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In signal field reconstruction applications of sensor network, the locations where the measurements are retrieved from affect the
reconstruction performance. In this paper, we consider the design of medium access control (MAC) protocols in sensor net-
works with mobile access for the desirable information retrieval pattern to minimize the reconstruction distortion. Taking both
performance and implementation complexity into consideration, besides the optimal centralized scheduler, we propose three
decentralized MAC protocols, namely, decentralized scheduling through carrier sensing, Aloha scheduling, and adaptive Aloha
scheduling. Design parameters for the proposed protocols are optimized. Finally, performance comparison among these protocols
is provided via simulations.
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1. INTRODUCTION

In many applications, sensor networks operate in three
phases: sensing, information retrieval, and information pro-
cessing. As a typical example, in physical environmental
monitoring, sensors first take measurements of the signal
field at a particular time. The data are then collected from
individual sensors to a central processing unit, where the sig-
nal field is finally reconstructed.

An appropriate network architecture for such applica-
tions is SEnsor Networks with Mobile Access (SENMA)
[1, 2]. As shown in Figure 1, SENMA consists of two types
of nodes: low-power low-complexity sensors randomly de-
ployed in a large quantity, and a few powerful mobile access
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points communicating with the sensors. The use of mobile
access points enables data collection from specific areas of
the network.

We focus on the latter two operational phases in the
SENMA architecture: information retrieval and processing,
which are strongly coupled. To achieve the optimal perfor-
mance of the sensor network, the two phases should be con-
sidered jointly. The key to information retrieval is medium
access control (MAC) that regulates data retrieval from sen-
sors to the access point. The main focus of this paper is to
design MAC protocols for the optimal reconstruction of the
signal field.

The MAC design for sensor network applications needs
to take into account application-specific characteristics, for
example, the correlation of the field, the randomness of the
sensor locations, and the redundancy of the large-scale sen-
sor deployment. The traditional MAC design criteria, such as
throughput, fail to capture the characteristics of the specific

mailto:zy26@cornell.edu
mailto:mdong@qualcomm.com
mailto:ltong@ece.cornell.edu
mailto:bsadler@arl.army.mil


494 EURASIP Journal on Wireless Communications and Networking

Access point

Sensor

Figure 1: A 1D sensor network with a mobile access point.

sensor application; a high-throughput MAC does not imply
low reconstruction distortion. In this paper, we propose a
new MAC design criterion for the field reconstruction ap-
plication.

The new MAC design criterion is motivated by the need
to collect data evenly across the field for a given throughput.
If we have an infinitely dense network, the optimal data col-
lection strategy is to retrieve samples from evenly spaced lo-
cations. For a finite density network considered in this work,
however, there may not exist sensors in the desired loca-
tions. The optimal centralized scheduler, with the location
information of all sensors, calculates the optimal location set
and retrieves data from the optimal set to minimize the re-
construction distortion. Such optimal centralized scheduler
comes with the substantial cost of sensor-location informa-
tion gathering. Decentralized MAC protocols, on the other
hand, require much less intervention from the mobile access
point and bandwidth resources.

We consider a one-dimensional problem for simplicity,
which can be extended to a two-dimensional setup. Taking
both performance and implementation complexity into con-
sideration, besides the optimal centralized scheduler, we pro-
pose three decentralized MAC protocols. We first propose a
decentralized scheduler via carrier sensing, which, under the
no-processing delay assumption, provides little performance
loss compared to the performance of the optimal scheduler.
Then, to simplify the implementation, we introduce a MAC
scheme which uses Aloha-like random access within a resolu-
tion interval centered at the desired retrieval location. Finally,
to improve the performance, we propose an adaptive Aloha
scheduling scheme which adaptively chooses the desired re-
trieval locations based on the history of retrieved samples.
Design parameters are optimized for the proposed schemes.
The performance comparison under various sensor density
conditions and packet collection sizes is also provided.

The problems on sensor network communications have
attracted a growing research interest. In terms of medium ac-
cess control, many MAC protocols have been proposed aim-
ing at the special needs and requirements for both ad-hoc
sensor networks [3, 4, 5, 6] and sensor networks with mo-
bile access [2]. Most of these proposed schemes only consider
the MAC layer performance, that is, throughput. The effect
of MAC for information retrieval on information process-
ing is analyzed in [7, 8] for infinite and finite sensor density

networks, respectively, where the performance of the central-
ized scheduler and that of the decentralized random access
are analyzed and compared.

The idea of using carrier sensing for energy-efficient
transmission in sensor networks was first proposed in [9,
10, 11], where backoff delays are chosen as a function of the
channel strength. The carrier sensing strategy presented here
generalized that in [9, 10, 11] by using carrier sensing to dis-
tinguish nodes in different locations.

2. SYSTEM MODEL AND MAC DESIGN OBJECTIVE

In this section, we introduce the system model and the sig-
nal field reconstruction distortion measure, which leads to a
simple MAC design objective.

2.1. Signal field model

Consider a one-dimensional field of unit length, denoted by
A = [0, 1]. Let S(x) (x ∈ A) be the source of interest in A
at a particular time. We assume that the spatial dynamic of
S(x) is a homogeneous Gaussian random field given by the
following linear stochastic differential equation:

dS(x) = − f S(x)dx + σdW(x), (1)

where f > 0, σ are known, {W(x) : x ≥ 0} is a standard
Brownian motion, and S(x) ∼ N (0, σ2/|2 f |) is the station-
ary solution of (1). The random field modeled in (1) is essen-
tially a diffusion process which is often used to model many
physical phenomena of interest. Being homogeneous in A,
S(x) has the autocorrelation

E
{
S
(
x0
)
S
(
x1
)} = σ2

2 f
e− f (x1−x0) (2)

for x0 < x1, which is only a function of the distance between
the two points x1 and x0.

2.2. Sensor network model

We assume that sensors in A are deployed randomly, and
their distribution forms a one-dimensional homogeneous
spatial Poisson field with local density ρ sensors/unit area.
That is, in a length-l interval, the number of sensors N(l) is a
Poisson random variable with distribution

Pr
{
N(l) = k

} = e−ρl
(ρl)k

k!
, (3)

and the numbers of sensors in any two disjoint intervals are
independent. To avoid the boundary effect, we assume that
there is a sensor at each of the two boundary points x = 0 and
x = 1. LetN denote the number of sensors in the field exclud-
ing the two boundary points. Denote xN = [x1, x2, . . . , xN ]T

the sensor locations, where 0 < x1 < x2 < · · · < xN < 1.
After its deployment, each sensor obtains its own lo-

cation information through some positioning method. At
a prearranged time, all sensors measure their local signals,
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Figure 2: Linear field.

forming a snapshot of the signal field. The measurement of a
sensor at location x is given by

Y(x) = S(x) + Z(x), (4)

where Z(x) is zero mean, spatially white Gaussian measure-
ment noise with variance σ2

Z , and is independent of S(x).
Each sensor stores its local measurement along with its

location information in the form of a packet for future data
collection.

2.3. The multiple-access channel

When the mobile access point is ready for data collection,
sensors transmit their measurement packets to the access
point through a common wireless channel. We assume slot-
ted transmission in a collision channel, that is, a packet is cor-
rectly received if and only if no other users attempt transmis-
sion. To retrieve measurement packets from the field through
a collision channel, some form of MAC is needed. In this pa-
per, we propose and discuss four MAC protocols, with differ-
ent performance and complexity trade-off, to optimize the
reconstruction performance.

In each time slot, sensors compete for the channel use.
The channel output may be a collision, an empty slot, or
a data packet that contains the measurement and the loca-
tion of the sensor. We assume that the access point uses m
time slots to retrieve measurement data and refer to m as the
packet collection size. Let qi, 1 ≤ i ≤ m, denote the sample
location of the ith channel outcome if a packet is successfully
received. Otherwise, let qi = ∅. Let q = [q1, q2, . . . , qm]T

denote the output location vector. To avoid the boundary ef-
fect for signal reconstruction, we assume that, in addition to
the m retrieval attempts, the two boundary measurements
are also retrieved by the mobile access point.

2.4. Information processing and
performance measure

After the information retrieval, we reconstruct the original
signal field based on the received data samples. Let K denote
the number of qi’s not equal to ∅ in q, excluding the two
boundary points. Let rK = [r1, r2, . . . , rK ]T , r1 ≤ r2 ≤ · · · ≤
rK , be the ordered sample location vector constructed from q
by ordering the non-∅ elements. For convenience, let r0 = 0
and rK+1 = 1.

We estimate S(x) at location x using its two immediate
neighbor samples by the MMSE smoothing, that is, for ri <
x < ri+1, 0 ≤ i ≤ K ,

Ŝ(x) = E
{
S(x)|Y(ri),Y(ri+1

)}
. (5)
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Figure 3: Circular field.

Given q, we define the maximum field reconstruction distor-
tion as he maximum mean-square estimation error in A,

E(q) � max
x∈A

E
{∣∣Ŝ(x)− S(x)

∣∣2∣∣q
}
. (6)

The expected maximum distortion of the signal reconstruction
in m collection time slots is then given by

Ē(m) � E
{
E(q)

}
, (7)

where the expectation is taken over the output location vec-
tor q.

2.5. MAC design objective

Our objective is to design MAC protocols that result in
the smallest signal field reconstruction distortion for a fixed
number of retrieval slots. From [7, 8], we have shown that the
maximum distortion is determined only by the maximum
distance between two adjacent data samples,

E(q) = 2 f σ2
Z/σ

2 + 1− e− f dmax(q)

2 f σ2
Z/σ2 + 1 + e− f dmax(q)

σ2

2 f
� E

(
dmax(q)

)
, (8)

where

dmax(q) = max
0≤i≤K

(
ri+1(q)− ri(q)

)
. (9)

The maximum distortion in (6) is a monotonically increas-
ing function of dmax. Thus, a smaller E{dmax} indicates a
smaller reconstruction distortion. Our objective now is to
design MAC for the minimum E{dmax}.

2.6. Linear field and circular field

The above 1D field model with two boundary points is re-
ferred to as the linear field (Figure 2). Another filed of interest
is the circular field which is a circle with unit circumference
(Figure 3). As in the linear field, sensors in the circular field
are deployedaccording to Poisson distribution with density ρ
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sensors/unit length; see (3). The location of each sensor on
the circular field is described by its angle θ, 0 ≤ θ < 2π, as
shown in Figure 3. Alternatively, the location can also be de-
scribed by x = θ/2π, 0 ≤ x < 1. Let xN = [x1, x2, . . . , xN ]T ,
x1 ≤ x2 ≤ · · · ≤ xN , denote the sensor locations where N is
the number of sensors in the field.1

Similar to the linear field, let q = [q1, q2, . . . , qm]T denote
the output location vector, where qi, 1 ≤ i ≤ m, is the sample
location of the ith channel outcome if a packet is successfully
received in the ith slot, or qi = ∅ otherwise. Let K be the
number of non-∅ elements in q and let rK = [r1, r2, . . . , rK ]T

be the ordered sample location vector constructed from q by
ordering the non-∅ elements, with r1 being the smallest. For
convenience, let rK+1 = 1+r1. The maximum distance for the
circular field is defined as

dmax(q) � max
1≤i≤K

(
ri+1(q)− ri(q)

)
. (10)

To avoid ambiguity, define dmax to be 1 if only one sample
is retrieved, or 2 if none is retrieved. Since we are not work-
ing in the extremely low-density regime, the probability of
retrieving only one or no sample is small. Besides the vector
form as in (9) and (10), the input parameters of dmax(q) for
both fields also take other forms in this paper for the ease of
presentation. The MAC design objective for the circular field
is also to minimize E{dmax}.

3. MAC FOR OPTIMAL INFORMATION
RETRIEVAL PATTERN

3.1. Optimal centralized scheduling

Assume that the location information xN of all sensors is
available to the mobile access point. Also assume that the
mobile access point is able to activate individual nodes for
data transmission. The mobile access point is then able to
precompute the optimal set of m locations and to activate
only those sensors. This results in the minimum dmax, and
therefore, the best performance. The performance under this
scheduler can be used as a benchmark for performance com-
parison.

For a given sensor location realization xN and a fixed m,
the optimal dmax is

d∗max

(
xN ,m

) = min
1≤i1≤i2≤···≤im≤N

dmax
(
xi1 , xi2 , . . . , xim

)
. (11)

The optimal set of sensor locations are those that produce
d∗max, and the mobile access point activates these sensors one
at a time to avoid collision.

The optimization problem (11) can be solved by a
brute force search. To reduce the computational complex-
ity, we propose an efficient algorithm for the linear field,
Algorithm 1. It first looks for an initial set of locations and

1We are reusing notations for the circular field. If a discussion is partic-
ular to the linear or the circular field, the notations should be understood in
that context.

The search scheme consists of three steps.
Step 1. Location initialization. A set of m sensor locations is
chosen from xN as the initial set, (q(0)

1 , . . . , q(0)
m ). The dmax of

the chosen set is assigned to d(0)
max. Let i = 0.

Step 2. Within interval (0,d(i)
max), find the sensor location

closest to d(i)
max and assign it to q(i+1)

1 . For 1 ≤ j ≤ m− 1, if

q(i+1)
j + d(i)

max > 1, let q(i+1)
j+1 = 1; if q(i+1)

j + d(i)
max ≤ 1 and there

exists at least one sensor in the interval (q(i+1)
j , q(i+1)

j + d(i)
max),

let q(i+1)
j+1 be the sensor location closest to the right boundary

of the interval; if q(i+1)
j + d(i)

max ≤ 1 and there are no sensors in

the interval (q(i+1)
j , q(i+1)

j + d(i)
max), the algorithm ends and

d(i)
max obtained previously is the minimum d∗max.

Step 3. After obtaining q(i+1)
1 , . . . , q(i+1)

m , calculate

d(i+1)
max = dmax(q(i+1)

1 , . . . , q(i+1)
m ). If d(i+1)

max < d(i)
max, let i = i + 1

and go to Step 2. Otherwise, the search ends and d(i)
max is the

minimum d∗max.
When the search stops, the corresponding (q(i)

1 , q(i)
2 , . . . , q(i)

m )
is the optimal set of locations for the given xN and m. We
select the initial set as follows. Choose q(0)

i to be the sensor
location that is closest to i/(m + 1), 1 ≤ i ≤ m, and let the
corresponding dmax be d(0)

max.

Algorithm 1

the corresponding dmax. Based on this dmax, it looks for an-
other set of locations resulting in a smaller dmax. Iteratively,
dmax converges to its minimum value in finite steps.

In each iteration, d(i)
max is strictly decreasing. Algorithm 1

stops only when d(i)
max has reached its minimum value. For a

field with finite sensors, the possible values of dmax is finite.
Therefore, Algorithm 1 finds the optimal locations in finite
steps.

Next, we consider the circular field. Algorithm 1 can be
adapted to solve the optimization of (11) by converting the
circular field to the linear field. For the ease of discussion, for
a given xN , let xN+ j � 1 + xj , 1 ≤ j ≤ N . Suppose that xi is
included in the optimal set, 1 ≤ i ≤ N . Then we break the
circle at point xi, and (xi+1, . . . , xN+i−1) are sensor locations
in the linear field with xi and xN+i being the two boundary
points. The other m− 1 points that minimize dmax under the
assumption that xi is selected can be solved by Algorithm 1.2

Exhausting all xi gives the global optimal d∗max. To shorten the
search time, use the smallest dmax obtained in previous runs
of Algorithm 1 as the initialization value d(0)

max for the new
search with a new xi. It can be shown that exhausting x1 ≤
xi < x1 + d′max is enough, where d′max is any value greater than
or equal to the global minimum d∗max. The initialization value

d(0)
max for the current xi can be used as d′max for the exhaustion

stopping criterion.
The centralized scheme gives the best performance under

the condition that all sensor location information is avail-
able to the mobile access point. However, the bandwidth re-
quired for sensors reporting their locations is prohibitively

2Here, m−1 points are sought instead of m points in the linear field case.
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large, especially for large-scale sensor networks. Decentral-
ized schemes that do not require the knowledge of sensor lo-
cations at the mobile access point are desirable. Nonetheless,
the centralized scheme gives the best possible performance
and serves as a benchmark.

3.2. Decentralized scheduling through carrier sensing
In practice, the sensor location information may not be avail-
able at the mobile access point. Each senor only knows its
own location. In this case, in order to retrieve data with the
desired pattern and in a decentralized fashion, we propose
decentralized scheduling through carrier sensing. We assume
that each sensor has a transmission coverage radius R. Since
the propagation delay is relatively small as compared to the
slot length, we assume perfect carrier sensing with no prop-
agation delay within radius R, that is, a sensor’s transmis-
sion is detected immediately by other sensors within distance
R.

In the proposed protocol, sensor transmissions are
scheduled through carrier sensing, where the distances of
sensors from the desired locations are used in the backoff
scheme. The backoff time of a sensor is a function of the dis-
tance from the sensor to the desired location. A similar idea
of using carrier sensing for decentralized transmission was
first proposed in [9, 10, 11], where the channel state infor-
mation was used in the backoff function of the carrier sens-
ing scheme for opportunistic transmission.

Protocol. In each time slot, a segment of length R is acti-
vated. Sensors within the activated region compete for the
channel use. Let pj denote the center of the jth segment,
1 ≤ j ≤ m. Each sensor within the activated segment com-
putes its distance to pj , that is, if xi is within the activated
segment, its distance is di, j = |xi − pj| for the linear field,
or di, j = min(|xi − pj|, 1 − |xi − pj|) for the circular field.
The activated sensors then choose their respective backoff
time based on a backoff function τ(d), which maps the dis-
tance to a backoff time. A sensor listens to the channel during
its backoff time. If it detects a transmission before its back-
off timer expires, the sensor will not transmit in this time
slot. Otherwise, the sensor transmits its measurement sam-
ple packet immediately when its timer expires. The function
τ(d) is designed to be strictly increasing; therefore, if there
are sensors in the activated region, only the sensor closest to
the center of the activated segment will be received success-
fully in this time slot. An example of τ(d) is given in Figure 4.
The activation sequence is deterministic in the sense that it
does not change based on the previous data collection re-
sults.

Where the activation segments should be centered is a
design issue. As the next lemma shows, for the circular field,
the segments should be separated evenly.

Lemma 1. Consider the circular field. Suppose that in the ith
time slot, 1 ≤ i ≤ m, the length-L segment centered at pi,
0 ≤ pi < 1, is activated to compete for the collision channel use.
Suppose that these segments do not overlap. Let qi, 0 ≤ qi < 1,
be the outcome location in the ith slot if a packet is success-
fully received, or qi = ∅ otherwise. Define the relative outcome

τ

τ1

τ2

dd2 d1

Figure 4: Backoff function τ(d).

location bi, bi = ∅ or −L/2 ≤ bi ≤ L/2, as follows:

bi
(
pi, qi

)
�



∅ if qi = ∅,

qi − pi if
∣∣qi − pi

∣∣ ≤ L

2
,

qi − pi − 1 if
∣∣qi − pi

∣∣ > L

2
, qi > pi,

qi − pi + 1 if
∣∣qi − pi

∣∣ > L

2
, qi < pi,

(12)

where the conditions in (12) are to deal with the coordinate
transition around θ = 0 or θ = 2π on the circular field. If bi’s
are independent and identically distributed (i.i.d.), then evenly
spaced segments produce the minimum E{dmax} for the circular
field.

For the proof, see Appendix A.
For the linear field, however, evenly spaced activation

segment sequence is not optimal because of the asymme-
try introduced by the two boundary points. Nonetheless,
evenly spaced segment sequence has good performance for
large m and ρ since the boundary effect is negligible in this
scenario. We will use the evenly spaced segment sequence
pi = i/(m + 1), 1 ≤ i ≤ m, for the linear field in the sim-
ulations.

The carrier sensing protocol has high throughput be-
cause, if there are nodes within an activation segment, the
packet closest to the center will be successfully received with
probability one.

3.3. Aloha scheduling

The carrier sensing scheme requires additional hardware for
the carrier sensing functionality. In addition, the synchro-
nization and timing requirements are strict for the carrier
sensing mechanism. Next, we present a cost-efficient proto-
col for sensor sample collection.

Protocol. Select a sequence of m nonoverlapping length-ε
segments as the activation sequence. Activate one segment
in the activation sequence every time slot. Sensors within
the activated region transmit their packet independently with
probability P. The activation sequence is deterministic in the
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ε

0 p1 p2 p3 1

Figure 5: Aloha scheme on the linear field. A sequence of length-ε
segments is activated sequentially. The sensors within the activated
range transmit with probability P.

sense that it does not depend on the data collection results.
Figure 5 illustrates the Aloha scheme on the linear field.

In the Aloha protocol, the segment length ε, the trans-
mission probability P, and the center locations of the activa-
tion segments are optimization parameters.

Lemma 2. For both the linear and the circular fields, the opti-
mal transmission probability P is one and the optimal segment
length ε is strictly less than 1/ρ.

For the proof, see Appendix B.
It can be shown that the result of Lemma 2 also holds

in a more general setup where the transmission probability
within the activation region is a function of the distance from
the sensor to the center of the activation region. An intuitive
way to explain Lemma 2 is that, for the same throughput,
the smaller the activation interval length is, the more pre-
cise the outcome location can be. Therefore, the data collec-
tion outcomes for a smaller activation interval are closer to
evenly spaced center locations, producing a smaller E{dmax}.
Letting P = 1 gives the smallest activation interval length
for a given throughput. The result about ε can be explained
as follows. Shortening the activation length has two effects
on E{dmax}: one is that it gives a lower throughput if the
length is less than or equal to 1/ρ, which is a negative effect;
the other is that it produces a more precise outcome loca-
tion control, a positive effect. Although (P = 1, ε = 1/ρ)
gives the maximum throughput for Aloha, when ε is short-
ened a little, the throughput only decreases a little because
the derivative of the throughput with respect to ε is zero at
ε = 1/ρ. Thus the negative effect is small. The positive ef-
fect from the more precise location control favors an activa-
tion length strictly shorter than 1/ρ, meaning that the opti-
mal throughput is strictly less than 1/e. Nonetheless, the gain
by selecting a length shorter than 1/ρ is small for dense sensor
networks. We will use ε = 1/ρ in the simulations.

As shown in Lemma 1, for the circular field, evenly
spaced center locations of the activation segments are opti-
mal. As mentioned in the carrier sensing protocol, for the lin-
ear field, evenly spaced activation segments are not optimal.
Nonetheless, evenly spaced segments have good performance
for large m and ρ, and we will use evenly spaced activation
segments in the simulations for the linear field.

3.4. Adaptive Aloha scheduling

The carrier sensing and Aloha scheduling protocols pre-
sented previously are deterministic scheduling since the cen-
ter location of each activation segment does not change ac-
cording to previous data collection outcomes. In determinis-
tic scheduling, the activation location information may be
preset to sensors before their deployment, eliminating the

dmax

ε

0 1

Figure 6: Adaptive Aloha scheduling example on the linear field.
The mobile access point activates one interval of length ε in one
time slot. The sensors within the activated range transmit with
probability P = 1. The solid diamonds indicate the received packets.
The algorithm tries to break the maximum distance by placing the
next polling interval at the center of the two received data sample
locations whose distance is dmax.

need to broadcast the location information from the mo-
bile access point and saving some hardware cost. Another
approach is to let the mobile access point decide the next ac-
tivation location on the fly, based on previous data collection
results. Allowing the activation sequence to adapt to previous
data collection results may give better performance. Next we
present an adaptive scheduling for Aloha.

Protocol. The basic activation strategy is similar to the
Aloha protocol. The mobile access point activates an inter-
val of length ε = 1/ρ in each time slot; the sensors within the
range transmit with probability P = 1. The difference is that,
in the adaptive version, the locations of the activation inter-
vals depend on the previous data collection results, which is
described as follows.

After obtaining a new packet, the access point checks all
the previous received data and finds the two adjacent sample
locations that have the maximum distance. The access point
then locates the next polling interval in the middle of these
two samples locations (see Figure 6 for the linear field case).
If an empty slot occurs, the access point then activates the
length-ε interval adjacent (either left or right) to the pre-
vious empty intervals until a success or collision occurs. If
a collision occurs, the access point resolves the collision by
splitting the collision interval until a packet is successfully
received (similar to the splitting algorithms [12]). If a packet
is received successfully, the access point recalculates and tries
to break the new dmax of the received samples within the re-
maining time slots. The algorithm keeps running until it uses
up the m time slots.

The above protocol works in an environment where the
mobile access point can communicate to the whole field from
one location, for example, high-altitude airplanes or satel-
lites. There are other types of adaptive scheduling schemes.
For example, we can also adapt the activation sequence on a
carrier sensing scheduling setup. However, as will be shown
in the simulations section, the gain of adapting activation se-
quence on a carrier sensing setup is small because the per-
formance of the carrier sensing scheduling is already close to
that of the optimal centralized scheduling.

4. SIMULATIONS

In this section, we compare the performance of the MAC
protocols proposed in the last section through simulations.
Due to the space limit, only figures for the linear field are
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Figure 7: E{dmax} versus packet collection size m for sensor density
ρ = 40.

shown. For the circular field, similar results are observed.
Sensors are randomly deployed according to the Poisson dis-
tribution with density ρ. For convenience, we name these
MAC protocols as follows.

(i) π1 is the optimal centralized scheduler.
(ii) π2 is the decentralized scheduling through carrier sens-

ing with R = 1.
(iii) π3 is the Aloha scheduling.
(iv) π4 is the adaptive Aloha scheduling.

We use the dmax found using π2 as the initial maximum dis-
tance for the iteration algorithm in π1. The search stops after
1-2 iterations typically. In the comparison, we use E{dmax} as
the performance metric.

Figures 7 and 8 plot E{dmax} versus m for sensor den-
sity ρ = 40 and 200, respectively. The expectation of dmax in
the figures is averaged over 100 000 realizations of the Pois-
son sensor field. As expected, as m increases, the number of
data samples received at the mobile access point increases,
and thus E{dmax} decreases. We see that there is little perfor-
mance loss by using π2. Notice that, when m is larger than ρ
(Figure 7), under π1 and π2, data from all sensors can be re-
trieved with a high probability. Therefore, the performance
gap for the two protocols diminishes. The performance un-
der π3 is worse than other schemes even when m is larger
than ρ. This is because, under π3, some scheduled intervals
do not have data packets received successfully due to either
collision or void of sensors. Unlike π3, the location of each ac-
tivation interval of π4 is adapted to the previous data collec-
tion outcomes. When m is large, it has enough slots to search
for intervals within which sensors exist and to resolve col-
lision, therefore avoiding the problem in π3. From Figure 7,
we see that, when m is large, the performance under π4 is as
good as the optimal case.
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Figure 8: E{dmax} versus packet collection size m for sensor density
ρ = 200.

Figures 9 and 10 plot E{dmax} versus ρ for packet col-
lection size m = 10 and 50, respectively. As expected, as ρ
increases, the density of the sensor field increases, and the
received data locations are closer to the desired locations, re-
sulting in a sample pattern closer to evenly spaced. There-
fore, E{dmax} converges to the minimum value as ρ increases.
Again, we see that the performance under π2 closely follows
the optimal one. As ρ increases, we see the performance gap
between the two Aloha schemes and π1 increases. The per-
formance loss under π3 is mainly due to its lower throughput
than that of π1 and π2, which limits the number of received
samples. We observe that there is a significant performance
improvement of π4 over π3 by adaptively optimizing the re-
trieval pattern based on the retrieval history.

5. CONCLUSION

To reconstruct the signal field using sensor networks, the lo-
cations of the retrieved data affect the signal field reconstruc-
tion performance. In this paper, we design MAC protocols
to obtain the desired data retrieval pattern. We propose a
new MAC design criterion that takes into account the appli-
cation characteristics of the signal field reconstruction. Tak-
ing both performance and implementation complexity into
consideration, besides the optimal centralized scheduler, we
propose three decentralized MAC protocols. We have shown
that, for the carrier sensing and Aloha scheduling schemes,
evenly spaced activation intervals are optimal for the circular
field. For the Aloha scheduling in both the linear field and
the circular field, the optimal transmission probability is one
and the optimal activation interval length is strictly smaller
than 1/ρ, resulting in a throughput strictly less than 1/e.
Our simulations show that using the decentralized schedul-
ing through carrier sensing results in little performance loss
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Figure 9: E{dmax} versus sensor density ρ for packet collection size
m = 10.

compared to the performance of the optimal scheduler. For
the two Aloha schemes, by exploring the history of retrieved
data locations, adaptive Aloha provides a significant perfor-
mance gain over the simple Aloha scheme.

APPENDICES

A. PROOF OF LEMMA 1

We first define four operations on integers or real numbers.
Let i and j be two integers. Define i⊕ j to be equal to i+ j+km,
where k is the integer such that 1 ≤ i + j + km ≤ m. Let
i 	 j � i ⊕ (− j). Let x1 and x2 be two real numbers. Define
x1⊕x2 to be equal to x1+x2+k, where k is the integer such that
0 ≤ x1 +x2 +k < 1. Let x1	x2 � x1⊕(−x2). For convenience,
extend the operations

⊕
and	 on real numbers to include

the symbol ∅. Let x1 and x2 be real numbers or the symbol
∅. Define x1⊕x2 and x1	x2 to be∅ if either x1 or x2 is equal
to∅.

It can be verified that the inverse function of (12) is given
by

qi
(
pi, bi

) = pi ⊕ bi. (A.1)

The average dmax when p is the center location vector is given
by

Eq
{
dmax(q); p

} = Eb
{
dmax(p⊕ b)

}
, (A.2)

where p⊕b is the vector with pi⊕bi as the ith entry. Without
loss of generality, assume that p is an ordered vector with
p1 being the smallest. Let p̃ be an equally spaced location
vector on the circular field. Without loss of generality, let
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Figure 10: E{dmax} versus sensor density ρ for packet collection size
m = 50.

p̃i = (i− 1)/m, 1 ≤ i ≤ m. The proof is concluded if we show
that, for all p,

Eb
{
dmax(p⊕ b)

} ≥ Eb
{
dmax(p̃⊕ b)

}
. (A.3)

Let b(k) be the kth rotated vector of b, that is, b(k)
i = bi⊕k,

for 0 ≤ k ≤ m−1 and 1 ≤ i ≤ m. Since bi’s are i.i.d., we have,
for 0 ≤ k ≤ m− 1,

Eb
{
dmax(p⊕ b)

} = Eb
{
dmax

(
p⊕ b(k))}. (A.4)

Therefore, the left-hand side of (A.3) can be expressed as

Eb

{
1
m

m−1∑
k=0

dmax
(

p⊕ b(k))}. (A.5)

Hence, it suffices to show that for any b and p,

1
m

m−1∑
k=0

dmax
(

p⊕ b(k)) ≥ dmax(p̃⊕ b). (A.6)

For a given b with one or no non-∅ element, by defini-
tion, dmax is equal to 1 or 2, respectively, for both p and p̃.
Therefore, (A.6) holds.

Let L(i, j) be the set of indices between i and j counter-
clockwise, 1 ≤ i, j ≤ m and i 
= j, that is, L(i, j) = {l : i <
l < j} if i < j, or {l : i < l ≤ m, or 1 ≤ l < j} if i > j. For a
given b with at least two non-∅ entries, search dmax among
the output locations p̃⊕ b on the circular field. Suppose that
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dmax occurs from the ith point to the jth point counterclock-
wise, that is, bi, bj 
= ∅, bl = ∅ for l ∈ L(i, j), and

dmax(p̃⊕ b) = ( p̃ j ⊕ bj
)	 ( p̃i ⊕ bi

)
= ( p̃ j 	 p̃i

)
+
(
bj − bi

)
(A.7)

=
(
j 	 i

m

)
+
(
bj − bi

)
,

where (A.7) holds because p̃ j 	 p̃i > L > bj − bi. Since bl =
∅ for l ∈ L(i, j), in the outcome locations p ⊕ b(k), there

are no valid samples from pi	k ⊕ b(k)
i	k counterclockwise to

pj	k ⊕ b(k)
j	k. Hence dmax(p ⊕ b(k)) is at least as large as the

distance from pi	k ⊕ b(k)
i	k counterclockwise to pj	k ⊕ b(k)

j	k.
Thus,

m−1∑
k=0

dmax
(

p⊕ b(k))

≥
m−1∑
k=0

((
pj	k ⊕ b(k)

j	k
)
	
(
pi	k ⊕ b(k)

i	k
))

=
m−1∑
k=0

((
pj	k 	 pi	k

)
+
(
bj − bi

))
(A.8)

=
(m−1∑

k=0

j	i∑
l=1

(
pi	k⊕l 	 pi	k⊕l	1

))
+ m

(
bj − bi

)

=
( j	i∑

l=1

m−1∑
k=0

(
pi	k⊕l 	 pi	k⊕l	1

))
+ m

(
bj − bi

)

=
j	i∑
l=1

1 + m(bj − bi) (A.9)

= ( j 	 i) + m
(
bj − bi

)
= mdmax(p̃⊕ b),

where (A.8) holds because pj	k 	 pi	k > L > bj − bi, and

(A.9) holds because
∑m−1

k=0 (pi	k⊕l 	 pi	k⊕l	1) is equal to the
circumference of the circular field, which is one.

B. PROOF OF LEMMA 2

We prove Lemma 2 for the linear field. The proof for the cir-
cular field is basically the same except that extra care should
be taken for coordinate transitions around location x = 0 or
x = 1. Consider a more general scheme which does not re-
quire that each activation segment has the same length and
transmission probability. Let pi, Pi, and εi denote the center,
the transmission probability, and the length of the ith activa-
tion segment, respectively, 1 ≤ i ≤ m. Let qi be the outcome
location of the ith channel competition, or qi = ∅ if no sam-
ple packet is received successfully in the ith time slot, due to
either collision or no transmission. The throughput of the ith
time slot is

si � Pr
{
qi 
= ∅

} = εiPiρe−εiPiρ. (B.10)

Given a packet is received successfully in the ith time slot, the
location qi is uniformly distributed,

p
(
qi|qi 
= ∅

) = 1
εi

1pi−εi/2≤qi≤pi+εi/2, (B.11)

where 1A is the indicator function. Let q = [q1, . . . , qm]T .
Since the activation segments do not overlap, qi’s are inde-
pendent. Let q/i denote the length-(m−1) vector constructed
by taking out qi from q. The expected dmax(q) is given by

Eq
{
dmax(q)

}
= Eq/iEqi

{
dmax

(
q/i, qi

)|q/i
}

= 1
2
Eq/i

{
2
(
1− si

)
dmax(q/i, qi = ∅)

+
si
εi

∫ εi/2
−εi/2

(
dmax

(
q/i, qi = pi + a

)
+ dmax

(
q/i, qi = pi − a

))
da
}
.

(B.12)

Suppose that (ε̃i, P̃i) give the same throughput as (εi,Pi),
that is, ε̃iP̃iρe−ε̃i P̃iρ = si. And suppose that ε̃i < εi. We will
show that if (εi,Pi) are replaced by (ε̃i, P̃i) while other pa-
rameters remain the same, then E{dmax(q)} decreases. Since
the throughput si remains the same, the first term of (B.12)
remains the same. If we can show that, for all q/i and for
−εi/2 ≤ a ≤ εi/2,

dmax
(

q/i, qi = pi + a
)

+ dmax
(

q/i, qi = pi − a
)

≥ dmax

(
q/i, qi = pi +

ε̃i
εi
a
)

+ dmax

(
q/i, qi = pi − ε̃iεi a

)
,

(B.13)

then we have shown that the second term of (B.12) decreases.
Therefore, we have proved that, with the same throughput,
the shorter the activation length, the better the performance.
Hence, the optimal Pi is 1 and the optimal εi is less than or
equal to 1/ρ for all i because these conditions in Aloha give
the shortest activation length for a given throughput.

Next we prove (B.13). Let length-m vectors q′, q̃, and q̃′

be functions of q given qi 
= ∅: q′j = q̃ j = q̃′j = qj for j 
= i,
q′i = 2pi−qi, q̃i = pi+ε̃i/εi(qi−pi), and q̃′i = pi−ε̃i/εi(qi−pi)
(Figure 11). Equivalently, we are proving that

dmax(q) + dmax(q′) ≥ dmax(q̃) + dmax(q̃′) (B.14)

for all q with qi 
= ∅, or equivalently, for all q̃ with q̃i 
= ∅.
We first define three terms for the ease of discussion. dmax(q)
is said to be associated with qi if qi is one of the endpoints
that produces dmax given q as the outcome location vector.
dmax(q) is said to be associated with qi to the inside if dmax(q)
is associated with qi and the center pi is between the two end-
points of dmax. dmax(q) is said to be associated with qi to the
outside if dmax(q) is associated with qi and the center pi is
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dmax(q̃), dmax(q̃′)

q̃i−1 q̃i pi
q̃ ′i q̃i+1 q̃i+2

qi q′i

Figure 11: Case 1.

not between the two endpoints of dmax. We prove (B.14) by
verifying all possible cases.

Case 1. Neither dmax(q̃) is associated with q̃i nor dmax(q̃′)
is associated with q̃′i . Therefore, dmax(q̃) and dmax(q̃′) are
associated with two points other than q̃i or q̃′i (Figure 11).
Since these two points are also adjacent points in q and q′,
dmax(q) and dmax(q′) are at least as large as the distance of
the two points. Therefore, dmax(q) + dmax(q′) ≥ dmax(q̃) +
dmax(q̃′).

Case 2. Either dmax(q̃) is associated with q̃i to the outside or
dmax(q̃′) is associated with q̃′i to the outside. Without loss
of generality, assume that dmax(q̃′) is associated with q̃′i to
the outside (Figure 12). Suppose that the other endpoint for
dmax(q̃′) is q̃k, k 
= i. By assumption, q̃k and q̃′i are on the
same side of pi. Thus, it can be verified that q̃i and q̃k are the
two endpoints of dmax(q̃). Therefore,

dmax(q̃) + dmax(q̃′) = 2
∣∣pi − q̃k

∣∣. (B.15)

Since qi and q̃k are two adjacent points in q, we have
dmax(q) ≥ |qi − q̃k|. Similarly, dmax(q′) ≥ |q′i − q̃k|. Since

qi and q′i are on the same side of q̃k, we have

dmax(q) + dmax(q′) ≥ ∣∣qi − q̃k
∣∣ +

∣∣q′i − q̃k
∣∣

= 2
∣∣pi − q̃k

∣∣
= dmax(q̃) + dmax(q̃′).

(B.16)

Case 3. Either dmax(q̃) is associated with q̃i to the inside
or dmax(q̃′) is associated with q̃′i to the inside, but neither
dmax(q̃) is associated with q̃i to the outside nor dmax(q̃′) is
associated with q̃′i to the outside. Without loss of general-
ity, assume that dmax(q̃) is associated with q̃i to the inside
(Figure 13). Since qi is further away from the center pi than
q̃i, we have dmax(q) > dmax(q̃). There are two subcases.

Subcase 1. dmax(q̃′) is associated with q̃′i to the inside. Since
q′i is further away from the center pi than q̃′i , we have
dmax(q′) > dmax(q̃′). Therefore,

dmax(q) + dmax(q′) > dmax(q̃) + dmax(q̃′). (B.17)

Subcase 2. dmax(q̃′) is not associated with q̃′i . With the same
argument as in Case 1, we have dmax(q′) ≥ dmax(q̃′). There-
fore, (B.17) still holds.

The above three cases conclude the proof of (B.14). Thus
we have shown that the optimal Pi is 1 and the optimal εi
is less than or equal to 1/ρ for all i. Next we prove that the
optimal εi is strictly less than 1/ρ. Since E{dmax(q)} is a con-
tinuous function of εi, it suffices to prove that, when P = 1,

∂E
{
dmax(q)

}
∂εi

∣∣∣∣
εi=1/ρ

> 0. (B.18)

From (B.12),

∂E
{
dmax(q)

}
∂εi

= ρe−εiρEq/i

{(
εiρ− 1

)
dmax

(
q/i, qi = ∅

)− ρ

2

∫ εi/2
−εi/2

(
dmax

(
q/i, qi = pi + a

)
+ dmax

(
q/i, qi = pi − a

))
da

+
1
2

(
dmax

(
q/i, qi = pi +

εi
2

)
+ dmax

(
q/i, qi = pi − εi2

))}
. (B.19)

The first term of (B.19) is equal to zero given that εi =
1/ρ. From (B.13),

dmax

(
q/i, qi = pi +

εi
2

)
+ dmax

(
q/i, qi = pi − εi2

)
≥ dmax

(
q/i, qi = pi + a

)
+ dmax

(
q/i, qi = pi − a

)
(B.20)

for−εi/2 < a < εi/2. Since (B.17) in Case 3 in the proof of the

first part occurs with nonzero probability, strict inequality in
(B.20) occurs with nonzero probability. Therefore, the sum
of the second and the third terms of (B.19) is strictly larger
than zero given that εi = 1/ρ, thus proving (B.18).
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