k)). (2)

‡If multiple packets are transmitted together in a batch, then they need
to be represented as distinct elements in τ with an ε.

Note that the latency overhead does not include transmis-
sion delays and only measures the latency incurred due to
the scheduling and relaying strategies. The overall latency
would include transmission delays and is taken into consid-
eration in the definition of the quality of service metric.

2.3 Network Latency

The performance metric we wish to optimize in this work
is the average network latency (average end-to-end delay
per session). If each node were to transmit a high rate
of dummy transmissions, then anonymity can be provided
with minimum increase in network latency. Such a strategy
is however impractical in bandwidth constrained network.
We therefore define our metric as the minimum latency in-
curred subject to a constraint on the maximum allowed frac-
tion of dummy packets.

Definition 2 Let ∆t(P (i)) denote the latency incurred on
path P (i) due to transmission delays. Then, ∆(α, λ) is de-
fined to be an achievable latency with anonymity α and
dummy transmission rate λ if there exists q(τ |S) with
anonymity α such that

1. For every realization of (S, τ), there exists a valid re-
laying strategy τR that satisfies

∀(A,B) ∈ E , dAB ≤ λ, (3)

E





|S|
∑

i=1

δ(P (i)) + ∆t(P (i))



 ≤ ∆, (4)

where the expectation is over the joint pdf of τ and S.

A parameter that we have not considered so far is the
rate of transmission of packets by each node. Since differ-
ent routes could have different rates of transmission, it may
be possible for an eavesdropper to use the rates of transmis-
sion to infer additional information about the session. To
rectify this problem, we fix a minimum rate of transmission
and impose a restriction that the rate on each route be an in-
tegral multiple of the minimum rate. Further, if the rate on a
particular route is k times the minimum rate, we treat them
as k separate routes. Therefore, every route according to
the redefinition would have equal rate. Note that since this
division would be reflected in the definition of the sessions,
the anonymity condition does not need to be modified.
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In the subsequent sections, we design scheduling and re-
laying strategies assuming unit arrival rate on all paths, and
optimize the achievable network latency ∆ for any desired
level of anonymity α and dummy transmission rate λ.

3 Scheduling Strategy

Our approach to designing scheduling algorithms for
multihop networks is motivated by anonymous peer-to-peer
systems [18], where each node, apart from transmitting its
own data packets acts as an intermediate relay that mixes
incoming traffic from other nodes. In the mixing approach,
every intermediate node in a route would use batching
strategies to modify the timing pattern of arriving packets,
thereby adding to the overall network latency. However,
this would not be necessary, and depending on the level of
anonymity required, it will be sufficient for a smaller subset
of nodes to modify transmission schedules using batching
strategies while the remaining nodes relay packets as and
when they arrive. In other words, it is possible to “reveal”
some portions of the routes without violating the anonymity
constraint. This is a key intuition that we exploit in leverag-
ing latency for anonymity.
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Figure 2: Example: Sources Si transmit packets to
destinations Dj through M1,M2

Consider the example in Figure 2, where sources
S1, S2, S3 are equally likely to transmit to destinations
D1, D2, D3. If both the intermediate relays M1,M2 acted
as Mixes by employing batching algorithms, the network
would have maximum anonymity, since packet timing
would not reveal any information about source-destination
pairs. Since M1 and M2 modify the timing pattern of the
packet streams, the net overhead in latency for the routes
from S1, S2 would be the sum of batching delays at M1 and
M2. It is however easy to see that since M2 mixes the flows

from all three sources, allowing node M1 to relay packets
without modifying transmission schedule would not com-
promise the anonymity. In that case, the total latency over-
head can be reduced (since only M2 contributes to the de-
lay). In more general terms, by choosing the optimal set of
relays to modify their transmission schedules (henceforth
referred to as covert relays), overhead in latency can be min-
imized without reducing anonymity.

Our strategy involves two fundamental design problems:
design of scheduling strategy for a covert relay and the op-
timal selection of relays to be covert in a session. The
scheduling strategy designed for a covert relay should en-
sure that given an outgoing stream of packets, every in-
coming stream is equally likely to have been the source of
packets. The design is however limited due by the fraction
of dummy transmissions allowed. The optimal selection of
covert relays depends on the routes of the session, the level
of anonymity required, and the delay incurred at each covert
relay. We propose a randomized selection strategy, where
the set of covert relays are chosen as a random function of
the session and the desired level of anonymity. We then op-
timize the random distribution to obtain minimum latency
for the desired level of anonymity.

In the remainder of this section, we describe the schedul-
ing strategy for a covert relay and characterize the delay
incurred at a single relay given the fraction of dummy
transmissions allowed. In Section 4, we optimize the se-
lection strategy and characterize the relationship between
anonymity and the achievable network latency.

3.1 Covert Relaying

The task of the covert relay is to obfuscate the depar-
ture times of arriving packet streams, so that by analyzing
arrival and departure times of packets, an eavesdropper is
incapable of identifying a particular input-output pair ac-
curately. Consider a relay as shown in Figure 3. Given
the transmission times of packets on the links {(Si, B)}

and {(B,Di)}, every path {(Si, B,Dj)} should be equally
likely. From the definition of the relaying strategy, we know
that the design is subject to the following conditions:
1. The relaying strategy should be causal (as given in (1)).
2. Data packets cannot be dropped.
3. The maximum dummy transmission rate is λ.

The strategy we propose is a modification of the stan-
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Figure 3: m× 1 Relay Node: Sources Si transmits packets
to Di through B

dard batching strategy of Mixes using a fixed additional
rate of dummy transmissions. The need for introducing
dummy packets can be illustrated using the following ex-
ample. Consider a mix using the standard batching strat-
egy on packets arriving from two sources; the mix waits
until one packet arrives from both sources before transmit-
ting them together. If arrivals are distributed as independent
Poisson processes, the departure process for each stream is
equivalent to that of an M/M/1 queue with arrival rate λ

and service rate λ. For an M/M/1 queue, the mean wait-
ing time is given by 1

λ−µ where λ is the arrival rate and
µ is the service rate. Therefore, when packets from two
sources arrive at equal rates, the expected delay of trans-
mitted packets would increase indefinitely as the length of
the packet stream increases. This can be observed in Figure
4, where the average packet delay versus the length of the
packet stream is plotted for Poisson and Pareto distributed
schedules, when the standard batching strategy is applied.

In the following exposition we design scheduling strate-
gies which demonstrate that by appropriately includ-
ing dummy transmissions, the average delay can be re-
duced significantly and the maximum packet delay can be
bounded, even for an infinite stream of packets.

2 × 1 Relay: Consider a relay node forwarding packets
from 2 sources (Figure 3 with m = 2). If a packet from
source 1 arrives to an empty relay, it waits until a packet
arrives from source 2 for a maximum of ∆∗ seconds. If
a packet arrives from source 2 before the ∆∗-second pe-
riod expires, then the two packets are randomly reordered
and transmitted together in a batch. If no packet arrives
from source 2 before the ∆∗-second period expires, then
a dummy packet is generated and transmitted along with
the queued packet in a batch. For the remainder of the
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Figure 4: Average per packet delay for a relay node using
simple threshold mixing strategy on two packet
streams without dummy transmissions.

route, the generated dummy packet is treated as if it arrived
from source 2 and is transmitted until the destination node.
During the waiting period, if another packet arrived from
source 1, then a parallel ∆∗−second waiting period for that
packet is started instantaneously. This ensures that there is
no queuing delay and the maximum delay incurred by any
packet is bounded by ∆∗ seconds. The strategy is similar if
a packet from source 2 arrived to an empty queue. It is easy
to see that every transmission by the relay is a batch of two
packets, one for each destination. Therefore, the schedules
of both outgoing streams from the relay are identical, and
it is impossible for an eavesdropper to identify the input-
output pair even for long streams of packets.

The rate of dummy transmissions cannot exceed λ, and
the delay ∆∗ is chosen so that the constraint is satisfied. Al-
though the maximum waiting period for any packet is ∆∗

seconds, the average overhead in latency would be strictly
less than ∆∗. When the input processes are Poisson dis-
tributed, the following theorem characterizes the value of
∆∗ and the average latency overhead, given the rate of
dummy transmissions λ.

Theorem 1 For a 2×1 relay B, if sources transmit packets
according to unit-rate Poisson processes, then for a given
rate of dummy transmissions λ, the average delay δ(B, λ)

incurred due to batching by relay B is given by:

δ(B, λ) =
1 − λ2

8λ
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and the maximum delay incurred by any packet at B is:

∆∗ =
1 − λ

2λ

Proof: Refer to Appendix
As is evident from the Theorem, as λ → ∞, the average

overhead in latency becomes negligible. In other words, a
high rate of dummy transmissions incurs no cost in delay.
The strategy can be generalized to more than 2 sources as
follows.
m× 1 Relay: When a packet from one source arrives to the
relay node, it waits (for a maximum of ∆∗ seconds) until
at least one packet arrives from each of the other sources,
otherwise dummy packets are generated in place of packets
from the sources that did not arrive within ∆∗ seconds. Ev-
ery transmission by the relay contains a batch of m packets,
some of which would be dummy packets. Therefore, all
outgoing streams from the relay will have identical trans-
mission schedules thereby making all input-output pairs at
the relay equally likely. The exact characterization for the
average delay as a function of λ becomes exceedingly cum-
bersome for more than 2 sources. However, the following
theorem provides an upper bound on the average delay in-
curred for a given λ.

Theorem 2 When M sources transmit packets according
to Poisson processes of unit rate, the average delay δ in-
curred is upper bounded as:

δ(B, λ) ≤
(M − 1) − λ2

8λ

Proof: Refer to Appendix
Note that, as the number of sources increases, the

scheduling strategy provides higher anonymity at the cost of
higher latency. Although the theorems only consider Pois-
son distributed schedules, the strategy can be applied to any
general distribution of schedules. For Poisson and Pareto
distributed schedules, Figure 5 plots the relationship be-
tween average delay and the dummy transmission rate for a
relay node, when m = 2, 3, 4, 5. For m > 2, the figure plots
the simulated average delay, which is strictly less than the
bound in Theorem 2. As is evident from Figure 4 and Figure
5, the average delay for Pareto distributed processes is con-
siderably higher than Poisson schedules. This is due to the
higher burstiness of arrivals in Pareto distributed schedules.

As the mean number of packets that arrive in a burst in-
creases, the fraction of dummy packets required to achieve
the same delay also increases.
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Figure 5: Average delay versus the fraction of dummy
transmissions.

The analytical and numerical results presented thus far
demonstrate that by appropriately inserting a limited frac-
tion of dummy transmissions it is possible to reduce average
latency significantly. It is important to note that the dummy
packets generated need to be relayed until the correspond-
ing destination. If the generated dummy packets were to be
dropped at a subsequent relay node, the eavesdropper would
be able to correlate this transmission schedule with that of
the original source transmission, thereby revealing informa-
tion about the route.

25

Authorized licensed use limited to: Cornell University. Downloaded on October 7, 2008 at 15:29 from IEEE Xplore.  Restrictions apply.



3.2 Covert Relay Selection

The key idea to minimizing network latency for any
given level of anonymity is to select the set of covert re-
lays in each session. To that extent, we consider a random
selection strategy, where given the session S and anonymity
level α, we select a subset B ⊂ V of relays to be covert with
probability qα(B|S) such that

∀α,S
∑

B∈2V

qα(B|S) = 1.

The probability mass function qα(B|S) is chosen such that
an anonymity of α is guaranteed with minimum overall net-
work latency. The problem of designing the optimal dis-
tribution has two fundamentally contrasting paradigms. On
the one hand, increasing the number of covert relays would
result in a higher level of anonymity. On the other hand, re-
ducing the number of covert relays is beneficial in terms of
latency. To obtain the optimal distribution under these con-
straints, we draw a connection to a well known distortion
rate optimization in information theory.

The connection to the distortion-rate optimization can be
explained using the following intuition. The objective of
the rate-distortion problem is to compress a set of source
sequences into a smaller set of codewords, such that the av-
erage distortion between each sequence and the correspond-
ing codeword is minimized. The idea is to divide the set of
source sequences into bins (Figure 6.a)) such that for each
bin, one codeword is generated and all sequences in the bin
are mapped to it. The total number of bins (or codewords)
is determined by the required level of compression (com-
pression rate). The binning strategy and codewords are de-
signed such that average distortion between sequences and
codewords are minimized. A classical result in information
theory characterizes the optimal tradeoff between the rate
of data compression and the minimum achievable distortion
achievable [22].

In our problem setup, the goal is to choose covert relays
in each session such that the eavesdropper obtains minimum
information about the session. The key idea is to divide the
set of all possible network sessions into bins such that, for
each bin, there exists one set of covert relays that would
make the sessions within that bin indistinguishable to an
eavesdropper (Figure 6.b)). Here, the level of anonymity
required determines the total number of bins. The binning
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Figure 6: Connection between rate distortion and
anonymous networking.

strategy and the distribution of covert relays are designed
to minimize the average latency across sessions within each
bin. In the subsequent analysis, we utilize this intuition in
optimizing the distribution of covert relays.

Note that the strategy as specified by the distribution
qα(B|S) suggests a centralized implementation, since the
decision to choose covert relays requires complete knowl-
edge of routes in the session. An alternative to a centralized
implementation is to facilitate exchange of information be-
tween nodes at the start of any session so that a consensus is
reached on the choice of covert relays. Since the number of
sessions and nodes are finite, the convergence of decisions
is guaranteed in finite time. For applications where mes-
sage exchange is not possible, we describe a decentralized
approach to select covert relays in Section 5 which achieves
the same anonymity at the cost of higher latency.
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3.3 Eavesdropper Observation

Given the set of covert relays B, the eavesdropper can
detect portions of the routes in the session. Specifically,
if a relay is not covert, the eavesdropper can perfectly
match the incoming and outgoing schedules at the relay
thereby revealing a two-hop connection between pairs of
nodes. By analyzing the correlation of schedules across
multiple relays in the network, the eavesdropper obtains
a partial observation of the session. The remaining por-
tion is completely indiscernible since covert relays perfectly
anonymize their schedules.

The eavesdropper’s observation is denoted by a set of
paths Ŝ ∈ (V∗)∗. Ŝ can be expressed as a deterministic
function of the actual session S and the set of covert relays
B. Let t : (V∗)∗×V → (V∗)∗ represent this function when
exactly one relay is covert. More generally, for any set of
paths P ∈ (V∗)∗, t(P, B) is the set of observed paths by
the eavesdropper when only node B is covert.
t(P, B) is defined as the set:

{P ∈ V∗ : P satisfies one of the following conditions:

1. ∃P ′ = (A1, · · · , Ak, B,Ak+1, · · · , An) ∈ P, s.t.

P = (A1, · · · , Ak, B) or P = (B,Ak+1, · · · , An)

2. P ∈ P and B /∈ P.}

Condition 1 states that, when a path in P contains a covert
relay, the eavesdropper would observe two independent
paths, one terminating at B and the other originating from
B. Condition 2 states that a path that does not contain a
covert relay is fully observed.

When a subset B = (B1, · · · , Bm) of relays are covert,
then Ŝ is obtained by repeated application of t():

Ŝ = t(· · · (t(t(S, B1), B2) · · · ), Bm)
4
= T(S,B). (5)

The eavesdropper observes Ŝ and tries to estimate
the actual session S. Since each covert relay perfectly
anonymizes the incoming traffic, and Ŝ is derived assuming
all non-covert multihop connections are perfectly decoded,
the actual transmission times τ do not reveal any additional
information about S than Ŝ. A formal proof of this state-
ment is provided in the appendix as part of the proof of
Theorem 3.

3.4 Network Latency Function

When anonymity α = 0, the minimum average delay in
a session S is incurred when none of the relays are covert.
This minimum delay for S is the average transmission delay
on the routes of the session, since all nodes merely forward
packets immediately upon arrival. For a given session S,
we denote this quantity by ∆t(S). According to definition
2 the overall network latency when anonymity α = 0 is
given by the expected delay over sessions:

∆(α = 0) = E(∆t(S)) = E(
∑

i

∆t(P (i))).

When the relays in a subset B are covert, the increase
in latency depends on the delay incurred at each covert re-
lay in B due to the scheduling strategy, which in turn, de-
pends on the number of paths that contain the relay. Let
∆c(S,B) = (∆c

1(S,B), · · · ,∆c
|S|(S,B)) represent the in-

crease in average delays from sources to destinations for the
paths in session S = (P (1), · · · , P (|S|)), when nodes in B

are covert. Therefore

∆(S,B)
4
= ∆t(S) +

|S|
∑

i=1

∆c
i (S,B)

is the total latency in the session. From (2), we know that

∆c
i (B) =

∑

B∈B
⋂

P (i)

δ(B, λ), (6)

where δ(B, λ) is the average packet delay at covert relay B

which is obtained using the strategies in Section 3.1.

4 Latency Anonymity Tradeoff

Given the values of α and λ, using the characterization
of network latency and eavesdropper inference, the distri-
bution qα(B|S) can be optimized using a brute force search
over the (finely discretized) probability simplex. However,
this procedure is computationally intensive, and impractical
to perform for large networks. The following result char-
acterizes the optimizing distribution and minimum network
latency as a function of α, using a well known distortion-
rate optimization in information theory.

Theorem 3 Let d : 2P × 2P → R s.t

dλ(S, Ŝ) =

{

∆c(S,B) − ∆t(S) ∃B s.t. Ŝ = T (S,B)

∞ o.w.
.

(7)
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Then, a network latency ∆(α, λ) is achievable with average
anonymity α and dummy transmission rate λ if

∆(α, λ) − ∆(0) ≥ D (H(S|L)(1 − α)) ,

where D(r) is the Distortion-Rate function:

D(r) = min
q(Ŝ|S):I(S;Ŝ|L)≤r

E(dλ(S, Ŝ)). (8)

Proof: Refer to Appendix.

The distortion-rate function in (8) is used in information
theory to provide the minimum average distortion incurred
in order to compress a set of source sequences. The the-
orem demonstrates the mathematical equivalence between
the two optimizations described in the intuitive argument
earlier. Specifically, the function dλ(S, Ŝ) in (7) character-
izes the increase in latency in a given session S, when the
observed session is Ŝ. The function dλ(S, Ŝ) does not ex-
plicitly include the set of covert relays B. However, in the
proof of the theorem, we show that given Ŝ, the set of covert
relays B is unique. As a result, the distribution qα(B|S) to
chose covert relays is equivalent to the distortion minimiz-
ing distribution in (8).

4.1 Discussion

The consequence of the connection to rate-distortion ex-
tends beyond the idea of choosing covert relays; rate dis-
tortion is a field that has been studied for many decades
[22], and the numerous models and techniques developed
therein, could serve to design strategies for route anonymity.
The form of the rate-distortion problem used in this work is
a slight modification of classical rate-distortion, due to the
presence of side information L provided by packet headers.
However, L is a deterministic function of S, and is available
to the network designer as well. As a result, the Blahut-
Arimoto algorithm [23] used in standard rate-distortion op-
timization provides an efficient iterative technique to char-
acterize the achievable network latency ∆(α, λ) and obtain
the optimal scheduling strategy qα(B|S).

Our assumption of an omniscient adversary is very con-
servative, and typically an eavesdropper would only mon-
itor carefully chosen portions of the network. We be-
lieve that our analytical approach can be extended to model
such constrained eavesdroppers as well. Specifically, if
the eavesdropper monitors a random subset of nodes, then

her observation, currently represented using the pair Ŝ,L,
would correspond to a random function of Ŝ,L depending
on the fraction of monitored nodes (fraction here only refers
to number of nodes and not the actual set of nodes). A sim-
ilar approach can be adopted to model active adversaries.
If an eavesdropper were to compromise a subset of relays,
thereby revealing two-hop information, then the inference
thus obtained can be modeled as unknown side information
available to the adversary. Analyzing these extended mod-
els is however not straightforward, since the set of moni-
tored nodes could be chosen depending on the optimal dis-
tribution of covert relays.

Note that our approach of making transmission sched-
ules statistically independent, assumes that the eavesdrop-
per can detect even the slightest of correlation. In general,
detecting dependencies across transmission schedules is a
hard problem, especially when dumy transmissions are al-
lowed. There has been significant ongoing effort in using
information-theoretic methods for this purpose, in the con-
text of detecting covert timing channels [24, 25]. Our ap-
proach while conservative, provides an achievable quality-
of-service with provable anonymity in a network.

5 Decentralized Approach

In order to achieve the performance of Theorem 3, it is
necessary that every relay be aware of the entire session S.
Further, since the strategy involves a random selection, all
nodes need to share some common randomness. In network
applications where centralized control is not possible and
message exchanges across nodes are not allowed, the per-
formance stated in Theorem 3 may not be achievable. In
such networks each node would have partial information
about the session, which contains only the immediate trans-
mitting and receiving nodes. This is similar to Mix net-
works where layered encryption can ensure that each Mix
only has knowledge of the neighbouring nodes in the routes.
Therefore, for networks where nodes only have local infor-
mation and do not share common randomness, we propose
the following decentralized approach.

The local information available to a relay node in any
session is a set of node pairs that represent the immediate
sender-receiver pairs at the relay. We define function l : V×

S 7→ 2V×V where l(B,S) denotes the information available
to node B in session S.
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If S = (P (1), · · · , P (|S|)) and A(i, j) represent the ith

node of path P (j) in S, then,

l(B,S) = {(A(i, j − 1), A(i, j + 1)) : A(i, j) = B}. (9)

In other words, l(B,S) is the set of all node pairs (A(i, j −

1), A(i, j + 1)) such that node B relays packets from
A(i, j − 1) to A(i, j + 1) in session S. It is important to
note that l(B,S) is a many-to-one function from the set of
sessions, and therefore, multiple sessions that result in iden-
tical l(B,S) would be indistinguishable to the relay.

Since there are no message exchanges across nodes with
regard to the session information, we require that each node
makes a decision to be covert based on the local information
function only. In other words, during any session, node B

would make a decision to be covert depending only on the
value of l(B,S). Further, we do not assume any common
randomness available to the nodes, and hence, the decisions
of multiple nodes are independent in each session. Accord-
ingly, we define a probability function for each node:

q′α : V × 2V×V 7→ [0, 1],

where q′α(B, l(B,S)) is the probability that node B is
covert in session S. Since each node makes an indepen-
dent decision, the probability that a subset of nodes B have
decided to be covert in session S is a product of decision
probabilities of the individual nodes:

q(B|S) =
∏

B∈B

q′α(B, l(B,S))
∏

B /∈B

(1 − q′α(B, l(B,S))). (10)

The above equation specifies a particular product form
for the probabilities q(B|S), and every decentralized strat-
egy would correspond to a set of {q(B|S)} which can be
thus expressed. So let Q∗ represent the set of all conditional
probability mass functions {q(B|S)}, such that there exists
probabilities q′α(B,S) which satisfies (10) for every real-
ization of (S,B). We know that (S,B) and (S, Ŝ) have a
one-one correspondence. Therefore, the set Q∗ would have
a one-one correspondence to a set Q∗∗ of conditional prob-
abilities q(Ŝ|S).

Then, using the result of Theorem 3, we can obtain the
achievable latency for the decentralized strategy as:

∆(α, λ) − ∆(0) ≥ D′ (H(S|L)(1 − α)) ,

where

D′(r) = min
q(Ŝ|S)∈Q∗∗:I(S;Ŝ|L)≤r

E(dλ(S, Ŝ)). (11)

Note that the minimization in (11) is over a subspace of
the probability space as compared to Theorem 3, and could
therefore result in a lower throughput than that of Theo-
rem 3. Even if l(B,S) uniquely identifies the session for
all B,S, the throughput may not reach the optimal value of
Theorem 1 owing to lack of common randomness (indepen-
dent decisions). This is illustrated in the following example.

5.1 Example
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through relays {Mi}.

Consider the example of a switching network as shown
in Figure 7. During any network session, each source Si

picks a distinct destination Dj , and for each pair Si, Dj

there is a fixed path through the intermediate relays. The
set of possible sessions, S, contains 24 elements (all pos-
sible pairings) which are assumed equiprobable. For this
setup, Figure 8 plots the latency-anonymity region under
different constraints on the rate of dummy transmissions.

As expected, as the fraction of dummy transmissions
increase, the latency incurred due to anonymity reduces.
Note that, the latency incurred is a convex U function of
the anonymity. The reason for the convexity is that con-
ditional entropy and network latency are average metrics.
Therefore, time sharing of strategies (where the strategy for
a session is chosen probabilistically from a set of strate-
gies) would also yield a valid strategy. This is, however,
not possible with the decentralized strategy as the nodes do
not possess any shared randomness. The decentralized ap-
proach does not increase the latency significantly, and the
performance is identical at the extreme values of α. This
is because, when all the relays or none of them are covert,
there is no necessity for centralized decisions. Although we
have illustrated our ideas and the validity of the theoretical
approach using a simple example, the applicability of the
strategies extends to general multihop networks.
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Figure 8: Trade-Off between Anonymity and Latency: All
paths have unit rate of transmission, and the
2 × 1 relaying strategy is used for the chosen
covert relays.

6 Conclusions and Future work

One of our key contributions in this work is the theoreti-
cal model for anonymity against traffic analysis. To the best
of our knowledge, this is the first analytical metric designed
to measure the secrecy of routes in an eavesdropped multi-
hop network. Based on the metric, we designed scheduling
and relaying strategies to minimize network latency with a
guaranteed level of anonymity. Although we consider spe-
cific constraints on dummy transmissions and the session
models, the ideas of covert relaying and the randomized se-
lection are quite general. An important future direction is to
consider eavesdroppers who observe the network for long
durations of time. This requires a dynamic session model,
where it is important to maintain anonymity of routes under
changes in sessions due to nodes ending or starting commu-
nications.
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Appendix

Proof of Theorem 1

To prove the theorem, we adopt the technique used in
[25]. Consider the two point processes τS1,B , τS2,B . For
a mix that uses the simple batching strategy, the delay of
the jth packet from S1 would be (TS1,B(j)− TS2,B)+. Let
Xj = TS1,B(j) − TS2,B(j). Define

TR
j

4
= Xj − Xj−1

= (TS1,B(j) − TS2,B(j − 1)) − (TS1,B(j) − TS2,B(j − 1)).

We see that T R
j ’s are i.i.d. random variables; each T R

j

is the difference between two independent exponential ran-
dom variables with mean 1. The process {Xj}

∞
j=1 is a gen-

eral random walk with step T R
j [26].

Running the mixing algorithm is going to result in
dummy transmissions at different points of time depending
on which packet is waiting in the queue. For every dummy
packet transmitted at t in place of a packet from source 2, we
insert a virtual packet at t + ∆∗ in τS1,B ; for every dummy
packet inserted at time s in place of a packet from source
S1, we insert a virtual packet at s + ∆∗ in τS2,B .

Let the new packet delays (TS1,B(j) − TS2,B(j)) after
the insertion of virtual packets be {X ′

j}
∞
j=0. It can be shown

that {X ′
j}

∞
j=0 is also a random walk with step T R

j , but it has
two absorbing barriers at −T and T , i.e.

X ′
j = min(max(X ′

j−1 + TR
j , −∆∗), ∆∗).

Since it is almost surely impossible for X ′
j−1 +TR

j to be
exactly equal to −∆∗ or ∆∗, each time X ′

j = −∆∗ corre-
sponds to a dummy transmission in place of source 2, and
X ′

j = ∆∗ corresponds to a dummy transmission in place
of source 1. From example 2.16 in [26], we know that the
probability of X ′

j = ∆∗ is given by

Pr{X ′
j = ∆∗} =

1

2(1 + ∆∗)
= Pr{X ′

j = −∆∗}.

Therefore, the fraction of dummy transmissions corre-
sponding to source 1 alone is

λ =
Pr{X ′

i = ∆}

(1 − Pr{X ′
i = 0})

=
1

1 + 2∆∗
. (12)
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To characterize the average delay, we derive the station-
ary distribution of the random walk between the barriers.
Every 0 ≤ X ′

j ≤ ∆∗ contributes to the delay of a source 2

packet, and every −∆∗ ≤ X ′
j ≤ 0 corresponds to the delay

of a source 1 packet. The average delay incurred would be
the mean of the stationary distribution within those respec-
tive limits (due to symmetricity it would be the same for
source 1 or 2). Again, following the exposition in example
2.16 in ([26], Page 67), the cumulative distribution of the
delay in the interval (−∆∗,∆∗) is given by

Pr(X ′
i ≤ x) =

∆∗ + 1 + x

2(1 + ∆∗)
. (13)

Using (12) and (13), δ(B, λ) can be evaluated as:

δ(B, λ) = E{X ′
i|X

′
i ∈ (−∆∗,∆∗)}

=
(∆∗)2

2(1 + 2∆∗)
.

=
1 − λ2

8λ
.

2

Proof of Theorem 2

When more than 2 sources are being relayed, it is ex-
ceedingly cumbersome to characterize the exact delay. We
provide an upper bound on the delay instead. We approxi-
mate the m× 1 relaying strategy as follows. When a packet
from source 1 arrives at an empty queue, it waits for a packet
from source 2 for a time ∆∗/(M − 1) seconds, if no packet
arrives immediately a dummy packet is generated for source
2. This process is then repeated for the remaining M − 2

sources. In this manner, every packet from source 1 has one
distinct packet (data or dummy) from each of the sources
within T seconds. The fraction of dummy packets would
now correspond to a delay of ∆∗/(M − 1) instead of T .
Further the average delay would M − 1 times the average
delay incurred by each random walk. Plugging these factors
into (12) and (13), we obtain the result in Theorem 2.

2

Proof of Theorem 3

From (6), we know that Deltac(S,B) is an achievable
latency vector when nodes in B are covert. It remains to
be seen that the condition H(S|Ŝ,L) ≥ α guarantees an
anonymity α. For this purpose, it is sufficient to show that

H(S|τ,L) ≥ H(S|Ŝ,L).

Let τ̂ be the schedules generated assuming Ŝ was a ses-
sion and none of the nodes were covert. The transmission
rates of nodes in τ̂ are assumed identical to τ . For the nodes
that are the sources in S, the schedules are independent in
τ and τ̂ . Session Ŝ has additional sources due to the bro-
ken paths, which also generate independent transmission
schedules. The set of these additional sources is identical
to the set of covert relays in S. Therefore, the schedules
are independent in τ as well. Since the remaining nodes re-
lay all received packets within negligible processing delay,
p(τ |S) = p(τ̂ |S). Then, using the data processing inequal-
ity (S − (Ŝ,L) − (τ̂ ,L))

H(S|τ,L) = H(S|τ̂ ,L) ≥ H(S|Ŝ,L).

Consider the optimal solution q∗(Ŝ|S) of the distortion
rate problem,

D = min
q(Ŝ|S):I(S;Ŝ|L)≤(1−α)H(S)

E(d(S, Ŝ)).

From the definition of d(S, Ŝ), it is easy to see that if
@B s.t. Ŝ = T(S,B), then q∗(Ŝ|S) = 0. Given S, Ŝ,
we can show that the set of covert relays B are uniquely
determined, using the following argument:

Suppose ∃B1 6= B2 such that T(S,B1) = T(S,B2).
Then, we can write B1 = (B,B′

1),B2 = (B,B′
2)

where B′
1 = (B11, · · · , B1m), B′

2 = (B21, · · · , B2n) and
B′

1

⋂

B′
2 = φ. We know that

Ŝ(S,B1) = t(· · · t(T(S,B), B11), · · · ), B1m)

= t(· · · t(T(S,B), B21), · · · ), B2n) = Ŝ(S,B2).

Suppose none of the paths in T(S,B) contain B′
1

⋃

B′
2,

then it does not matter if those relays are covert or not, in
which case the subset of covert relays would be B.

If ∃P ∈ T(S,B) that contains B11, then T(S,B1)

would contain a path that ends in B11, whereas T(S,B2)

cannot contain such a path, which is a contradiction.
The above argument shows that we can equivalently

write q∗(Ŝ|S) = q∗(B|S). Therefore, q∗ specifies a valid
selection strategy. Since H(S) is fixed apriori, I(S; Ŝ|L) ≤

(1−α)H(S|L) ensures that an anonymity α is guaranteed.
Further, for every B, the function d evaluates the difference
in achievable rate vectors ∆̄0(S) and ∆̄c(S, B). Taking ex-
pectation over q∗(B|S), it is easy to see that the distortion
D is achievable with α−anonymity.

2
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