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Optimal Operation and Economic Value of Energy
Storage at Consumer Locations

Yunjian Xu and Lang Tong

Abstract—We study the optimal operation and economic value
of energy storage operated by a consumer who seeks to maximize
her long-term expected payoff (utility perceived from energy
consumption minus energy cost). For a general setting that
incorporates random electricity prices and the inter-temporal
substitution effect in energy demand, we establish a threshold
structure for optimal storage operation policies through a dy-
namic programming approach. For an important special case
with inelastic energy demand, we prove that the consumer’s
maximum expected payoff is piecewise linear in the storage
level; under an additional assumption that both the demand
and prices are deterministic, we further establish the equivalence
between the optimal storage operation problem and a minimum
cost flow problem. These results significantly simplify the (exact)
computation of optimal threshold policies. We define the value of
storage (VoS) as the consumer’s net benefit obtained by optimally
operating the storage. We show that if the consumer can always
buy and sell electricity at the same (realized) price, then it is
optimal for her to use the storage only for arbitrage, and therefore
the VoS does not depend on the consumer’s demand.

Index Terms—Energy storage, Value of storage, Demand re-
sponse, Dynamic programming, Inter-temporal demand

I. INTRODUCTION

Renewable generation capacity is expanding rapidly to po-
tentially reduce carbon dioxide emissions and dependence on
fossil fuels. As non-dispatchable generation, renewable energy
introduces variability into the energy portfolio, and further
amplifies the difficulty of matching demand with supply in the
real time. Energy storage devices (e.g., batteries, flywheels,
and plug-in electric vehicles) are environmentally friendly
candidates that can provide flexibility to the system and
mitigate the impact of volatile renewable generations [2].

The focus of this paper is on the operation of consumer-
owned electric storages. Our motivation stems from the poten-
tial of electricity consumers to own and use storage devices
(e.g., major consumers like data centers [3], [4] and individual
consumers who own PHEVs (plug-in hybrid electric vehicles)
[20], [5]) and from a recent study that shows consumer
ownership of storage can be socially beneficial [6].

The operation of energy storage devices has received a
lot of recent attention. The literature can be broadly divided
into two categories: (i) articles that assume all parameters
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are deterministic time-varying quantities and make one-shot
decisions such as how much to invest in renewable sources
and energy storage, the optimal sizing of storage devices,
etc., and (ii) articles that consider (either independent and
identically distributed or Markovian) random demand, supply
and/or costs, and study the operation of energy storage in
a dynamic setting. The present paper belongs to the second
category.

For category (i), the authors of [8] develop a nonlinear
optimization program to evaluate the value of hydropower
storage in offsetting wind power intermittence. The authors
of [9] characterize the energy storage requirements for a
balancing area or interconnections under different level of
renewable penetration. The (marginal) value of energy storage
devices is assessed in [10], [11], for two different settings with
and without renewable generation.

We now turn our attention to existing works in category (ii).
There exists a substantial literature on the operation of energy
storage owned by renewable generators or system operators.
The scheduling of energy storage systems has been studied in
order to maximize the joint profit of wind farms and energy
storage systems, through two-stage stochastic programming
[12], stochastic optimal control [7], and model predictive
control (MPC) [13]. The authors of [14] derive an upper bound
on the marginal value of storage (at small installed capacities)
for a transmission-constrained power network. A few recent
works study the optimal operation of energy storage devices,
in order to minimize the mismatch between the available
renewable generation and system load [15], [16], [17]. We note
that the aforementioned works focus on scheduling objectives
that are different from our’s; further, energy storage is assumed
to have 100% charging and discharging efficiency in [15], and
energy demand is assumed to be inelastic in [16], [17].

Another well studied application of energy storage is its use
for arbitrage [19], [20], [21]. A few recent works take a dy-
namic programming approach to derive the arbitrage value of
electric storage, in the presence of dynamic pricing [22], [23],
[24], [25]. Different from the setting in the present paper, the
aforementioned literature assumes that the operator of electric
storages (e.g., an arbitrager) has no demand for electricity and
puts no value on its own electricity consumption.

Closer to the present paper, there is a growing literature
on the operation of consumer-owned electric storages. The
scheduling of energy storage devices in smart homes has
been studied through noncooperative game theoretic analysis
[26], [27] and mixed integer quadratic programming [28].
Leveraging on techniques from Lyapunov optimization, a few
recent papers propose a variety of on-line algorithms that
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are shown to be asymptotically optimal, as storage capacity
increases to infinity [29]. These algorithms are expected to
perform well when storage capacity is significantly larger than
the maximum charging/discharging rates (i.e., if it takes many
hours to fully charge and discharge the storage) [30].

Closely related to this work, the authors of [31], [32] study
the optimal storage operation problem through a stochastic
dynamic programming formulation, and prove the optimality
of two-threshold policies similar to the one characterized in
this paper. Our model (to be presented in the next section)
extends the ones studied in [31], [32] in two significant ways.

1) While it is assumed that consumers cannot sell stored
energy (back to the grid) in [31], and that consumers
can always buy and sell at the same (realized) price in
[32], our model allows the consumer to sell the stored
energy (back to the grid) at an arbitrary price that is not
higher than the (realized) purchasing price. We note that
this generalization leads to non-trivial complication in the
consumer’s sequential decision making problem, due to
the additional dimension of action the consumer could
take to sell stored energy for profits. The mathematical
framework constructed in this paper can be used to study
the operation of storage owned by arbitrageurs, by setting
the consumer’s utility function to be constantly zero.

2) The consumer’s demand is assumed to be inelastic in
[32], and is assumed to be a random quantity that
depends only on the current electricity (purchasing) price
in [31]. The present work employs a more practical (and
naturally, more complicated) consumer demand model
that incorporates the inter-temporal substitution effect
in energy demand. The inter-temporal substitution effect
commonly exists in consumer demand, when a consumer
maximizes her total utility by allocating resources (e.g.,
money) across time [33]. In the context of electricity
consumption, the inter-temporal substitution effect exists
in shiftable and deferrable loads [34], such as the charging
of plug-in electric vehicles, dish washers, and clothes
washers. For such appliances, it is often feasible to
substitute energy consumption inter-temporally.
In our setting, the consumer has a (random) utility
function at each stage, and seeks to maximize her long-
term expected payoff, which is the sum of her total utility
and the (possibly negative) net profit. Further, our model
allows the consumer utility (perceived from energy con-
sumption) to be inter-temporally coupled, i.e., the energy
consumption at stage t could influence the consumer’s
utility functions in future stages. It is worth noting that
the incorporation of inter-temporally correlated consumer
demand results in significant technical challenges in the
characterization of optimal storage operation policies.1

In this paper, we construct a dynamic programming (D-
P) framework to study the challenging sequential decision
making problem on storage operation. For a general setting

1For example, in our setting, the energy consumption at each stage is a
complicated decision that depends on current electricity prices, the current
storage level, future electricity prices, as well as the consumer’s energy
consumption history.

that incorporates both random electricity prices and inter-
temporally correlated consumer demand, we characterize an
optimal policy by two thresholds: (i) if the storage level
is between the two thresholds, do not charge or discharge
the storage; (ii) when the storage level is below the lower
threshold, charge the storage; (iii) if the storage level is above
the higher threshold, discharge the storage to meet the demand
or/and to sell back to the market. To our knowledge, this
work is the first that investigates the optimal storage operation
problem in the context of inter-temporally correlated energy
demand. For a special case with random but inter-temporally
uncorrelated consumer utility functions, we provide a sharper
characterization on an optimal two-threshold policy that can
be effectively computed through backward induction.

The constructed DP framework enables us to study the value
of storage (VoS), which is defined as the consumer’s net benefit
obtained by optimally operating the storage. Leveraging on the
characterization of an optimal two-threshold policy, we show
that the VoS is a concave function of storage capacity,2 and can
be computed by solving a sequence of (deterministic) convex
optimization problems.

Computing optimal operation thresholds is in general com-
putationally challenging. To this end, we consider an important
special case where the consumer has (possibly random) inelas-
tic demand,3 which is the setting of several closely related
works [16], [32]. We show that the consumer’s maximum
expected payoff (the optimal payoff-to-go) is piecewise linear
in the storage level. This result significantly simplifies the (ex-
act) computation of the characterized optimal threshold policy.
Under an additional assumption that both energy demand and
electricity prices are deterministic, we show that the storage
operation problem is equivalent to a minimum cost flow
problem. This equivalence result enables the application of a
variety of minimum cost flow algorithms that can effectively
solve the optimal storage operation problem, e.g., an optimal
greedy algorithm with linear complexity in the number of
stages (originally proposed in [39]).

For a practical setting where the consumer can always buy
and sell electricity at the same (realized) price, we show that
it is optimal for the consumer to use the storage only for
arbitrage, by establishing the existence of an optimal policy
that never withdraws energy from the storage for consumption.
This result holds in a very general setting with arbitrary inter-
temporally correlated consumer demand (cf. the discussion
in Section V). This result enables the consumer to compute
the optimal operation of energy storage without taking into
account her (possibly complicated) energy demand.

We finally note that the storage operation problem is in-
timately related to inventory control problems with random
production cost and uncertain demand [40], [41]. The optimal-
ity of similar threshold policies (e.g., the well known (s, S)
policy) is established for inventory models with fluctuating
demand [42], [43]. Our model differs from the classical

2We note that a qualitatively similar result is developed in [7], for a
different setting with an objective to improve the expected profit of wind
power producers.

3Electricity consumption usually exhibits inelasticity in the short term [35],
[36], especially for large commercial and industrial consumers.
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setting of the inventory control literature in the following
two aspects: (i) instead of the inventory holding cost that
is proportional to the inventory level (storage level in our
model), major losses resulting from storage operation are due
to energy injection and withdrawal (e.g., battery charging and
discharging), and (ii) while inventory could be used only to
meet the (inelastic) demand, and unsatisfied demand is either
backlogged or completely lost, our model allows the consumer
to meet the demand (through purchasing energy from the grid)
at a random per-unit cost, and to sell stored energy back to the
grid at a random per-unit price. As a result, the optimal two-
threshold policy characterized in this paper is different from
(indeed, more complex than) (s, S)-type policies.4

The rest of the paper is organized as follows. Problem
formulation is given in Section II. In Section III, we establish
characterizations on optimal threshold policies. In Section IV,
we consider an important special case where the consumer is
faced with inelastic demand. In Section V, we formally define
the value of storage and characterize some of its properties.
In Section VI, we present numerical results using real pricing
data from the New England ISO. We compute the value
of storage under critical peak pricing and day-ahead hourly
pricing, and benchmark a certainty-equivalent heuristic policy
against the optimal policy under random prices. Section VII
closes this paper with brief concluding remarks and possible
directions for future work.

II. MODEL FORMULATION

We study the operation of a finite-capacity storage owned
by an electricity consumer. The consumer has the options of
discharging the storage for its own consumption, charging its
battery from purchased power, and sell its stored electricity
back to the grid. The detailed model of this decision process
has the following elements:

1) Discrete time: Time periods are indexed by t = 0, . . . , T .
2) Storage capacity: At each stage t = 0, . . . , T , let xt ∈

[0, B] denote the storage level at the beginning of stage t,
where B > 0 is the storage capacity (in kWh or MWh).

3) Randomness: For each stage t = 0, . . . , T , let st ∈ St

denote the global state. We assume that the set St is
finite. The global state evolves as an exogenous Markov
chain, of which the transition probability is independent
of the consumer’s action. The global state contains all
the currently available information about all exogenous
factors that have impacts on the consumer’s current/future
demand and payment, such as the current electricity
prices, predictions on future (possibly random) electricity
prices, and weather conditions.

4) Prices: For t = 0, . . . , T − 1 and every global state st ∈
St, let pt(st) ∈ (0,∞) and qt(st) ∈ [0, pt(st)] denote the
electricity purchasing price and the selling price (from the
grid), respectively (in $/kWh or $/MWh).

4Under an (s, S)-type policy, if the inventory level is below the threshold
s then increase the inventory to the order-up-to level S [42], [43]. The
two-threshold policy characterized in this paper, on the other hand, has an
additional threshold if the storage level is above which then discharge the
storage for consumption or selling back to the grid.

5) Electricity consumption: For t = 0, . . . , T − 1, let ct ∈
[0,∞) denote the amount of energy purchased (from the
grid) for consumption at stage t, and let dt ∈ [0,∞)
be the amount of energy withdrawn from the storage for
consumption.

6) Consumer state: We let ft ∈ R denote the state of
consumer, which reflects the consumer’s desirability for
energy consumption, and has an impact on her utility
perceived from electricity consumption.

7) Consumer utility: For t = 0, . . . , T − 1, the consumer
receives a utility ut(ct+dt, st, ft), which depends on her
electricity consumption ct + dt, the global state st, and
her own state ft. Naturally, the utility function is non-
decreasing in her desirability for energy consumption ft.
For every t ∈ {0, . . . , T−1} and every st ∈ St, the utility
function is concave in (ct+dt, ft) and non-decreasing and
continuously differentiable in ct + dt, with5

lim
y→∞

u′
t(y, st, ft) = 0, ∀ ft ∈ R. (1)

8) Charging and discharging: For t = 0, . . . , T − 1, the
consumer purchases at ∈ R amount of electricity for stor-
age. at is negative if the consumer sells the stored energy
to the market. For the rest of the paper, we use a+t and a−t
to denote the positive and negative part of at, respectively,
i.e., a+t = max{0, at} and a−t = −min{0, at}.

9) Rate constraints: Let RC and RD denote the maximum
storage charging and discharging rate within one time
period. We have

γa+t ≤ RC , (dt + a−t )/η ≤ RD. (2)

10) Evolution of storage level: Given the storage level and
the action taken at stage t, the storage level at the next
stage is

xt+1 = xt + γa+t − (dt + a−t )/η, (3)

where γ ∈ (0, 1] is the charging efficiency and η ∈ (0, 1]
is the discharging efficiency.6 We assume that the storage
level at the initial stage 0, x0, is exogenous and indepen-
dent of the consumer’s decision.

11) Evolution of consumer state: We assume that the tran-
sition of the consumer’s state is affine, i.e.,

ft+1 = αtft+βt(ct+dt)+ϑt(st), t = 0, . . . , T −1,
(4)

where αt ∈ [0,∞) and βt ∈ [−1, 0] are given real
numbers, and ϑt : St → R is an arbitrary mapping. βt

is assumed to be non-positive because the consumer’s
desirability for energy consumption at stage t+ 1, ft+1,
is non-increasing in her energy consumption ct + dt.

We note that the linear dynamic system formulated above is
more general than the settings of the most closely related liter-

5Here, and in what follows, we use u′
t to denote the derivative of ut with

respect to its first argument (the total energy consumption at stage t).
6Note that we have omitted the self-discharge of the energy storage device,

since for most batteries their self-discharge rate (typically a few percent per
month) is negligible compared to charging/discharging inefficiencies. Indeed,
the storage efficiency of many different types of modern batteries (e.g., Lead
acid, Li-ion, and Vanadium redox batteries) is close to 100% [44].
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ature (that applies dynamic programming to study consumer-
owned energy storage operation). We elaborate below.

1) A natural special case of our model is the setting with a
single consumer state (i.e., αt = 1, βt = 0, and ϑt(st) =
0 for every t). In this setting, the consumer has random
utility functions that are not inter-temporally correlated.
This setting allows the consumer to tradeoff her energy
consumption with the current electricity price as well as
the value of storage (that depends on future prices and
demand), and is indeed more general than the models
studied in related works [31], [32].

2) The introduction of consumer state ft enables us to
model the inter-temporal substitution effect in consumer
demand: the action taken at stage t can influence the
utility function at stage t+1 through the state ft+1. Our
setting with a time-varying consumer state ft can there-
fore incorporate a larger category of consumer demands.
As an example, consider appliances that require a certain
amount of energy consumption before a certain time, e.g.,
deferrable loads such as the charging of PHEVs, dish
washers, and clothes washers [48], [49]. The consumer
state ft can be set as the remaining amount of energy
needed to complete the task (with αt = 1 and βt = −1
for every t). The consumer utility function becomes
constantly zero if the consumer state ft becomes zero.
Our formulation allows the consumer utility to depend
on the remaining amount of energy needed to finish the
task (through the consumer state ft).

We are now ready to formulate the operation problem as a
(T + 1)-stage dynamic program (DP) by introducing its state
space, action sets, transition probabilities, and stage cost. At
each stage t, the system state consists of the current storage
level, xt, the global state st, and the consumer state ft. For
notational convenience, we let zt = (xt, st, ft) denote the
system state at stage t.

For t = 0, . . . , T−1, a feasible action is a vector (at, ct, dt)
that satisfies the rate constraints in (2), and the following
constraint:

0 ≤xt + γa+t − (dt + a−t )/η ≤ B, (5)

where the first inequality is to avoid storage underflow, and the
second inequality is to prevent storage overflow. We let A(xt)
denote the (convex and compact) set of feasible actions at
storage level xt. Without loss of generality, we have assumed
(in (5)) that the consumer never charges and withdraws the
storage simultaneously, i.e., dt > 0 implies at ≤ 0 and at > 0
implies dt = 0.

The evolution of storage levels is deterministic, and is
governed by (3). The evolution of the global state is random
and independent of the current storage level and the actions
taken by the consumer. For t = 0, . . . , T −1, the stage payoff
is given by

wt(zt, at, ct, dt)

= ut(ct + dt, st, ft)− pt(st)(a
+
t + ct) + qt(st)a

−
t .

(6)

At the terminal stage T , no action is available, and the
stage payoff is given by wT (xT , sT , fT ), which reflects the

salvage value of storage. Suppose that wT (xT , sT , fT ) is
continuously differentiable in xT , non-decreasing and concave
in (xT , fT ) for every sT ∈ ST . We further assume that the
cross derivatives of the terminal-stage payoff function are non-
negative, i.e., under any global state sT , wT (x

′
T , sT , fT ) −

wT (xT , sT , fT ) is non-decreasing in fT , for any given
x′
T > xT , and that wT (xT , sT , f

′
T )−wT (xT , sT , fT ) is non-

decreasing in xT , for any given f ′
T > fT .7

A policy π = (µ0, . . . , µT−1) is a sequence of decision
rules such that µt(zt) ∈ A(xt), for all zt and t. We let V π

t (zt)
denote the payoff-to-go function under a policy π and the
current system state zt = (xt, st, ft):

V π
t (zt) = wt(zt, µt(zt))

+E
{∑T−1

τ=t+1 wτ (zτ , µτ (zτ )) + wT (zT ) | st
}
,

(7)

where the expectation is over the sequence of global states
{sτ}Tτ=t+1, conditioned on the current global state st. We
note that since the marginal utility converges to zero (cf. (1)),
and the purchasing price is always positive, the payoff-to-go
function is always bounded, under any policy π. By a slight
abuse of notation, we use Vt(zt) to denote the optimal payoff-
to-go function, i.e.,

Vt(zt)
∆
= sup

π
{V π

t (zt)}. (8)

We say a policy π∗ is optimal, if it attains the optimal payoff-
to-go defined above, i.e., V π∗

0 (z0) = V0(z0), for all initial
states z0.

III. OPTIMAL STORAGE OPERATION

In this section, we study the storage operation problem
faced by the consumer. In Section III-A, we first consider
the general formulation introduced in Section II. We show
that the optimal payoff-to-go is concave in (xt, ft), which
enables us to establish a threshold structure of an optimal
policy in Theorem 3.1. In Section III-B, we consider a special
case without inter-temporally correlated demand, and provide
a sharper (threshold) characterization on an optimal policy.

A. The General Case

Lemma 3.1: For t = 0, . . . , T and every s ∈ St, the
optimal payoff-to-go function Vt(x, s, f) is concave in the
vector (x, f). �

The proof of Lemma 3.1 is given in Appendix A. For t =
0, . . . , T − 1, the Bellman’s equation yields

Vt(xt, st, ft) = max(at,ct,dt)

{
wt(xt, st, ft, at, ct, dt)

+V̄t+1|st(xt+1, ft+1)
}
,

(9)

where xt+1 is determined by (3), ft+1 is given by (4), and
V̄t+1|st(xt+1, ft+1) denote the (conditional) expected payoff-
to-go function at stage t+ 1, i.e., for t = 0, . . . T − 1

V̄t+1|st(xt+1, ft+1)
∆
= E{Vt+1(xt+1, st+1, ft+1) | st}, (10)

7This assumption naturally holds for deferrable loads with fT denoting the
remaining amount of energy needed to complete the task.
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where the expectation is over the global state st+1, provided
that the global state at stage t is st. Since the feasible action
space A(xt) is convex, it is straightforward to check that
given the optimal payoff-to-go at stage t+1, the optimization
problem on the right hand side of (9) is concave. Later in this
section, we will provide (in Theorem 3.1) a characterization
on an optimal policy that solves the optimization problem on
the right hand side of (9).

It follows from Lemma 3.1 and (10) that V̄t|s(x, f) must
be concave, for every t and s ∈ St. We therefore have
the existence of its right and left directional derivatives on
both x and f .8 For the rest of this paper, we use notations
∂+
x V̄t|s(x, f) and ∂−

x V̄t|s(x, f) to denote the right and left
directional derivative of V̄t|s(x, f) with respect to x, respec-
tively. ∂+

f V̄t|s(x, f) and ∂−
f V̄t|s(x, f) are similarly defined.

We write the expected payoff-to-go on the right hand side
of (9) in terms of the action vector (at, ct, dt),

ut(ct + dt, st, ft)− pt(st)(a
+
t + ct) + qt(st)a

−
t

+V̄t+1|st
(
xt + γa+t − (dt + a−t )/η, ft+1

)
,

(11)

where ft+1 = αtft + βt(ct + dt) + ϑt(st).
Eq. (11) enables us to write the first-order conditions that

are necessary and sufficient for an action vector (at, ct, dt) to
be optimal under a given system state (xt, st, ft); these first-
order conditions are given in Eq. (12) (locating at the top of
next page), where xt+1 is given by (3) and ft+1 is given by (4).
Given the current system state zt = (xt, st, ft), we let yt(zt)
denote the maximum optimal amount of energy procurement
for consumption if at and dt are forced to be zero, i.e., yt(zt)
is the maximum ct that satisfies the first two conditions in (12),
with dt = 0, xt+1 = xt, and ft+1 = αtft + βtct + ϑt(st).

The following lemma establishes conditions under which it
is optimal not to charge or discharge the storage.

Lemma 3.2: Given the current system state zt, it is optimal
not to charge or discharge the storage, i.e., a∗t = 0 and d∗t = 0,
if the following two conditions hold simultaneously

max
{
qt(st), u

′
t(yt(zt), st, ft) + βt∂

−
f V̄t+1|s(xt, ft+1)

}
−1

η
∂−
x V̄ t+1|st(xt, ft+1) ≤ 0,

(13)
and

γ∂+
x V̄ t+1|st(xt, ft+1)− pt(st) ≤ 0, (14)

where ft+1 = αtft + βtyt(zt) + ϑt(st). �
Lemma 3.2 directly follows from the first-order conditions

in (12). We now define the two thresholds that characterize
an optimal operation policy in Theorem 3.1. We let kt(st, ft)
denote the maximum xt in the interval [0, B] such that the
condition in (13) holds; if the condition in (13) does not hold
even for xt = 0, we let kt(st, ft) = 0. We let ht(st, ft) denote
the minimum xt in the interval [0, B] such that the condition
in (14) holds; if the condition in (14) does not hold even for
xt = B, we let ht(st, ft) = B.

It is straightforward to check (from the first-order conditions
in (12)) that the two conditions in Eqs. (13) (14) cannot be

8Indeed, since V̄t|s(·) is concave, it must be continuously differentiable at
all points in (0, B)× R but at most countably many points.

violated simultaneously, because given any system state zt =
(xt, st, ft),

u′
t(yt(zt), st, ft) + βt∂

−
f V̄t+1|s(xt, ft+1) ≤ pt(st). (15)

It follows that for any xt > kt(st, ft), since the condition in
(13) is violated, the condition in (14) must hold. We therefore
have ht(st, ft) ≤ kt(st, ft), for all possible st and ft.

Theorem 3.1: There exists an optimal policy π∗ =
(µ∗

0, . . . , µ
∗
T−1) characterized by the two thresholds ht(st, ft)

and kt(st, ft).
(a) If the storage level xt is below the threshold

ht(st, ft), then charge the storage and purchase
electricity for consumption, i.e., d∗t = 0, a∗t > 0,
and c∗t ≥ 0.

(b) If xt is between the two thresholds, i.e., if xt ∈
[ht(st, ft), kt(st, ft)], then keep the storage level,
and purchase electricity for consumption, i.e., a∗t =
0, c∗t = yt(zt), and d∗t = 0.

(c) If xt is above the threshold kt(st, ft), then discharge
the storage to meet demand and/or sell back to the
market, i.e., a∗t ≤ 0, c∗t ≥ 0 and d∗t ≥ 0. �

The proof of Theorem 3.1 relies on the concavity of the
value function V̄t+1|st and the first-order conditions in (12).
This proof is deferred to Appendix B.

B. A Special Case without Inter-temporally Correlated De-
mand

In this subsection, we consider a special case with a single
consumer state, i.e., αt = 1, βt = 0, and ϑt(st) = 0 for every
t. Since there is a single consumer state, we will drop ft from
all notations used in this subsection.

In this special case, the two thresholds no longer depend on
yt(zt). The threshold kt(st) is defined as the maximum xt in
the interval [0, B] such that the condition in (13) holds,

∂−
x V̄ t+1|st(xt) ≥ ηmax{qt(st),min{pt(st), u′

t(0, st)}}.

We note that kt(st) is simply the threshold kt(st, ft) (defined
in Section III-A) for the special case with a single consumer
state. In this case, the term u′

t(yt(zt), st, ft) in (13) equals
min{pt(st), u′

t(0, st)}, because at the optimal procurement
level yt(zt) the marginal consumer utility equals pt(st) as
long as yt(zt) > 0.

Let ht(st) denote the minimum xt in the interval [0, B]
such that the following condition holds,

γ∂+
x V̄ t+1|st(xt) ≤ pt(st).

A sharper characterization of an optimal two-threshold
policy is provided in Corollary 3.1. We first (re-)define a few
notations that would be useful in this corollary. Analogous to
yt(zt) defined in Section III-A, the scalar yt(st) is defined as
the optimal amount of energy procurement (for consumption)
if at and dt are set to be zero:

yt(st)
∆
=


max{y : u′

t(y, st) = pt(st)},
if u′

t(0, st) > pt(st),

0, otherwise.
(16)
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

u′
t(ct + dt, st, ft)− pt(st) + βt∂

−
f V̄t+1|st(xt+1, ft+1) ≤ 0, if ct ≥ 0,

u′
t(ct + dt, st, ft)− pt(st) + βt∂

+
f V̄t+1|st(xt+1, ft+1) ≥ 0, if ct > 0,

u′
t(ct + dt, st, ft)−

1

η
∂−
x V̄t+1|st(xt+1, ft+1) + βt∂

−
f V̄t+1|st(xt+1, ft+1) ≤ 0, if dt ≥ 0,

u′
t(ct + dt, st, ft)−

1

η
∂+
x V̄t+1|st(xt+1, ft+1) + βt∂

+
f V̄t+1|st(xt+1, ft+1) ≥ 0, if dt > 0,

−pt(st) + γ∂+
x V̄t+1|st(xt+1, ft+1) ≤ 0, if a+t ≥ 0,

−pt(st) + γ∂−
x V̄t+1|st(xt+1, ft+1) ≥ 0, if a+t > 0,

qt(st)−
1

η
∂−
x V̄t+1|st(xt+1, ft+1) ≤ 0, if a−t ≥ 0,

qt(st)−
1

η
∂+
x V̄t+1|st(xt+1, ft+1) ≥ 0, if a−t > 0,

(12)

yt(st) is indeed the maximum optimizer that maximizes the
stage payoff of a consumer without storage, ut(y, st)−ypt(st),
over y ∈ [0,∞). Analogously, we define et(st) as the
maximum optimizer that maximizes ut(z, st)− eqt(st).

Finally, we let gt(st) ∈ [0, B] denote the maximum storage
level at which the expected marginal storage value (at stage
t+ 1) is no less than the adjusted selling price ηqt(st), i.e.,

gt(st)
∆
=



0, if ∂+
x V̄t+1|s(0) ≤ ηqt(st),

B, if ηqt(st) ≤ ∂−
x V̄t+1|s(B),

max{g ∈ [0, B) : ∂+
x V̄t+1|s(g) ≥ ηqt(st)},

otherwise.
(17)

The concavity of V̄t+1|s(·) and the fact that qt(s) ≤ pt(s)
imply that gt(s) ≥ ht(s). We therefore have ht(st) ≤
kt(st) ≤ gt(st).

Corollary 3.1: Suppose that there is a single consumer
state, i.e., αt = 1, βt = 0, and ϑt = 0 for every t. There
exists an optimal policy π∗ = (µ∗

0, . . . , µ
∗
T−1) characterized

by the two thresholds ht(st) and kt(st).
(a) If the storage level xt is below the threshold ht(st),

then greedily charge the storage up to this level,
and purchase electricity for consumption, i.e., c∗t =
yt(st), d∗t = 0, and

a∗t = min
{
RC/γ, (ht(st)− xt)/γ

}
,

where RC is the maximum charging rate.
(b) If the storage level xt is between the two thresholds,

i.e., if xt ∈ [ht(st), kt(st)], then keep the storage
level, and purchase electricity for consumption, i.e.,
a∗t = 0, c∗t = yt(st), and d∗t = 0.

(c) If the storage level xt is above the threshold
kt(st, ft), then greedily discharge the storage to meet
demand and/or sell back to the market. d∗t is given
in (18) (locating at the top of next page),

(a∗t )
− = −min{a∗t , 0}

=
(
ηmin

{
xt − gt(st), R

D
}
− d∗t

)+
,

and c∗t = (yt(st)− d∗t )
+. �

The proof of Corollary 3.1 is given in Appendix C. We note
that for the special case with a single consumer state, Corollary
3.1 provides a sharper characterization (than Theorem 3.1)
on an optimal two-threshold policy that can be computed in
closed form by backward induction.

IV. COMPUTATION OF THE OPTIMAL THRESHOLD POLICY
UNDER INELASTIC DEMAND

In this section, we consider a special case of the model
formulated in Section II, where each consumer is faced with
inelastic energy demand. In Section IV-A, we prove that
the optimal payoff-to-go function is piecewise linear in the
storage level xt, for a case with random (inelastic) demand and
electricity prices. This important structural result could signifi-
cantly simplify the computation of the optimal threshold policy
characterized in Corollary 3.1. In Section IV-B, for the case
with deterministic (inelastic) demand and electricity prices, we
formulate the optimal storage operation as a minimum cost
flow problem, and establish the optimality of a simple greedy
algorithm with linear complexity in the number of stages.

Within this section, we assume that the salvage value is
linear, i.e.,

VT (xT , sT ) = ηqT (sT )xT , (19)

where qT ≥ 0 is a deterministic constant.

A. Stochastic Demand and Prices

For t = 0, . . . , T − 1, let `t(st) denote the consumer’s
inelastic demand at stage t, i.e., the consumer demands `t(st)
amount of energy consumption at the global state st, regardless
of the current and future electricity prices. Note that the
inelastic demand setting can be viewed as a special case
of utility-function based model formulated in Section II, by
letting

ut(ct+dt, st) = R·min{ct+dt, `t(st)}, t = 0, . . . , T−1,
(20)

where ct + dt is the energy consumption at stage t, and
the marginal utility R is larger than the highest possible
purchasing price. Since there is only one consumer state,
within this subsection we will drop ft from notations.
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d∗t =

 supd≤min{ηxt,et(st),ηRD}
{
d : ∂+

x V̄ t+1(xt − d/η) ≤ ηmin{u′
t(d, st), pt(st)}

}
, if u′

t(0, st) > qt(st),

0, otherwise,
(18)

Theorem 4.1: Suppose that the consumer’s energy demand
is inelastic (given in Eq. (20)). For t = 0, . . . , T−1, V̄t+1|st(x)
is non-decreasing, concave, and piecewise linear in x. As a
result, ∂±V̄t+1|st(x) are step functions over x ∈ [0, B].

The proof of Theorem 4.1 is given in Appendix D.
Remark 4.1: The structural result established in Theorem

4.1 significantly simplifies the computation of the optimal
policy characterized in Corollary 3.1. We first note that the
computation of this optimal threshold policy relies on the
computation of the partial derivatives {∂±V̄t+1|st(xt+1)}, for
t = 0, . . . , T − 1 and st ∈ St. The computation of these
partial derivatives over the continuous interval xt+1 ∈ [0, B] is
in general highly non-trivial. The structural result established
in Theorem 4.1 ensures that these partial derivatives can
be computed in finite time. Indeed, Eqs. (38) and (39) (in
Appendix D) provide an efficient algorithm that computes
these partial derivatives through backward induction.

B. Deterministic Demand and Prices

In this subsection, we consider the case with deterministic
(inelastic) demand and energy price. Since there is only one
global state, within this subsection we further drop st from
notations. The setting of deterministic prices is motivated by
the fact that many large commercial and industrial consumers
are charged day-ahead prices that are released in advance [37],
[38]. Under day-ahead hourly pricing, for a consumer who
plans for daily storage operation, the hourly electricity prices
(released one day ahead of the real time) can be regarded as
deterministic.

For the special case considered in this subsection, the
optimal storage operation can be obtained by solving a linear
optimization problem. Since ct + dt must equal the inelastic
demand at stage t, there are essentially two decision variables
at each stage. We note that the complexity of this linear
program is roughly cubic in the number of stages.9 We
will formulate the storage operation problem as a minimum
cost flow problem, which can be solved by a simple greedy
algorithm with linear complexity in the number of stages.

We now introduce the minimum cost flow problem that
is equivalent to the storage operation problem faced by the
consumer. The graph presented in Fig. 1 has 2T + 2 nodes
and 3T directed arcs. The graph is connected in that there is
a directed path between every pair of nodes. We let N and L
denote the set of nodes and arcs, respectively. Each arc (i, j) is
associated with a two dimensional vector (cij , uij) indicating
the cost and the capacity of this arc. We also associate each
node i with a real number b(i) that represents demand at node
i (supply if b(i) < 0):

9For example, for a storage owner who faces five-minute real-time balanc-
ing prices, the daily storage operation problem has 288 stages, and a weekly
storage operation problem has 2016 stages.

• for the T nodes {nt}T−1
t=0 , the demand b(nt) equals `t,

which is the consumer’s inelastic energy demand at stage
t;

• for the “source” node s, its demand is b(s) = −
∑T−1

t=0 `t;
• the demand of the other T + 1 nodes is zero.
A set of network flows {yij}(i,j)∈L is feasible if it respects

the capacity constraints of all arcs, and balances the demand
and supply, i.e.,

yij ≤ uij , ∀ (i, j) ∈ L;
∑
j

yji−
∑
j

yij = b(i), ∀ i ∈ N .

The objective of the minimum cost flow problem is to
find a feasible set of flows that minimize the total cost,∑

(i,j)∈L cijyij .
We now argue that the formulated minimum cost flow prob-

lem is equivalent to the optimal storage operation problem. For
t = 0, . . . , T −1, the flow on arc (s,mt) is ηγa+t , the amount
of “withdrawable” electricity charged into the storage at stage
t. The flow on each arc (s, nt) is ct, the amount of electricity
purchased at stage t for consumption. The flow on each arc
(mt, nt) is a−t + dt, the amount of energy withdrawn from
the storage (for consumption and selling back to the grid) at
stage t. The flow on each arc (mt−1,mt) is ηxt, the amount
of “withdrawable” electricity in the storage at the beginning
of stage t. The flow on each arc (nt, d) is a−t , the amount of
energy sold to the grid at stage t. We note that the constraints
in (2) and (5) are incorporated into the minimum cost flow
problem by the capacity constraints of these arcs.

It is worth noting that whenever there is positive flow on
an arc (mt, nt), i.e., if a−t + dt > 0, then it is suboptimal to
have positive flow on the arc (s,mt), i.e., a+t must be zero,
because it is cheaper procure energy from the grid through the
arc (s, nt). For t = 0, . . . , T −1, the stored energy at node mt

can be either kept for future usage (through the arc (mt,mt+1)
to node mt+1) or withdrawn at stage t. For t ≤ T − 1, the
energy withdrawn from the storage can be consumed through
the arc (mt, nt) to node nt, or sold back to the grid through the
arcs (mt, nt) and (nt, d) to the “destination” node d. For the
terminal stage T , there is no limit on the amount of energy
that could be “withdrawn” and therefore the arcs (mT , nT )
and (nT , d) have infinite capacity.

The cost resulting from a feasible set of network flows
{yij}(i,j)∈L is given by∑T−1

t=0

(
ptys,nt

+
pt
ηγ

ys,mt

)
−
∑T

t=0
qtynt,d

=
∑T−1

t=0
pt

(
ct + a+t

)
−
∑T−1

t=0
qta

−
t − ηqTxT ,

(21)

where the equality follows from the discussion above, i.e.,
ys,nt = ct, ys,mt = ηγa+t , ynt,d equals a−t for t < T and
ηxT for t = T . We note that the left hand side of (21) is the
total network flow cost, and the right hand side of (21) is the
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Fig. 1. An equivalent minimum cost flow problem.

consumer’s total energy cost.
We have argued that (i) a feasible set of network flows

corresponds to a feasible storage operation policy, and (ii) the
total cost resulting from a feasible set of network flows equals
the negative of the consumer’s total payoff. As a result, the
network flow cost minimization problem depicted in Fig. 1 is
equivalent to the optimal storage operation problem.

As one of the most fundamental problems in network flow
theory, the minimum cost flow problem has been extensively
explored [45], [46]. Next we will introduce a widely used algo-
rithm (referred to as right-hand-side (RHS) scaling algorithm
in this paper) originally proposed in [39], and then discuss its
optimality and complexity.

The RHS scaling algorithm was proposed to solve uncapac-
itated minimum cost flow problems. We therefore first apply
a well-known transformation to convert the capacitated mini-
mum cost flow problem (defined in Fig. 1) to an uncapacitated
one. We replace each capacitated arc (i, j) with an additional
node k and two arcs (i, k) and (k, j) as shown in Fig. 2. The
virtual node k is a demand node with b(k) = uij , the capacity
of the original arc (i, j), and the demand of node j is reduced
by uij . The transformed graph is bipartite and not connected,
because there are no outgoing arcs from these virtual nodes.

To implement the RHS-scaling algorithm, we assume that
all parameters in the original graph (demand at each node,
cost and capacity associated with each arc) are integers. We let
U = max{{b(i)}i∈N , {uij}(i,j)∈L}, which is the maximum
demand in the transformed (uncapacitated) graph. We note that
such integer approximation leads to negligible approximation
error, if U is made sufficiently large (e.g., 220). It is also worth
noting that the complexity of the RHS-scaling algorithm is
logarithmic in U [47].

We associate each node i of the transformed (uncapacitated)
graph a potential π(i), and define the reduced cost of each
arc (i, j) as

cij := cij − π(i) + π(j). (22)

i j(cij,uij)
i j

(c
ij ,∞

)

k

b(i) b(j)
b(i)

(0
,∞
)

b(k)=uij

b(j)-uij

Fig. 2. Converting a capacitated arc into uncapacitated ones.

The basic idea of this algorithm is to augment ∆ unit of flow
from a supply node to a demand node, through the “shortest”
path between them with the minimum total reduced cost. The
parameter ∆ is initially set to be 2dlogUe ≥ U , and is replaced
by ∆/2 at each iteration. The vector y is a set of flows over
the transformed graph, and the vector e records the residual
demand at each node.

Algorithm RHS-SCALING
begin

set y := 0, e := b, π := 0, and ∆ := 2dlogUe;
while there is an imbalanced node do

S(∆) = {i : b(i) ≤ −∆};
T (∆) = {i : b(i) > −∆}.
while S(∆) 6= ∅ and T (∆) 6= ∅ do

1. let i ∈ S(∆) and j ∈ T (∆);
2. with the updated π, compute the reduced cost

c̄ij for each arc according to (22);
3. considering the reduced cost c̄ij as the length of

every arc (i, j), compute the shortest path distance from node
i to every node k, d(k);

4. augment ∆ units of flow along the shortest path
from node i to node j;

5. π(k) := π(k)− d(k), ∀ k;
6. update y, e, S(∆), and T (∆);

end;
∆ = ∆/2;
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end;
end;

Theorem 4.2: Consider the setting with deterministic in-
elastic demand and electricity prices. The RHS-Scaling al-
gorithm terminates with a feasible set of network flows that
minimizes the total cost. Let y be the flow vector after
the algorithm terminates. It determines an optimal storage
operation policy10, as well as the value of storage expressed
in the following,

T−1∑
t=0

pt`t −
∑
(i,j)

yijcij , (23)

where the second term is the sum over all arcs in the
transformed (uncapacitated) graph. �

The optimality of the RHS-Scaling algorithm is proved in
[47]; in Appendix E we also present a proof for completeness.
Note that the first term in (23),

∑T−1
t=0 pt`t, is the consumer’s

total energy cost without storage, and the second term in (23)
is the consumer’s total energy cost if she optimally operates the
storage (cf. Eq. (21)); the difference between these two costs,
is therefore the value of storage (see its formal definition in
the next section). The complexity of this algorithm increases
linearly with the number of stages T , and scales in the order
of logU [47].

V. VALUE OF STORAGE

For the general setting formulated in Section II, we formally
define the value of storage (VoS), and show that the VoS is a
concave function of the storage capacity B. We then consider
an important special case where the purchasing price always
equals the selling price. We show that the VoS does not depend
on the consumer’s demand; in other words, it is optimal to
operate the storage only for arbitrage. If we further relax
the charging/dischharging rate constraints,11 then the value of
storage is shown to be linear in the storage capacity B.

The optimal payoff-to-go V0(0, s0, f0) is the maximum
expected payoff the consumer could obtain (with a storage
of capacity B), under an initial consumer state f0 and an
initial global state s0. We note that V0(0, s0, f0) is closely
related to the value of storage (VoS), which is defined as the
difference between the maximum expected payoffs achieved
by two consumers, the former of whom owns a storage of
capacity B, and the latter does not own a storage. Formally,
for a consumer with initial state f0, the value of a capacity-B
storage is defined by

VoS(B, f0) = E {V0(0, s0, f0)−
¯
V0(0, s0, f0)} , (24)

where the expectation is over the initial global state s0,
and

¯
V0(0, s0, f0) is the optimal payoff-to-go (of the dynamic

program defined in Section II) with B = 0.

10Earlier in this section we have discussed how a set of feasible network
flows corresponds to a feasible storage operation policy.

11The setting with no charging/dischharging rate constraints is motivated
by the fact that fast-response storage devices are rapidly becoming available;
for example, the lithium-ion titanate batteries are capable of recharging in
approximately 10 minutes to 95% of full capacity [50].

Lemma 3.1 shows that the optimal payoff-to-go at stage t
is concave in the vector (xt, ft) (a joint state of storage level
and consumption status). Hence, the VoS defined in (24) can
be calculated by solving a sequence of (deterministic) convex
optimization problems (on the right hand side of (9)), after the
discretization of the system space.

The following proposition shows that the VoS is concave
in the storage capacity. In other words, the marginal value of
storage decreases as the size of storage increases. Its proof is
deferred to Appendix F.

Proposition 5.1: For every initial state f0, the value of
storage (defined in (24)) is a concave function of the storage
capacity B. �

Next, we derive some strong results for an important
special case where the purchasing price always equals
the selling price, which is the setting used in [32] to study
the optimal storage operation under random inelastic demand.
The following proposition shows that the optimal storage
operation (as well as the value of storage) is independent of the
consumer’s demand. It is worth noting that this result holds for
a more general setting where the consumer’s state transition is
arbitrary, i.e., the next state ft+1 could be an arbitrary function
of the current state ft and the total consumption ct + dt (not
necessarily according to the linear transition defined in (4)).

Proposition 5.2: Suppose that the selling price always e-
quals the purchasing price, i.e., pt(st) = qt(st) for every t and
st ∈ St. The optimal policy is independent of the consumer’s
initial state f0 and utility functions {ut}T−1

t=0 . �
We prove Proposition 5.2 in Appendix G, by showing the

existence of an optimal policy that uses the storage only for
arbitrage. This practically useful result enables the consumer
to compute the optimal storage operation policy according to
Corollary 3.1 (by setting the utility function to be constantly
zero), without taking into account her true energy demand.

VI. NUMERICAL EXAMPLES

In this section, we present several numerical examples that
compute the value of a finite-capacity storage under different
parameter settings (e.g. the storage capacity and prices during
peak hours). In Sections VI-A and VI-B, we will stick to
the setting in Section IV (where the consumer is faced with
deterministic prices and inelastic demand), and apply the RHS
scaling algorithm to compute the optimal storage operation.
In Section VI-C, we consider a more complicated setting with
(Markov modulated) random prices.

In this section, we let each stage last for one hour. For
simplicity, we will consider fast-charging storage devices that
can be fully charged within one hour, i.e., RC = RD = B.
We set the charging efficiency γ = 0.85, and the discharging
efficiency η = 0.85 [51].

A. Storage Operation under Critical Peak Pricing

In this subsection, we consider a simple setting where the
consumer faces two-level deterministic prices and inelastic
demand. This simplified setting incorporates a variety of
demand response programs that have been offered to end
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Fig. 3. Plot of the value of storage under different values of storage capacity
and peak purchasing price.

consumers, for example, the critical peak pricing12 (CPP) used
in California utilities to reduce peaks in consumer end-use
loads.

The consumer is faced with a deterministic time-invariant
price at all stages except one stage of peak period. Formally,
let stage τ ∈ {2, . . . , T − 1} denote the peak hour, and

pτ = pH , qτ = qH ; pt = pL, qt = qL, ∀ t 6= τ.

Let `τ denote the inelastic demand during the peak hour.
Under critical peak pricing, the “critical peak price” during

the peak hour is usually much higher than the normal price.
We will therefore focus on the case with pL/(γη) < qH ≤ pH .
In this case, it is optimal to fully charge the battery at stage
τ−1 and then fully discharge it during at stage τ .13 The value
of storage is given by

min{`τ , ηB}pH − pLB/γ + qH (ηB − `τ )
+
, (25)

where B/γ is the amount of energy procured at the off-peak
period τ − 1, pLB/γ is the payment made by the consumer,
min{`τ , ηB}pH is the consumer’s saving at the peak period
τ , and finally, qH (ηB − `τ )

+ is the revenue earned by the
consumer if she sells energy (back to the grid) at stage τ .

We assume that pL = qL and pH = qH , i.e., the purchasing
price always equals the selling price. In this case, we observe
from Eq. (25) that the VoS is independent of the inelastic
demand during the peak hour, `τ . This is in accordance with
Proposition 5.2.

Let the off-peak price be pL = qL = 0.05$/kWh. We con-
sider the case where the peak-hour price is at least 0.3$/kWh.
Since pL/(γη) < qH = pH , the value of storage is expressed
in Eq. (25). We observe from both Eq. (25) and Fig. 3 that
the value of storage increases linearly with the peak price pH ,
as well as the storage capacity B.

B. Storage Operation under Day-ahead (hourly) Pricing

We now consider a more complicated setting where the con-
sumer pays (deterministic) day-ahead hourly prices. Suppose
that the consumer is faced with one of the two trajectories of

12Although contracts offered by different utilities may vary, consumers
participating in a CPP program typically face higher electricity prices during
critical peak periods (e.g., one hour in a hot summer afternoon), and will
receive notice (from utility companies) one day before the peak hour.

13If pL/(γη) ≥ pH then it is optimal not to charge the storage. Otherwise,
if qH ≤ pL/(γη) ≤ pH then it is optimal to charge the storage to level
min{`τ/η,B} at stage τ−1 and withdraw the storage only for consumption
at stage τ .
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Fig. 4. Real-time prices and actual system load, ISO New England Inc. Blue
bars represent the real-time system loads and the dots connected by a black
line represent the hourly prices.
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Fig. 5. The left (right) subplot is the value of storage for the 11-hour price
trajectory depicted on the left (right, respectively) subplot of Fig. 4.

day-ahead hourly prices presented in Fig. 4. If we refer to the
hour starting at 11AM as stage 0, then the last hour (starting
at 9PM) is stage 10, and T = 11 in this example. The ratio of
the selling price to the purchasing price (at every stage t) is
set to be 0.6, 0.8, and 1. Suppose that the consumer’s hourly
energy demand (on each of these two days) is inelastic and
has the same shape as the hourly system load depicted in Fig.
4. We rescale the consumer’s hourly demand such that her
highest hourly demand (i.e., at stage 3 of Aug. 1 and stage 8
of Feb. 16) is normalized to be 4kWh.

Fig. 5 depicts the VoS under the two price trajectories and
different (selling/purchasing) peak price ratios. For the case
where the purchasing price equals the selling price, the VoS
does not depend on the consumer’s demand (cf. Proposition
5.2), and increases linearly with the capacity B, due to the lack
of charging/discharging constraints. If the selling price is lower
than the purchasing price, then the VoS becomes a piecewise-
linear concave function of the capacity B. This is because
when the storage capacity is no more than the (normalized)14

demand at the peak hour (i.e., stage 3 of Aug. 1 and stage
8 of Feb. 16), the marginal VoS is the difference between
the (normalized) purchasing price at the peak hour and that
at earlier off-peak hours; when the storage capacity is higher
than the (normalized) demand at the peak hour, on the other
hand, the marginal VoS is determined by the selling price at
the peak hour. We also note that the price trajectory on Aug.
1, 2011 yields a higher VoS because of the extremely high
price during 2PM-3PM.

C. Storage Operation under Random Prices

In this subsection we explore the relationship between VoS
and price volatility by considering the first trajectories of day-

14The “normalized” demand and purchasing price take into account the
discharging efficiency and/or the charging efficiency.
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Fig. 6. The left subplot shows the information structure on the random
purchasing prices (in $/kWh). The right subplot compares the total energy
costs resulting from optimal storage operation and certainty-equivalent control.

ahead hourly prices (presented in the left subplot of Fig. 4)
with random perturbation. As in Section VI-B, the consumer’s
hourly demand is assumed to be inelastic and have the same
shape as the hourly system load depicted on the left subplot
of Fig. 4. Again, the consumer’s hourly demand is rescaled
such that her highest hourly demand (at stage 3) is 4kWh. In
this subsection we fix the storage capacity B to be 15kWh,
and let the ratio of the selling price to the purchasing price
(at every stage t) be 0.6.

The purchasing prices at stages 4−10 are deterministic and
are shown in the left subplot of Fig. 4. For stages 0 − 3, the
random purchasing prices are determined by the global state.
The evolution of the global state st (as well as the purchasing
price pt(st)) is depicted in the left subplot of Fig. 6. At the
beginning of every stage t, the consumer observes the realized
global state, and takes an action to maximize her expected
payoff. There is only one global state at stage 0, and new price
estimate becomes available to the consumer at the beginning
of stage 1. With probability 1/2 the global state at stage 1 is
s1, which leads to a higher purchasing price of 0.09$/kWh at
stage 1; following the global state s1, with probability 1/2 we
move to the global state s13 at stage 3, and with probability 1/2
the global state at stage 3 is realized as s23. With probability
1/2 the global state at stage 1 is s′1, which will lead to a
lower purchasing price at stage 3 with probability one. In the
left subplot of Fig. 6, ∆ ∈ [0, 0.16] is a parameter reflecting
the volatility of the purchasing price in the peak hour.

For a given ∆, we compute the optimal two-threshold policy
characterized in Corollary 3.1 through backward induction.
When ∆ ≤ 0.1085, it is optimal to fully charge the storage at
stage 0, regardless of the global state realized at stage 1; in
the language of Corollary 3.1, we have h0(s0) = B, i.e., it is
optimal to greedily charge the storage up to level B at stage
0. At stage 3, the consumer withdraws all the stored energy
for consumption and selling back to the grid.

When ∆ > 0.1085, the optimal threshold policy charges the
storage up to level `3/η at stage 0 (here, `3 is the consumer’s
inelastic demand at stage 3). Then, at stage 1, the consumer
fully charges the storage only at the global state s1. This is
because at the global state s′1 it is not worth charging the
storage so as to sell the stored energy at stage 3. When ∆ >
0.1085, it is optimal to fully charge the storage only at state
s1, due to the low selling price at state s′3. In the language
of Corollary 3.1, when ∆ > 0.1085 we have h0(s0) = `3/η,
h1(s1) = B, and h1(s

′
1) = `3/η.

In the right subplot of Fig. 6 we compare the expected
energy cost (i.e., the consumer’s total expected payment minus
her total expected revenue in stages 0− 3) resulting from the
optimal threshold policy and a certainty equivalent heuristic
policy. The latter policy solves a one-shot optimization prob-
lem to maximize the consumer’s payoff, where all random
variables (e.g., electricity prices) take their expected values.
In our setting, this certainty equivalent policy fully charges
the storage at stage 0 and withdraws all the stored energy
(for consumption and selling back to the grid) at stage 3.
As demonstrated in the right subplot of Fig. 6, the certainty
equivalent policy is optimal when ∆ ≤ 0.1085; for larger ∆
the certainty equivalent policy results in up to 14% more total
cost than the optimal policy. We note that in the right subplot
of Fig. 6, the gap between the blue and the black curves is the
value of storage, i.e., the consumer’s expected energy saving
resulting from the optimal operation of the storage.

Remark 6.1 (Investment v.s. Value of storage): Before
ending this section, we would like to make some brief
discussion on the practical implication of our numerical
results. We note that the estimated VoS (under the pricing
schemes used in Sections VI-B and VI-C) is comparable to
the one-time setup cost (on energy storage equipment) of a
residential consumer. For example, consumers can obtain a
10kWh Tesla battery system (from SolarCity, an American
provider of energy services) under a 10-year lease for a
$1500 down payment plus $15 per month ($3300 in total
over 10 years).15 That amounts to less than $1 fixed cost per
day. We emphasize here that the actual value of storage and
the optimal sizing of storage depend heavily on the spread
and volatility of electricity prices as well as the energy
consumption profile of the consumer, and could be very
different from the estimates made in this section. �

VII. CONCLUSION AND FUTURE WORK

We study the optimal operation and economic value of
energy storage at consumer locations, through a dynamic
programming formulation. For a general setting that incorpo-
rates consumer inter-temporal energy demand, we prove the
optimality of a two-threshold policy.

We show that the computation of the characterized optimal
threshold policy could be significantly simplified when the
consumer’s demand is inelastic. For a setting with random (in-
elastic) demand and stochastic electricity prices, we show that
the consumer’s maximum expected payoff is piecewise linear
in the storage level. If both the energy demand and electricity
prices are deterministic, we establish the equivalence between
the optimal storage operation problem and a minimum cost
flow problem that can be easily solved by greedy algorithms
of linear complexity.

We define the value of storage (VoS) as the consumer’s
expected net benefit if she optimally operates the storage. We
show that the value of storage is a concave function of storage
capacity. If the consumer can always buy and sell electricity
at the same (realized) price, then it is optimal to use the
storage only for arbitrage. As a result, the optimal operation

15http://www.solarcity.com/residential/energy-storage
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of the energy storage as well as the VoS is independent of the
consumer’s demand.

There are a variety of interesting directions for future work.
For example, it would be interesting to study the cooperative
operation of multiple storage devices, for an aggregator who
bids into the wholesale electricity market. Another interesting
direction is to extend the DP framework constructed in this
work to incorporate more types of electricity loads (e.g.,
uninterruptible loads) and nonlinear pricing schemes.

APPENDIX A
PROOF OF LEMMA 3.1

We will prove the lemma through backward induction. For
the terminal stage T , the desired result holds. Suppose that at
stage t+1, the optimal payoff-to-go is concave in (xt+1, ft+1),
for every st+1. We will show that the optimal payoff-to-go
function at stage t is concave in (xt, ft), regardless of st. We
first have

Vt(xt, st, ft) = max(at,ct,dt)

{
wt(xt, st, ft, at, ct, dt)

+E [Vt+1(xt+1, st+1, ft+1)]
}
.

(26)

To prove that Vt(xt, st, ft) is concave in (xt, ft), we will
show that

Vt(xt, st, ft) + Vt(x
′
t, st, f

′
t)

2
≤ Vt

(
x̃t, st, f̃t

)
,

∀ (xt, ft), (x
′
t, f

′
t) ∈ [0, B]× [0, Z],

(27)
where x̃t = (xt + x′

t)/2 and f̃t = (ft + f ′
t)/2. Let µ∗

t be
an optimal decision making rule at stage t, µ∗

t (xt, st, ft) =
(a, c, d), and µ∗

t (x
′
t, st, f

′
t) = (a′, c′, d′). It follows from (5)

that the following action

(ã, c̃, d̃)
∆
= ((a+ a′)/2, (c+ c′)/2, (d+ d′)/2) ,

is feasible under the state (x̃t, st, f̃t). It follows from the
concavity of the utility function ut(·) that

wt(xt, st, ft, a, c, d) + wt(x
′
t, st, f

′
t , a

′, c′, d′)

≤ 2wt(x̃t, st, f̃t, ã, c̃, d̃).
(28)

Let (xt+1, ft+1), (x′
t+1, f

′
t+1), and (x̃t+1, f̃t+1) denote the

storage level and consumer state at stage t + 1, under the
original states (xt, ft), (x′

t, f
′
t), (x̃t, f̃t) and actions (at, ct, dt),

(a′t, c
′
t, d

′
t), (ãt, c̃t, d̃t) taken at stage t, respectively. We have

(x̃t+1, f̃t+1) =
(xt+1, ft+1) + (x′

t+1, f
′
t+1)

2
.

The concavity of the value function at stage t+1 implies that

E{Vt+1(xt+1, st+1, ft+1)}+ E{Vt+1(x
′
t+1, st+1, f

′
t+1)}

≤ 2E{Vt+1(x̃t+1, st+1, f̃t+1)},
(29)

where the expectation is over the next global state st+1.

Inequalities in (28) and (29) imply that

(Vt(xt, st, ft) + Vt(x
′
t, st, ft)) /2

≤ wt(x̃t, st, f̃t, ã, c̃, d̃) + E{Vt+1(x̃t+1, st+1, f̃t+1)}

≤ Vt(x̃t, st, f̃t),

where the last inequality follows from (26).

APPENDIX B
PROOF OF THEOREM 3.1

In order to prove part (b), we will show that given any xt ∈
[ht(st, ft), kt(st, ft)], the action (at = 0, ct = yt(zt), dt =
0) satisfies the first order conditions in (12), and is therefore
optimal.

Under the assumption on the incremental salvage value that
wT (x

′
T , sT , fT )−wT (xT , sT , fT ) is non-decreasing in fT for

any x′
T > xT , and that wT (xT , sT , f

′
T ) − wT (xT , sT , fT ) is

non-decreasing in xT for any f ′
T > fT , it is straightforward

to check that for every t and every st, the partial derivative
of V̄t+1|st(x, f) with respect to x is non-decreasing in f , and
that the partial derivative of V̄t+1|st(x, f) with respect to f is
non-decreasing in x. It follows from the first-order conditions
in (12) that given any (st, ft), yt(zt) is non-increasing in xt,
due to the facts that βt ≤ 0 and that u′

t is concave in ct + dt.
Here, and in the rest of the proof, we let zt = (xt, st, ft).

We fix (st, ft) and consider a storage level xt ∈
[ht(st, ft), kt(st, ft)]. For notational convenience, we let x′

t =
kt(st, ft) ≥ xt. We will show that the action (at = 0, ct =
yt(zt), dt = 0) satisfies the third and fourth condition in (12)
(with respect to dt). We first argue that

∂−
f V̄t+1|st(x

′
t, αtft + βtyt(z

′
t) + ϑt(st))

≥ ∂+
f V̄t+1|st(xt, αtft + βtyt(zt) + ϑt(st)),

(30)

where z′t = (x′
t, st, ft). We note that yt(z

′
t) ≤ yt(zt). If

yt(zt) > 0, then from the second inequality in (12) we have

u′
t(yt(zt), st, ft)− pt(st)

≥ −βt∂
+
f V̄t+1|st(xt, αtft + βtyt(zt) + ϑt(st)).

(31)

The first inequality in (12) implies that

u′
t(yt(z

′
t), st, ft)− pt(st)

≤ −βt∂
−
f V̄t+1|st(x

′
t, αtft + βtyt(z

′
t) + ϑt(st)).

(32)

Since yt(z
′
t) ≤ yt(zt) and the utility function is concave in

its first argument, the above two inequalities in (31) and (32)
imply the desired result in (30). For the case with yt(zt) = 0,
we must have yt(z

′
t) = 0, and the inequality in (30) follows

from the fact that the partial derivative of V̄t+1|st(x, f) with
respect to f is non-decreasing in x.

Since yt(z
′
t) ≤ yt(zt) and β ∈ [−1, 0], we have

ft+1 := αtft + βtyt(zt) + ϑt(st)

≤ αtft + βtyt(z
′
t) + ϑt(st) := f ′

t+1.
(33)
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Hence, the concavity of Vt+1|st(xt+1, ft+1) implies that

(f ′
t+1 − ft+1)∂

−
f V̄t+1|st(x

′
t, f

′
t+1)

+(x′
t − xt)∂

−
x V̄t+1|st(x

′
t, f

′
t+1)

≤ (f ′
t+1 − ft+1)∂

+
f V̄t+1|st(xt, ft+1)

+(x′
t − xt)∂

+
x V̄t+1|st(xt, ft+1).

(34)

Combining (30) and (34) we have

∂−
x V̄t+1|st(x

′
t, f

′
t+1) ≤ ∂+

x V̄t+1|st(xt, ft+1), (35)

i.e., the marginal value of storage is higher under the lower
storage level xt and the corresponding action (at = 0, ct =
yt(zt), dt = 0). Here, and in the rest of this proof, ft+1 and
f ′
t+1 are notations defined in (33).

Since x′
t = kt(st, ft) ≥ ht(st, ft), it follows from the

monotonicity result in (35) that x′
t (together with f ′

t+1) sat-
isfies the condition in (14). It follows from the definition of
kt(st, ft) that the condition in (13) holds at storage level x′

t.
We conclude from Lemma 3.2 that the action (at = 0, ct =
yt(z

′
t), dt = 0) is optimal under the system state (x′

t, st, ft).
As a result, it is optimal to have dt = 0 under storage level
xt ∈ [ht(st, ft), kt(st, ft)], because dt = 0 satisfies the third
and fourth conditions in (12) (due to the definition of kt(st, ft)
and the inequality in (35)).

We note that the action (at = 0, ct = yt(zt), dt = 0) must
also satisfy the last two conditions in (12), i.e., it is optimal
not to sell the stored energy back to grid, because the marginal
value of storage at (xt+1 = xt, ft+1) is no less than that at
(xt+1 = x′

t, f
′
t+1) (according to Eq. (35)).

Since the condition in (14) holds for the storage level
ht(st, ft) and xt ≥ ht(st, ft), it follows from (35) that
the condition in (14) holds for xt. Therefore, the action
(at = 0, ct = yt(zt), dt = 0) satisfies the fifth and sixth
conditions in (12), i.e., it is optimal not to charge the storage.
So far we have proved part (b).

We now prove part (a). We note that the monotonicity result
in (35) indeed holds for any 0 ≤ xt ≤ x′

t. Given a storage
level xt < ht(st, ft) ≤ kt(st, ft), the condition in (14) must
be violated at the action (at = 0, ct = yt(zt), dt = 0), and
therefore it is optimal to charge the storage (see the fifth and
sixth conditions in Eq. (12)).

Analogously, if xt > kt(st, ft), then the condition in (13)
must be violated at (at = 0, ct = yt(zt), dt = 0), and
therefore it is optimal to withdraw the storage for consumption
or selling back to the grid. Part (c) of the theorem holds.

APPENDIX C
PROOF OF COROLLARY 3.1

For part (a), it is straightforward to show that if the storage
level xt is below the threshold ht(st), then it is optimal to
greedily charge the storage up to this threshold, at which the
marginal value of storage equals the purchasing price pt(st).
Part (b) follows from Part (a) and Lemma 3.2.

Now consider the case where the storage level xt is above
the threshold kt(st). If u′

t(0, st) ≤ qt(st), then the consumer
should sell (instead of consuming) the stored electricity, and
therefore we have d∗t = 0 in (18). If u′

t(0, st) > qt(st), the

consumer withdraws the storage for consumption, until at least
one of the following conditions holds:

1) the discharging rate constraint is met, or the storage
becomes empty, i.e., dt ≤ ηmin{RD, xt};

2) the marginal utility equals the adjusted selling price, i.e.,
dt ≤ et(st);

3) the marginal storage value (at the next stage t + 1) is
no less than either the marginal utility or the purchasing
price, i.e.,

∂+
x V̄ t+1(xt − dt/η) ≤ ηmin{u′

t(dt, st), pt(st)},

where xt−dt/η is un upper bound on xt+1, since dt > 0
implies at ≤ 0.

After consuming d∗t amount of energy from the storage, if
the marginal storage value (at stage t+1) remains lower than
the adjusted selling price, i.e., if

xt − d∗t /η > gt(st),

then sell (a∗t )
− amount of stored electricity to the grid, until

the discharging rate limit is reached (d∗t + (a∗t )
−) /η = RD,

or the marginal value of storage at stage t + 1 equals the
adjusted selling price, i.e.,

xt+1 = xt −
(
d∗t + (a∗t )

−) /η = gt(st).

After consuming d∗t amount of energy from the storage,
if the marginal utility u′

t(d
∗
t , st) is higher than the purchasing

price pt(st), then the consumer should purchase electricity for
consumption up to the level yt(st) (cf. its definition in (16)),
i.e., c∗t = (yt(st)− d∗t )

+.

APPENDIX D
PROOF OF THEOREM 4.1

We first note that the concavity of V̄t+1|st(xt+1) follows
from the concavity of Vt+1(x, s) in x (cf. Lemma 3.1), and
the definition of V̄t+1|st(xt+1) in Eq. (10).

In what follows, we prove that ∂±V̄t+1|st(xt+1) are step
functions, i.e., for t = 0, . . . , T − 1,

∂+V̄t+1|st(x) =


v1, x ∈ [b0, b1),
. . . ,
vi, x ∈ [bi−1, bi),
. . . ,
vn, x ∈ [bn−1, bn),

(36)

where bi is increasing in i with b0 = 0, bn = B, and vi is
decreasing in i, and

∂−V̄t+1|st(x) =


v1, x ∈ (b0, b1],
. . . ,
vi, x ∈ (bi−1, bi],
. . . ,
vn, x ∈ (bn−1, bn].

(37)

We will prove this result by induction. It is straightforward
to check that V̄T |sT−1

(xT ) is piecewise linear, since the
salvage value is linear (cf. (19)) and V̄T |sT−1

(xT ) is a convex
combination of these linear functions (cf. Eq. (10)). It follows
that ∂±V̄T |sT−1

(xT ) are step functions.
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Suppose that ∂±V̄t+1|st(xt+1) are step functions of the
forms in (36), (37), we now argue that ∂±V̄t|st(xt) are step
functions. For notational convenience, we define

āt = min
{
RC , ht(st))

}
/γ,

and
d̄t = ηmin

{
B − kt(st), `t(st)/η,R

D
}
.

The characterization of an optimal policy in Corollary
3.1 enables us to establish the following relations between
∂±Vt(x, st) and ∂±V̄t+1|st(x):

∂+Vt(x, st)

=



∂+V̄t+1|st(x+ γāt), x ∈ [0, ht(st)− γāt) ,

pt(st)/γ, x ∈ [ht(st)− γāt, ht(st)) ,

∂+V̄t+1|st(x), x ∈ [ht(st), kt(st)) ,

ηpt(st), x ∈
[
kt(st), kt(st) + d̄t/η

)
,

∂+V̄t+1|st(x− d̄t/η), x ∈
[
kt(st) + d̄t/η, gt(st)

)
,

ηqt(st),

x ∈
[
gt(st),min{B, gt(st) + (RD − d̄t/η)}

)
,

∂+V̄t+1|st(x−RD),

x ∈
[
min{B, gt(st) + (RD − d̄t/η)}, B

)
;
(38)

and

∂−Vt(x, st)

=



∂−V̄t+1|st(x+ γāt), x ∈ (0, ht(st)− γāt] ,

pt(st)/γ, x ∈ (ht(st)− γāt, ht(st)] ,

∂−V̄t+1|st(x), x ∈ (ht(st), kt(st)] ,

ηpt(st), x ∈
(
kt(st), kt(st) + d̄t/η

]
,

∂−V̄t+1|st(x− d̄t/η), x ∈
(
kt(st) + d̄t/η, gt(st)

]
,

ηqt(st),

x ∈
(
gt(st),min{B, gt(st) + (RD − d̄t/η)}

]
,

∂−V̄t+1|st(x−RD),

x ∈ (min{B, gt(st) + (RD − d̄t/η)}, B].
(39)

We have proved that ∂±Vt(x, st) are step functions.
Vt(x, st) therefore is piecewise linear in x, and as a result,
∂±V̄t|st−1

(x), a convex combination of Vt(x, st) over all
st ∈ St, must also be piecewise linear in x.

APPENDIX E
PROOF OF THEOREM 4.2

We first convert the transformed (uncapacitated) graph into
a “modified” graph with nonnegative arc costs. We replace the
cost of each arc (i, j) by cij+D(i)−D(j), where D(i) is the
shortest path distance from node i to all the other nodes on the
transformed graph, if we take the arc cost cij as the length of
arc (i, j). It is straightforward to see that cij+D(i)−D(j) ≥ 0,
and that the newly constructed “modified” graph yields the
same optimal solution as the transformed graph. We further
note that this modified graph and the uncapacitated graph

(transformed from the original graph presented in Fig. 1) lead
to exactly the same operation of the RHS-Scaling algorithm,
because the demand at each node and the shortest path between
every pair of connected nodes remain the same. It is therefore
sufficient to show the optimality of the RHS-Scaling algorithm
on the modified graph with nonnegative arc costs.

Since the cost of every arc is nonnegative, a feasible set of
flows y and a set of potentials π constitute an optimal solution,
if the following (linear programming) optimality condition
holds for every arc (i, j) [47]: c̄ij = cij − π(i) + π(j) = 0, if yij > 0,

c̄ij = cij − π(i) + π(j) ≥ 0, if yij = 0.
(40)

If there exist a set of potentials π that make Condition (40)
hold for a (possibly non-feasible) flow vector y, we say y is
dual feasible. Therefore a flow vector y is optimal if it is
feasible and dual feasible.

We initially set π = 0, which makes the initial flow vector
y = 0 dual feasible. Starting with a dual feasible flow vector
y, we argue that the augmentation (defined in Step 3) preserves
dual feasibility, if node potentials are updated according to
Step 4 in the algorithm, i.e.,

π(k) = π(k)− d(k), ∀ k, (41)

where d(k) is the shortest path distance from the supply node
i (picked up in Step 1) to node k (here we take the reduced
arc costs defined in (22) as arc lengths). Since the original
flow vector y is dual feasible, we have the following.

1) For every arc (k, h) with ykh > 0 we have c̄kh = 0,
which implies that d(k) = d(h). As a result, c̄kh remains
zero after the update (of π) defined in Eq. (41).

2) For every arc (k, h) with ykh = 0, we have c̄kh ≥ 0. If
the flow on this arc remains zero after the augmentation,
then after the update of π we have

c̄kh := c̄kh + d(k)− d(h) ≥ 0,

where c̄kh on the right hand side is calculated according
to the original node potentials π(k) and π(h), and the
inequality follows from the definition of shortest paths.

3) For every arc (k, h) with ykh = 0, if the flow on this
arc becomes positive after the augmentation, then the arc
(k, h) must be along the shortest path from the supply
node i to node j (cf. Step 3 in the algorithm). As a result,
after the update of π we have

c̄kh := c̄kh + d(k)− d(h) = 0,

where c̄kh on the right hand side is calculated according
to the original node potentials π(k) and π(h), and the
equality holds because the difference between the shortest
path distances d(h) and d(k) is exactly the original c̄kh.

We have shown that the pair (y,π) after every iteration
is dual feasible. The optimality of the algorithm then follows
from the fact that it terminates when all nodes are balanced;
i.e., the final flow vector y is feasible and dual feasible, and
is therefore optimal. The value of storage is the difference
between the minimum cost of a feasible flow vector and the
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consumer cost without storage, as given by Eq. (23).

APPENDIX F
PROOF OF PROPOSITION 5.1

Under a sequence of realized global states s = (s0, . . . , sT ),
let V B

0 (0, s, f0) denote the consumer payoff realized by an
optimal policy πB (for the operation of a storage with capacity
B) that maximizes the expected consumer payoff. The VoS
defined in (24) can be written by

VoS(B, f0) =
∑
s

P(s)V B
0 (0, s, f0)− Es0

{
¯
V B
0 (0, s0, f0)

}
,

where P(s) denotes the probability that s is realized. To
prove the concavity of the VoS, it is sufficient to show that
V B
0 (0, s, f0) is concave in B, for every s and f0. We will

show that(
V B
0 (0, s, f0) + V B′

0 (0, s, f0)
)
/2 ≤ V B̃

0 (0, s, f0),

∀ 0 < B < B′, ∀ s, ∀ f0,
(42)

where B̃ = (B +B′)/2. Fixing a sequence of realized global
states s, we let (at, ct, dt) denote the action taken by the
optimal policy πB at stage t, and (a′t, c

′
t, d

′
t) denote the action

taken by the optimal policy πB′
at stage t. Since all constraints

as well as the state transition of ft is linear, the action sequence{(
(a′t + at)/2, (c

′
t + ct)/2, (d

′
t + dt)/2

)}T−1

t=0
(43)

is feasible in the problem with storage capacity B̃ = (B +
B′)/2, and results in a sequence of consumer states that
equal the average of ft and f ′

t (consumer states resulting
from the policy πB and πB′

, respectively), for every t and
every initial state f0. Due to the concavity assumption that
VT (xT , sT , fT ) is concave in the vector (xT , fT ), and that the
utility function ut(xt, st, ft) is concave in the vector (xt, ft),
for t = 0, . . . , T −1 and every st, we conclude that the action
sequence defined in (43) achieves an ex-post payoff no less
than (

V B
0 (0, s, f0) + V B′

0 (0, s, f0)
)
/2,

for every s and f0. The desired result in (42) follows from the
fact that the maximum consumer payoff V B̃

0 (0, s, f0) cannot
be less than the payoff achieved by the action sequence (43).

APPENDIX G
PROOF OF PROPOSITION 5.2

To prove the desired result, we will show the existence of
an optimal policy that never withdraws energy from storage
for consumption. At stage t, consider an arbitrary policy π that
withdraws the storage for consumption, i.e., dt > 0. Note that
there exists an optimal policy that never charges and discharges
the storage simultaneously, i.e., under the optimal policy dt >
0 implies at ≤ 0. We will therefore assume, without loss
of generality, that under the policy π, dt > 0 and at ≤ 0.
Consider a modified policy such that

ãt = at − dt, c̃t = ct + dt, d̃t = 0.

The modified policy withdraws the same amount of energy
from the storage, i.e.,

a−t + dt = −at + dt = −ãt + d̃t = ã−t + d̃t,

and results in the same energy consumption, i.e.,

ct + dt = c̃t + d̃t.

Since the selling price and purchasing price are always
the same, this modified policy yields the same stage payoff
(expressed in Eq. (6)) as the original policy π at t. It follows
from the state transition rule (of xt and ft) that both the
original and the modified policies result in the same state
in the next stage, (xt+1, ft+1). Since the evolution of the
global state st is assumed to be exogenous (independent of
the action taken by the consumer), both policies lead to the
same future system dynamics, as well as the same long-term
expected payoff for the consumer. We therefore conclude the
existence of an optimal policy that never withdraws the storage
for consumption, under which we always have dt = 0.
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