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A Characterization of Delay Performance of
Cognitive Medium Access

Shanshan Wang, Junshan Zhang, and Lang Tong

Abstract—We consider a cognitive radio network where mul-
tiple secondary users (SUs) contend for spectrum usage, using
random access, over available primary user (PU) channels.
Our focus is on SUs’ queueing delay performance, for which
a systematic understanding is lacking. We take a fluid queue
approximation approach to study the steady-state delay perfor-
mance of SUs, for cases with a single PU channel and multiple PU
channels. Using stochastic fluid models, we represent the queue
dynamics as Poisson driven stochastic differential equations, and
characterize the moments of the SUs’ queue lengths accordingly.
Since in practical systems, an SU would have no knowledge of
other users’ activities, its contention probability has to be set
based on local information. With this observation, we develop
adaptive algorithms to find the optimal contention probability
that minimizes the mean queue lengths. Moreover, we study the
impact of multiple channels and multiple interfaces on SUs’
delay performance. As expected, the use of multiple channels
and/or multiple interfaces leads to significant delay reduction.
Finally, we consider packet generation control to meet the delay
requirements for SUs, and develop randomized and queue-
length-based control mechanisms accordingly.

Index Terms—Delay analysis, fluid approximation, cognitive
radio networks.

I. INTRODUCTION

IN a hierarchical overlay cognitive network [1], a secondary
user (SU) communicates opportunistically by exploiting

spectrum “white space” left temporarily by primary users
(PUs). As a result, transmissions of an SU is limited by
the stochastic nature of PUs. An SU hoping to run certain
applications (e.g. VoIP or streaming) would like to know what
kind of rate and delay a secondary network can provide. In the
same token, an owner of a secondary network would like to
attract potential users by advertising a certain level of quality
of service (QoS) assurance.

Characterizing the delay of a cognitive network is chal-
lenging. Specifically, the delay of an SU is affected by not
only its own buffer and traffic properties, but also PUs’
traffic characteristics, other competing SUs, and access policy
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of SUs. These interacting factors make delay analysis often
analytically intractable, and only a limited number of results
have been reported in the literature (see e.g., [2]–[4]).

We analyze in this paper the delay performance in a
cognitive radio network, where SUs contend for channels
using an Aloha-based random access policy. In particular, an
SU senses a channel owned by a PU and transmits only if the
PU channel is idle. We model the PU’s traffic generation as
an ON-OFF process where the PU generates data only during
the ON periods. For SUs, we assume that they generate data
packets in each slot according to a Poisson distribution. Based
on stochastic fluid queue theory, we model the system dynam-
ics by using Poisson driven stochastic differential equations
(PDSDE), and analyze the steady state queue lengths of SUs
accordingly. To facilitate tractability, we focus on the light
traffic regime where the traffic intensity is low, as is often
the case for delay analysis of buffered Aloha, e.g., [5], [6].
We consider the homogeneous case where the arrival rates
of SUs are the same, and characterize the moments of the
random queue lengths of SUs, for cases with a single PU
channel (SCH) and multiple PU channels (MCH). Clearly,
these moments provide critical statistical information about
SUs’ queueing length distribution. We also examine the impact
of the PU traffic on SUs’ queue lengths and the gain of using
multiple PU channels. Adaptive algorithms, based on local
information only, are developed to find the optimal contention
probabilities that achieve the minimum mean queue lengths.

Next, we explore the gain of using two interfaces per
SU, i.e., each SU is equipped with two interfaces (radios).
Accordingly, each SU can sense two channels at a time and
thus transmit on up to two channels, as long as the PU
channels are idle and no contention collisions occur. Our
analysis and numerical examples corroborate the intuition that
the usage of two interfaces can greatly improve the delay
performance by decreasing the mean queue lengths of SUs.

Furthermore, it is of equal importance to consider the
scenario where stringent delay requirements are imposed on
the SUs. In such a scenario there exists a maximum amount
of traffic accommodable, necessitating traffic control. In this
study, we consider packet generation control. As representative
approaches, we develop two control mechanisms, one random-
ized and the other based on the queue lengths of the SUs.

The approach adopted in this paper originates from the early
work of Liu and Gong who studied the delay performance
of priority queues using fluid models [7]. Given the access
structure of a hierarchical cognitive network, the problem of
queueing analysis indeed resembles that of the priority queue
problem. There are, however, nontrivial differences arising
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from cognitive radio specific applications. In particular, the
problem considered in [7] arises from centralized scheduling
of high and low priority queues, whereas, in this paper, we
consider multiple SUs competing for transmission opportuni-
ties by random access. This random access to the PU channels
gives rise to the coupling across SUs’ queue dynamics, which
was not the case in [7] since only one low priority flow
was considered there. In addition, in contrast to [7] where
the single low priority flow receives a constant service rate
whenever the buffer of the high priority flows is empty, in
our study, SUs receive randomly arrived packets. As a result,
the number of backlogged SUs is time-varying, and the service
rate is random. Besides the work in [7], the delay performance
of a multi-hop wireless ad hoc network was studied in [8],
where diffusion approximation was used to characterize the
average end-to-end delay. In [9], WLANs with access points
connecting a fixed number of users in the presence of HTTP
traffic was considered. A processor sharing queue with state-
dependent service rate was used to model the system and
analyze the mean session delay. In [10], queueing delay at
nodes in an IEEE 802.11 MAC-based network was analyzed,
where each node was modeled as a discrete time 𝐺/𝐺/1
queue. Delay analysis for buffered Aloha was also studied (see
[5], [6], [11]–[13] and references therein). In [11] and [13],
the approach named “tagged user” was adopted. Specifically,
the interfering users/nodes were modeled as “independent”
queues in the sense that the analysis was conducted on one
particular user, named the “tagged user,” while the interference
across users was incorporated into the characterization of
the service time distribution of this tagged user. Another
approach utilizing Markov chains with reduced state space
to approximate delay analysis can be found in [5], [6], [12].
Two Markov chains, one for the queueing dynamics at one
user, and the other for the system status (i.e., the number of
busy users, and/or the identities of the users (empty, busy or
blocked)), were employed for characterizing the steady state
distributions of the system as well as the delay. It is worth
noting that the approximation worked well only for the light
traffic regime, as has been pointed out in [5] and [6]. In [3]
and [4], a large deviation approach was used to analyze delay
characteristics of SUs. Inner and outer bounds on the large
deviation rate region were obtained in [4] for a set of SUs
with orthogonal sharing of spectrum opportunities. The present
paper is an extension of its earlier conference contribution [2]
with additional theoretic results, completed proof, and further
simulation study.

We have a few more words on fluid models. Fluid approx-
imation is a widely used tool for performance analysis in
many fields, including communication networks and control
techniques [14], [15]. It can provide a good approximation to
the original systems by converting the discrete packets into
a continuous fluid and offers greater tractability in analyzing
the system performance. We should note that along a different
avenue, the deterministic fluid model has been developed to
analyze queueing systems, where microscopic fluctuations in
the original systems are replaced by their mean values (see,
e.g.,[16], [17]). For a given random process 𝐺(𝑡), the resulted
fluid scale process, obtained by using the Functional Law
of Large Numbers, is defined as 𝑔𝛽(𝑡) = 𝐺(𝛽𝑡)/𝛽, i.e., the

Fig. 1. A cognitive radio network with multiple PUs and SUs.

time and space are scaled by the same factor 𝛽 for 𝛽 being
large. This deterministic model leads to the application of
ordinary differential equations (ODE), which is in contrast
to the stochastic differential equations we shall use in our
context.

The rest of the paper is organized as follows. In Section
II, we introduce the system model. Fluid flow approximation
and PDSDE-based analysis on the single PU channel case are
given in Section III. Section IV studies the case with multiple
channels, where a variant model considering two interfaces
per SU is analyzed in Section IV-D. Packet generation control
for SUs under delay requirements is considered in Section V.
Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider a time-slotted (with slot duration normalized to be
1) cognitive radio network with 𝑁 PU channels and 𝑀 SUs,
where SUs contend for the channels using distributed random
access policies when the PUs are inactive, as illustrated in
Fig. 1. This model is of interest to many practical scenarios.
For example, in a sensor network equipped with cognitive
radios, sensors send out measurement data of the environment
sporadically and opportunistically over “empty” PU channels.

Without loss of generality, we associate one PU with one
channel (one can use a virtual PU to represent the PU activity).
The data generation of the PU on channel 𝑗 can be represented
as a continuous-time ON-OFF process 𝑥𝑗(𝑡), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 ,
i.e., when 𝑥𝑗(𝑡) = 1 (ON periods), the PU generates data traf-
fic at rate 𝑟𝑗 ; otherwise, no data is generated. The transmission
rate on each channel is normalized to be 1. We are interested
in the case where 𝑟𝑗 > 1 during the ON periods (the case with
𝑟𝑗 ≤ 1 is trivial since the PUs’ buffers are always empty). Let
𝐴𝑙,𝑗 and 𝑆𝑙,𝑗 denote the 𝑙th active and silent period of 𝑥𝑗(𝑡)
respectively. We assume that1 {𝐴𝑙,𝑗} are 𝑖.𝑖.𝑑. and follow
an exponential distribution with 𝐸[𝐴𝑙,𝑗 ] = 1/𝜇

𝐻𝑗
, and that

{𝑆𝑙,𝑗} are independent from {𝐴𝑙,𝑗} and follow an exponential

1This continuous-time Markovian model is widely used in the literature to
model the primary user’s traffic (see, e.g., [3], [18]).
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distribution with 𝐸[𝑆𝑙,𝑗 ] = 1/𝜆
𝐻𝑗

. It is worth noting that
since PU’s ON/OFF periods are typically much larger than
the duration of one slot, we here neglect the edge effect where
collisions between PUs and SUs occur when PUs transit from
OFF to ON. That is, the probability that PUs generate new
data during the middle of a slot and therefore preempt the
transmission of SUs is negligible.

We assume that in each slot, each SU generates data packets
according to a Poisson distribution with rate 𝜆. In an overlay
cognitive radio network, PUs have strict priority over SUs;
SUs can transmit only if the channels are unoccupied by PUs.
The channel access process is outlined as follows: each SU
with backlogged data chooses a channel independently and
uniformly at a time to probe. If the channel is sensed to be
unoccupied, it contends for the channel with probability 𝑝. If
the contention is successful (i.e., no other SUs are contending
on the channel at the same time), the user then transmits its
backlogged data. In fact, this simple random access policy
turns to be throughput optimal for small 𝑝 and when there
is only one SU [18]. Note that in practical scenarios, an SU
would not have the knowledge of how many backlogged SUs
there are, and accordingly we set the contention probability 𝑝
to be oblivious of backlogged SUs.

For notational convenience, let 𝐻𝑗(𝑡) and 𝐿𝑖(𝑡) denote the
queue lengths corresponding to PU 𝑗 and SU 𝑖 at time 𝑡,
respectively, and 𝑃𝐼𝑗 be the probability that PU 𝑗 is idle, i.e.,
𝑃𝐼𝑗 = Pr(𝐻𝑗(𝑡) = 0). In the following, we shall focus on
characterizing the queue lengths of SUs. For better reference,
we summarize the main notation used in the paper in Table I.

III. MULTIPLE SUS MEET SINGLE PU

A. Sample Path Description Using Poisson Driven Stochastic
Differential Equations

We first consider the case with a single PU channel. For
notational convenience, we drop the subscript 𝑗 related to
the PU parameters. In order to guarantee system stability, we
enforce that

𝜆 < min

{
1

𝑀

(
1− 𝑟𝜆

𝐻
/𝜇

𝐻

𝜆𝐻/𝜇𝐻 + 1

)
,

1

𝑒𝑀
𝑃𝐼

}
. (1)

It is worth mentioning that the second term in (1) was
established using the idea of “dominant systems,” which has
been used in characterizing the stability region of interacting
queues in random access systems (e.g.,[19], [20]). In our
context, the “dominant system” is a system where an SU
continues to probe the PU channel regardless of its buffer
state (empty or backlogged). Accordingly, the stability region
for this system is given by 𝜆 < 𝑃𝐼𝑝(1 − 𝑝)𝑀−1. Based on
[19] and [20], the original system is stable if the dominant
system is stable. In other words, the stability region obtained
through the dominant system serves as an inner bound to that
of the original system.

The queue dynamics of SU 𝑖 can be written as

𝐿𝑖(𝑑+ 1) = [𝐿𝑖(𝑑) + 𝑈𝑖(𝑑)− 𝑉𝑖(𝑑)]
+,

where 𝑈𝑖(𝑑) and 𝑉𝑖(𝑑) stand for the arrivals and departures
to/from SU 𝑖’s queue during slot 𝑑.

Fig. 2. Fluid approximation of a slotted system.

To facilitate analysis, in the following, we take a macro-
scopic view on the queue evolution of SUs across multiple
slots and use continuous approximation to characterize the
dynamics in SUs’ activities (as illustrated in Fig. 2). Let 𝜁𝑖(𝑡)
be the indicator random variable for the contention of SU 𝑖 at
time 𝑡 (i.e., when it contends, 𝜁𝑖(𝑡) = 1; otherwise 𝜁𝑖(𝑡) = 0).
The following stochastic differential equation is thus obtained:

𝑑𝐿𝑖(𝑡) = 𝑑𝑁𝑖(𝑡)− (1− ℐ𝐻(𝑡))𝜁𝑖(𝑡)ℐ𝐿𝑖(𝑡)

×
∏

𝑘∈{1,...,𝑀}∖{𝑖}

[
1− ℐ𝐿𝑘(𝑡)𝜁𝑘(𝑡)

]
𝑑𝑡, (2)

where {𝑁𝑖(𝑡)} are a set of Poisson counters with rate 𝜆; and
ℐ𝑓(𝑡) stands for the indicator function 1(𝑓(𝑡) > 0).

Furthermore, it is clear that for the PU, its dynamics can
be characterized as follows:

𝑑𝐻(𝑡) = 𝑟𝑥(𝑡)𝑑𝑡 − ℐ𝐻(𝑡)𝑑𝑡. (3)

Observe that (2) forms a set of Poisson driven stochastic
differential equations (PDSDE) [21], [22]. Simply put, in a
PDSDE, Poisson processes are the driving sources capturing
the system dynamics, and this is in contrast to the conventional
SDE where the Brownian Motion is used to describe the
dynamics in the trajectory of a stochastic differential equation.
In general, a PDSDE can be given as

𝑧(𝑡) = 𝑧(0)+

∫ 𝑡

0

𝑓(𝑧(𝜎), 𝜎)𝑑𝜎+

∫ 𝑡

0

𝑔(𝑧(𝜎), 𝜎)𝑑𝑁𝜎 , (4)

where 𝑁𝜎 is a Poisson counter. For the sake of completeness,
we restate the definition of the solution to the above PDSDE
[21].

Definition 1: A function 𝑧(⋅) is a solution to (4), in the It𝑜’s
sense, if on an interval where 𝑁𝜎 is constant, 𝑧 satisfies �̇� =
𝑓(𝑧, 𝑡) and if 𝑁𝜎 jumps at 𝑡1, 𝑧 behaves in a neighborhood
of 𝑡 according to the rule

lim
𝑡→𝑡1
𝑡>𝑡1

𝑧(𝑡) = 𝑔( lim
𝑡→𝑡1
𝑡<𝑡1

𝑧(𝑡), 𝑡1) + lim
𝑡→𝑡1
𝑡<𝑡1

𝑧(𝑡),

and 𝑧(⋅) is taken to be continuous from the left. When this
definition is adopted, we can rewrite (4) as

𝑑𝑧(𝑡) = 𝑓(𝑧, 𝑡)𝑑𝑡+ 𝑔(𝑧, 𝑡)𝑑𝑁𝜎(𝑡).

Based on the properties of PDSDE [21], it can be shown
that for 𝑛 ≥ 2,

𝑑𝐿𝑛
𝑖 (𝑡) = 𝑛𝐿𝑛−1

𝑖 (𝑡)𝑑𝐿𝑖(𝑡) +
𝑛∑

𝑘=2

(
𝑛

𝑘

)
𝐿𝑛−𝑘
𝑖 (𝑡)𝑑𝑁𝑖(𝑡).

It follows that the moments of 𝐿𝑖(𝑡) in the steady state satisfy
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the following recursive equation2:

𝑛𝐸[𝐿𝑛−1
𝑖 𝐹 ]−

𝑛∑
𝑘=1

(
𝑛

𝑘

)
𝐸[𝐿𝑛−𝑘

𝑖 ]𝜆 = 0, (5)

where

𝐹 = (1− ℐ𝐻(𝑡))𝜁𝑖(𝑡)ℐ𝐿𝑖(𝑡)

∏
𝑘∈{1,...,𝑀}∖{𝑖}

[
1− ℐ𝐿𝑘(𝑡)𝜁𝑘(𝑡)

]
.

B. Moments of SU Queue Lengths

We now start to study in more detail the moments of the
queue lengths of SUs based on the above PDSDEs. Recall that
SUs can access the channel only when the buffer of the PU is
empty. With this observation, we first examine the idle period
of the PU 𝑃𝐼 . Note that the PU generates data at rate 𝑟 only
during an ON-period, and that the buffer is depleted at rate 1
as long as the queue is nonempty. The sample path description
of the PU traffic then satisfies the following PDSDE:

𝑑𝑥(𝑡) = (1− 𝑥(𝑡))𝑑𝑁𝐻1 (𝑡)− 𝑥(𝑡)𝑑𝑁𝐻2 (𝑡),

𝑑𝐻(𝑡) = 𝑟𝑥(𝑡)𝑑𝑡 − ℐ𝐻(𝑡)𝑑𝑡, (6)

where 𝑁𝐻1(𝑡) and 𝑁𝐻2(𝑡) are a pair of Poisson counters
driving 𝑥(𝑡), with rate 𝜆

𝐻
and 𝜇

𝐻
respectively. It is not

difficult to show that in the steady state

𝑃𝐼 = 1− 𝑟𝜆𝐻

𝜆𝐻 + 𝜇𝐻

. (7)

We then start characterizing the moments of the SU queue
lengths. Based on (2), we observe that the 𝑀 SU queues
interact with each other through channel contention. In other
words, besides the impact from PU activities, the service time
of one SU also depends on other SUs’ activities, and it turns
out to be a quantity that follows a general distribution which
is difficult to determine.

For ease of exposition, we shall focus on the light traffic
regime and approximate the SU activities as if they were
“weakly coupled” in the sense that the event that one SU
is idle (i.e., with no backlogged data) is independent from
other SUs being idle. Similar approximations to “decouple”
the interacting queues have been made in [11] and [13], among
other works. According to the homogeneity assumption, this
idle probability would be the same across all SUs. Let 𝑝

0

be this probability. It is clear that the number of backlogged
SUs follows a Binomial distribution with its probability mass
function given by

𝑃𝑚 =

(
𝑀

𝑚

)
(1− 𝑝

0
)𝑚𝑝𝑀−𝑚

0
, (8)

where 𝑝
0

can be shown to satisfy [13] 𝑝
0
= 1−𝜌, with 𝜌 = 𝜆

𝜇
and 𝜇 being the mean service rate. In the case with a single
PU channel, 𝜇 can be calculated as

𝜇 =
1

𝑀

𝑀∑

𝑚=1

𝑚𝑝(1−𝑝)𝑚−1𝑃𝐼𝑃𝑚 = 𝑝𝑃𝐼(1−𝑝0)(1−𝑝+𝑝𝑝0)
𝑀−1,

where the characterization is done under the homogeneity
assumption and is conditional on the number of backlogged

2We drop the time index 𝑡 as the meaning is clear.

SUs in the system. It follows that

𝑝
0
= 1− 𝜆

𝑝𝑃𝐼(1 − 𝑝
0
)(1 − 𝑝+ 𝑝𝑝

0
)𝑀−1

. (9)

Now with all related parameters being characterized, we are
in a position to calculate the moments of the queue lengths
for SUs. Based on (2) and (5), the first two moments of SU
𝑖’s queue length can be derived as

𝐸[𝐿𝑖] =
𝜆

−2𝜆+ 2𝛼𝒮
, 𝐸[𝐿2

𝑖 ] =
𝜆(𝜆 + 2𝛼𝒮 )

6(𝜆− 𝛼𝒮 )
2
, (10)

where 𝛼𝒮 is given by

𝛼𝒮 =

𝑀∑
𝑚=1

𝑝(1− 𝑝)𝑚−1𝑃𝑚𝑃𝐼 . (11)

C. Adaptive Algorithm for Optimal Contention Probability

The analysis above indicates that the contention probability,
𝑝, and the idle probability of one SU, 𝑝

0
, are two key

parameters to the characterization of the mean queue lengths
of SUs, and thus the delay performance. Intuitively speaking,
when 𝑝 is very small (approaching 0), SUs contend for the
channel sporadically, and 𝑝

0
is small. On the other hand, when

𝑝 is very large (approaching 1), all SUs with backlogs contend
for the channel almost always, leading to a high contention
collision among SUs, which makes the queue lengths increase.
It is thus indicated that there exists an optimal value of 𝑝,
which minimizes the mean queue lengths.

We note that (9) formulates a fixed point equation3 for the
idle probability 𝑝

0
, and 𝑝

0
is in itself an implicit function

of the contention probability 𝑝, i.e., 𝑝 is the argument of
𝑝

0
. Therefore, we obtain the optimal value of 𝑝 by taking

derivative with respect to 𝑝 on both sides of (9) and setting
𝑑𝑝0/𝑑𝑝 = 0. After some straightforward calculation, we obtain

𝑝 = min

{
1

𝑀(1− 𝑝0)
, 1

}
. (12)

Intuitively speaking, 𝑀(1 − 𝑝
0
) corresponds to the average

number of backlogged users who would contend for channel
access. Recall that 𝑝

0
is the probability that one SU’s queue

is empty. Accordingly, stochastic approximation algorithms,
based on local information only, can be readily developed to
find the optimal contention probability4. For simplicity, rewrite
Φ𝑖(𝑡) ≜ 1− ℐ𝐿𝑖(𝑡). We note that the adaptation of 𝑝 is based
on the update of 𝑝

0
. It follows that we can devise the following

adaptive algorithms to obtain the optimal 𝑝. First, we use
stochastic approximation to update 𝑝0 as:

𝑝0(𝑡+ 1) =

(
1− 1

𝑡+ 1

)
𝑝0(𝑡) +

1

𝑡+ 1
Φ𝑖(𝑡+ 1). (13)

Based on this adaptation, we next derive the adaptive algo-

3See Lemma 6.1 in Appendix for the proof of the uniqueness on the solution
to the fixed-point equation.

4Note that the SUs are statistically identical and will adopt the same update
procedure.
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Fig. 3. Average queueing delay of SUs for the case with a single PU channel.

rithm for achieving the optimal 𝑝 as5:

𝑝(𝑡+ 1) = 𝑝(𝑡) +
1−𝑀𝑝(𝑡)(1− Φ𝑖(𝑡+ 1))

𝑡+𝑀𝑝(𝑡)(1− Φ𝑖(𝑡+ 1))
𝑝(𝑡). (14)

The convergence of (13) and (14) can be shown by using the
standard arguments from stochastic approximation [23].

We now illustrate by numerical examples the above results
where the contention probability is set to be the optimal value
given by (12), and SU’s average queueing delay is transformed
from 𝐸[𝐿𝑖] via Little’s Law [24]. We also compare the
analytical results obtained from the above fluid approximation
with the Monte Carlo simulation studies of the underlying
system. As shown in Fig. 3 (with 𝑀 = 20 and 𝑟 = 1.2), the
queueing delay increases with the arrival rate of SUs, and as
the duty cycle of 𝑥(𝑡), defined as 𝜏 ≡ 𝜆

𝐻

𝜆
𝐻
+𝜇

𝐻
, increases, the

average queueing delay of SUs increases, indicating the impact
of the PU traffic on SUs’ delay performance. In addition, the
simulation and analytical results are shown to match with each
other closely.

IV. MULTIPLE SUS MEET MULTIPLE PUS

We next consider the case where there are multiple PU
channels, and examine the performance gain therein.

A. Sample Path Description Using Poisson Driven Stochastic
Differential Equations

In this case, to keep the system stable, we enforce that

𝜆 < min

⎧⎨
⎩ 1

𝑀

⎛
⎝𝑁 −

𝑁∑
𝑗=1

𝑟𝑗𝜆𝐻𝑗
/𝜇

𝐻𝑗

𝜆
𝐻𝑗

/𝜇
𝐻𝑗

+ 1

⎞
⎠ ,

𝑁

𝑒𝑀
𝑃𝐼

⎫⎬
⎭ , (15)

where, again, the second term was obtained along the same
line as in the previous section using the idea of “dominant
system.”

Recall that each SU with backlogged data independently
chooses one of the 𝑁 PU channels uniformly at random. Let

5We assume that the number of SUs, 𝑀 , is given and known to all SUs
as a system parameter, and so is the number of PU channels, 𝑁 , which will
be used in the subsequent sections.

𝜉𝑖𝑗(𝑡) be an indicator random variable denoting that SU 𝑖
chooses channel 𝑗 at time 𝑡. As in the single PU channel
case, we do continuous approximation when characterizing
the dynamics of SU activities. The system dynamics can then
be written as: for 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 ,

𝑑𝐻𝑗(𝑡) = 𝑟𝑗𝑥𝑗(𝑡)𝑑𝑡− ℐ𝐻𝑗(𝑡)𝑑𝑡, (16)

and for 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 ,

𝑑𝐿𝑖(𝑡)=𝑑𝑁𝑖(𝑡)−
𝑁∑
𝑗=1

(1−ℐ𝐻𝑗(𝑡))ℐ𝐿𝑖(𝑡)𝜉𝑖𝑗(𝑡)𝜁𝑖(𝑡)

×
∏

𝑘∈{1,...,𝑀}∖{𝑖}

[
1− ℐ𝐿𝑘(𝑡)𝜉𝑘𝑗𝜁𝑘(𝑡)

]
𝑑𝑡. (17)

Again, the coupling across SUs is observed in (17). We next
carry out analysis on the moments of SUs’ queue lengths by
focusing on the light traffic regime as before.

B. Moments of SU Queue Lengths

Along the same line as in the single PU channel case, we
first characterize the idle period of PUs. The sample path
description for PU 𝑗 is given by the following PDSDE:

𝑑𝑥𝑗(𝑡) = (1− 𝑥𝑗(𝑡))𝑑𝑁
(𝑗)
𝐻1

(𝑡)− 𝑥𝑗(𝑡)𝑑𝑁
(𝑗)
𝐻2

(𝑡),

𝑑𝐻𝑗(𝑡) = 𝑟𝑗𝑥𝑗(𝑡)𝑑𝑡− ℐ𝐻𝑗(𝑡)𝑑𝑡, (18)

where 𝑁
(𝑗)
𝐻1

(𝑡) (with rate 𝜆
𝐻𝑗

) and 𝑁
(𝑗)
𝐻2

(𝑡) (with rate 𝜇
𝐻𝑗

) are
a pair of Poisson counters driving 𝑥𝑗(𝑡). For better tractability,
we consider the case where the PU channels are 𝑖.𝑖.𝑑. It
follows that 𝑃𝐼𝑗 = 𝑃𝐼𝑗′ , ∀ 𝑗 ∕= 𝑗′. Denote by 𝑃𝐼 = 𝑃𝐼𝑗 for
simplicity. It is easy to show that in the steady state, 𝑃𝐼 can
be calculated as is given in (7).

Next, we turn our attention to study the moments of SUs’
queue lengths. Applying the PDSDE tools, we obtain for SU
𝑖,

𝐸[𝐿𝑖] =
𝜆

−2𝜆+ 2𝛼ℳ
, 𝐸[𝐿2

𝑖 ] =
𝜆(𝜆 + 2𝛼ℳ)

6(𝜆− 𝛼ℳ)2
, (19)

where

𝛼ℳ =

𝑁∑
𝑙=1

𝑀∑
𝑚=1

𝑚−1∑
𝑘=0

(
𝑚−1

𝑘

)
𝑝(1− 𝑝)𝑘

(
1

𝑁

)𝑘+1(
1− 1

𝑁

)𝑚−(𝑘+1)

𝑃𝑚𝑃𝐼

=

𝑀∑
𝑚=1

𝑝𝑃𝐼

(
1− 𝑝

𝑁

)𝑚−1

𝑃𝑚, (20)

with 𝑃𝑚 being given by (8). Furthermore, the mean service
rate 𝜇 in this case can be calculated as:

𝜇 =
1

𝑀

𝑀∑
𝑚=1

𝑚𝑝
𝑁∑
𝑗=1

1

𝑁

𝑚−1∑
𝑘=0

(
𝑚− 1

𝑘

)

×
( 1

𝑁

)𝑘(
1− 1

𝑁

)(𝑚−1)−𝑘

(1− 𝑝)𝑘𝑃𝐼𝑃𝑚

= 𝑝𝑃𝐼(1 − 𝑝
0
)
(
1− 𝑝

𝑁
+

𝑝𝑝
0

𝑁

)𝑀−1

.

It follows that

𝑝
0
= 1− 𝜆

𝑝𝑃𝐼(1− 𝑝
0
)
(
1− 𝑝

𝑁 +
𝑝𝑝

0

𝑁

)𝑀−1
. (21)



WANG et al.: A CHARACTERIZATION OF DELAY PERFORMANCE OF COGNITIVE MEDIUM ACCESS 805

0.002 0.004 0.006 0.008 0.010.001
0

10

20

30

40

50

60

SUs’ data arrival rate: λ

SU
s’

av
er

ag
e

qu
eu

ei
ng

de
la

y

 

 

τ = 0.5, SCH

τ = 0.3, SCH

τ = 0.1, SCH

τ = 0.5, MCH

τ = 0.3, MCH

τ = 0.1, MCH

Fig. 4. Comparison of average queueing delays, for cases with a
single PU channel and with multiple PU channels.

The characterization of 𝑃𝑚 and 𝐸[𝐿𝑖] then follows.

C. Adaptive Algorithm for Optimal Contention Probability

Similar to the single PU channel case, taking derivative with
respect to 𝑝 and setting 𝑑𝑝0/𝑑𝑝 = 0 yields that

𝑝 = min

{
𝑁

𝑀(1− 𝑝
0
)
, 1

}
. (22)

It is not difficult to see that 𝑀(1 − 𝑝
0
)/𝑁 is the average

number of backlogged SUs per PU channel. Based on (22),
similar adaptive algorithms for obtaining optimal 𝑝 can be
developed as in the single PU channel case.

Meanwhile, we note that 𝑝 = 𝑁
𝑀(1−𝑝

0
) holds when 𝑁 <

𝑀(1 − 𝑝
0
). In fact, this is the regime of interest when we

characterize the gain of using multiple PU channels. Here we
present numerical examples to illustrate the above analysis.
The contention probabilities are set to be their optimal values.
As illustrated in Fig. 4 (with 𝑁 = 5,𝑀 = 20 and 𝑟 = 1.2), the
mean queue lengths of SUs decrease significantly when multi-
ple PU channels are present, pointing to a multi-channel gain
therein. An illustration of such a gain was depicted in Fig. 5,
where the gain was defined as the ratio 𝐸[𝐿𝑖]

(𝒮)/𝐸[𝐿𝑖]
(ℳ),

with the superscripts 𝒮 and ℳ denoting the cases with a single
PU channel and multiple PU channels, respectively. It can be
seen that as the arrival rate of SUs increases, or the duty cycle
of PUs increases, the multi-channel gain increases as well.

D. Power of Two Interfaces

Intrigued by the celebrated results in [25] and [26], in this
section, we explore the impact of using two interfaces (radios)
by each SU on the delay performance in a cognitive radio
network.

In this new setting, each SU is equipped with two interfaces
(this can be readily generalized to cases with more radios), and
randomly chooses two channels independently and uniformly
at a time. If the chosen PU channels (denoted as 𝑐1(𝑡) and
𝑐2(𝑡) for SU 𝑖) are unoccupied, the SU contends for each
of them with probability 𝑝. If no collisions occur, it starts
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Fig. 5. Gain of using multiple PU channels.

transmission of different packets on the channels. Clearly,
in this case, each SU can access up to two channels for
transmission at a time, thus decreasing the delay.

The queueing dynamics for the SUs, after fluid approxima-
tion, are updated as: for 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 ,

𝑑𝐿𝑖(𝑡) = 𝑑𝑁𝑖(𝑡)−
∑

{𝑐1,𝑐2}
𝜉𝑖𝑐1(𝑡)𝜉𝑖𝑐2 (𝑡)ℐ𝐿𝑖(𝑡)𝜁𝑖(𝑡)

×
(
𝐷1 +𝐷2

)
𝑑𝑡, (23)

where 𝐷1 (respectively, 𝐷2) denotes the event that channel 𝑐1
(respectively, 𝑐2) is available6.

As in the case with a single interface7, we obtain that for
SU 𝑖,

𝐸[𝐿𝑖] =
𝜆

−2𝜆+ 2𝛼𝒞
, 𝐸[𝐿2

𝑖 ] =
𝜆(𝜆 + 2𝛼𝒞)

6(𝜆− 𝛼𝒞)
2
, (24)

where

𝛼𝒞 =

𝑀∑
𝑚=1

2𝑃𝐼𝑝
(
1− 2𝑝

𝑁

)𝑚−1

𝑃𝑚. (25)

Following similar steps as in the previous cases, we obtain
the optimal contention probability to be

𝑝 = min

{
𝑁

2𝑀(1− 𝑝0)
, 1

}
, (26)

from where we note that
𝑀(1−𝑝

0
)

𝑁/2 is intuitively the average
number of backlogged SUs per PU channel. Adaptive algo-
rithms similar to that described by (13) and (14) can be devised
to find the optimal 𝑝.

Different from the multi-channel gain, the power of two
choices is typically analyzed in the regime where 𝑁 >> 𝑀 .
With this insight, we next focus on the case where 𝑁 ≥ 2𝑀
and characterize the gain of using two interfaces per SU. It is
clear that when 𝑁 ≥ 2𝑀 , the optimal contention probability
is given by 𝑝 = 1. It follows that 𝛼ℳ and 𝛼𝒞 can be rewritten

6Specifically, we have 𝐷1 =
(
1 − ℐ𝐻𝑐1 (𝑡)

)∏
𝑘∈{1,...,𝑀}∖{𝑖}

[
1−

ℐ𝐿𝑘(𝑡)ℐ(𝜉𝑘𝑐1(𝑡)=1)ℐ(𝜁𝑘(𝑡)=1)
]
, and 𝐷2 is obtained similarly.

7See [2] for detailed derivations.
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Fig. 6. Gain of using two interfaces.

as8

𝛼ℳ=

𝑀∑
𝑚=1

𝑃𝐼

(
1− 1

𝑁

)𝑚−1

𝑃𝑚, 𝛼𝒞=

𝑀∑
𝑚=1

2𝑃𝐼

(
1− 2

𝑁

)𝑚−1

𝑃𝑚.

(27)
Also, the mean service rate and the empty probability of SUs
are updated accordingly (detailed expressions can be found in
[2]). The mean queue lengths of SUs for the two cases can
be readily derived subsequently.

We next characterize the gain of using two interfaces under

this regime. Let 𝜓 ≜ 𝐸[𝐿𝑖]
(ℳ)

𝐸[𝐿𝑖]
(𝒞) , where 𝐸[𝐿𝑖]

(ℳ)

and 𝐸[𝐿𝑖]
(𝒞)

denote the mean queue lengths of SUs for the cases with a
single interface and two interfaces respectively. When 𝑀 is
fixed and 𝑁 → ∞, we have that

lim
𝑁→∞

𝜓 = lim
𝑁→∞

𝛼𝒞 − 𝜆

𝛼ℳ − 𝜆
=

2
(
1− (1−√

𝜌/2)𝑀
)− 𝜌(

1− (1 −√
𝜌)𝑀

)− 𝜌
,

(28)
where 𝜌 = 𝜆/𝑃𝐼 is the traffic intensity. Fig. 6 depicts the
gain as a function of the traffic intensity. As expected, the
application of two interfaces provides significant gain by
decreasing the mean queue lengths, and as the traffic intensity
grows larger, the gain increases as well.

V. ADAPTIVE PACKET GENERATION CONTROL UNDER

DELAY CONSTRAINTS

In previous sections, we analyzed SUs’ delay performance
for different scenarios in the light traffic regime. As expected,
larger delay can occur with increased arrival rate or decreased
spectrum opportunities. Accordingly, when a stringent delay
requirement is imposed on the SUs, effective control mecha-
nisms (e.g., rate-limiting) are called for to regulate SUs’ traffic
in order to meet the requirement. In this section, we turn our
attention to study such scenarios and design traffic control
strategies that regulate SUs’ packet generation to satisfy the
delay constraint. In particular, we are interested in packet
generation control, where the SUs either use a randomized
strategy, or a queue-length-based control mechanism. In the

8See [2] for more details.

SU i’s packet 
generation 

yi(t)

Fig. 7. An illustration of packet generation control.

following, we focus on the case with a single PU channel.
The analysis readily extends to the case with multiple PU
channels.

For notational convenience, let 𝑦𝑖(𝑡) be the control process
that regulates SU 𝑖’s packet generation, i.e., 𝑦𝑖(𝑡) is a Bernoulli
random variable taking two values: 0 or 1. When 𝑦𝑖(𝑡) = 1, SU
𝑖 generates new packets, according to the Poisson distribution
with rate 𝜆, at time 𝑡; otherwise, no new packets are produced,
as illustrated in Fig. 7.

Applying fluid approximation, the PDSDE of SU 𝑖 is written
as

𝑑𝐿𝑖(𝑡) = 𝑦𝑖(𝑡)𝑑𝑁𝑖(𝑡)− 𝐹 (𝑡)𝑑𝑡. (29)

Based on the properties of PDSDE, we obtain for 𝑛 ≥ 2,

𝑛𝐸[𝐿𝑛−1
𝑖 𝐹 ]−

𝑛∑
𝑘=1

(
𝑛

𝑘

)
𝐸[𝐿𝑛−𝑘

𝑖 𝑦𝑘]𝜆 = 0. (30)

Suppose that the delay requirement on the SUs is given as

Pr(𝐷 ≥ 𝐷0) ≤ 𝛿, (31)

where 𝐷 denotes the queueing delay of one SU; 𝐷0 ∈ ℕ and
𝛿 ∈ (0, 1) are positive constants and known to all users a
priori. Appealing to Markov’s Inequality and Little’s Law, a
sufficient condition in meeting the delay constraint (31) can be
expressed in terms of the SUs’ mean queue length as follows:

𝐸[𝐿𝑖] = 𝜆0𝐸[𝐷] ≤ 𝜆0𝛿𝐷0, (32)

where 𝜆0 is the average packet arrival rate of each SU, under
the delay constraint.

A. Randomized Packet Generation Control by SUs

In the randomized packet generation control, SUs generate
new packets with probability 𝑞, independently across users and
time, i.e.,

𝑦𝑖(𝑡) =

{
1, w.p. 𝑞,
0, w.p. 1− 𝑞,

(33)

Based on (30), we obtain

𝐸[𝐿𝑖] =
𝜆𝐸[𝑦2𝑖 ]

−2𝜆𝐸[𝑦𝑖] + 2𝛼𝒮
=

𝜆𝑞

−2𝜆𝑞 + 2𝛼𝒮
, (34)

where 𝛼𝒮 is given by (11) and 𝑃𝑚 by (8), with 𝑝
0
= 1− 𝜆0

𝜇 =

1− 𝜆0

𝑝𝑃𝐼 (1−𝑝0 )(1−𝑝+𝑝𝑝0 )
𝑀−1 and 𝜆0 = 𝜆𝑞.

Using a similar approach, it can be shown that the optimal
contention probability 𝑝 is the same as given in (12), and the
corresponding stochastic algorithm given by (13) and (14) can
be applied to update 𝑝

0
and 𝑝 by the SUs.

Intuitively, the larger the control parameter 𝑞, the higher the
buffer occupancy and SUs’ queueing delay. In particular, we
are interested in finding out the maximum 𝑞 satisfying (32),
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Fig. 8. 𝑞𝑚𝑎𝑥 under different SU arrival rates and delay requirements.

i.e.,
𝑞𝑚𝑎𝑥 = max{𝑞 ∈ [0, 1] : 𝐸[𝐿𝑖] ≤ 𝑞𝜆𝛿𝐷0}. (35)

Since a closed-form expression for 𝑞𝑚𝑎𝑥 is not attainable, we
next conduct numerical study to find 𝑞𝑚𝑎𝑥 under different
delay requirements and SUs’ data arrival rates. As shown in
Fig. 8 (with 𝑀 = 20), when the arrival rate increases, or the
delay requirement becomes more strict (i.e., with a smaller
value of the product 𝛿𝐷0), the maximum traffic admission
probability decreases.

B. Threshold-based Packet Generation Control by SUs

Different from the randomized control strategy outlined
above, in the threshold-based control scheme, each SU decides
whether to generate new packets by comparing its current
queue length with a threshold 𝐿0: if the queue length is smaller
than or equal to 𝐿0, the SU generates data at rate 𝜆; otherwise,
no traffic is generated, i.e.,

𝑦𝑖(𝑡) =

{
1, 𝐿𝑖(𝑡) ≤ 𝐿0,
0, 𝐿𝑖(𝑡) > 𝐿0.

(36)

Correspondingly, we have

𝑝0 = 1− 𝜆Pr(𝐿𝑖 ≤ 𝐿0)

𝜇
, (37)

and the mean queue length of the SUs can be derived as (we
omit details here for brevity)

𝐸[𝐿𝑖]=
𝜆

2𝛼𝒮

(
𝐸[𝐿𝑦] + 𝐸[𝑦2]

)

=
𝜆

2𝛼𝒮

(
2

𝐿0∑
𝑘=1

Pr(𝑘 ≤ 𝐿𝑖 ≤ 𝐿0)+Pr(𝐿𝑖 ≤ 𝐿0)
)
.(38)

As in (32), a sufficient condition for meeting the delay
constraint is

𝐸[𝐿𝑖] ≤ 𝜆Pr(𝐿𝑖 ≤ 𝐿0)𝛿𝐷0. (39)

Clearly, based on (38), a closed-form expression on the
average queue length is not attainable. However, distributed
adaptive learning, similar to (13) and (14), can be performed
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Fig. 9. Pr(𝐿𝑖 ≤ 𝐿0) under different SU arrival rates and delay
requirements.
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Fig. 10. Control threshold 𝐿0 under different SU arrival rates and
delay requirements.

by the SUs to dynamically adjusting the threshold 𝐿0 and
control the traffic accordingly. We next carry out simula-
tions (over 4 × 104 trials) to study the performance of the
threshold-based control mechanism. Again, we are interested
in obtaining the best 𝐿0 that leads to the maximum traffic
admission probability Pr(𝐿𝑖 ≤ 𝐿0) with which the sufficient
condition can still be satisfied. Figs. 9 and 10 depict a few
simulation results on the maximum probability Pr(𝐿𝑖 ≤ 𝐿0)
and the corresponding threshold 𝐿0, respectively. It can be
seen that when 𝜆 increases, or the delay requirement becomes
more stringent, the traffic admission probability Pr(𝐿𝑖 ≤ 𝐿0)
decreases, and so does the threshold 𝐿0.

VI. CONCLUSIONS

In this paper, we have carried out delay analysis for a cogni-
tive radio network. We took a stochastic fluid queue approach
and modeled the system using Poisson driven stochastic
differential equations. We characterized the moments of the
queue lengths of SUs, for cases with a single PU channel and
multiple PU channels. The impact of the PU traffic on SUs’
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queue lengths and the gain of using multiple PU channels were
examined. Also, we explored the gain of using two interfaces
per SU. Adaptive algorithms, using local information only,
have been developed to find the optimal contention probabil-
ities that achieve the minimum mean queue lengths and thus
the minimum queueing delays of SUs.

Our analysis and numerical examples revealed that the mean
queueing delay of SUs increases as the duty cycle of the PUs’
traffic increases, pointing to the impact of PU activity on the
delay performance of SUs. Also, when multiple PU channels
were employed, we observed a decrease in the mean queueing
delay, indicating a multi-channel gain. Moreover, if each SU is
equipped with two interfaces, there is a decrease in the mean
queueing delay because of the gain of using two choices.

Finally, we also studied packet generation control on the
SUs, when delay constraints were imposed. We developed two
control mechanisms, one randomized and the other utilizing
SUs’ queue lengths, and evaluated their performance.

APPENDIX

Lemma 6.1: The fixed point equation (9) has a unique
solution 𝑝

0
.

Proof: Let Γ(𝛾) = (1 − 𝛾)(1 − 𝑝+ 𝑝𝛾)𝑀−1, 𝛾 ∈ [0, 1).
The first-order derivative of Γ w.r.t. 𝛾 is given by

𝑑Γ(𝛾)

𝑑𝛾
= (1 − 𝑝(1− 𝛾))𝑀−2(𝑀𝑝(1− 𝛾)− 1). (40)

Recall from (12), we have 𝑝 ≤ 1
𝑀(1−𝑝

0
) , indicating that

𝑑Γ(𝑝
0
)

𝑑𝑝
0

≤ 0 and Γ(𝑝0) is nonincreasing in 𝑝0 . It follows

that 1 − 𝜆
Γ(𝑝

0
) is nonincreasing in 𝑝

0
as well. Based on this

monotonicity property (cf.[27]), we conclude that there is one
unique solution to the the fixed point equation given by (9).
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