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Abstract— We consider the communication from a cooperative
sensor network to a mobile access point. We assume that sensors
are informed with a global message and some nodes are misin-
formed with random messages. The mobile access point employs a
polling-based multiple access control to collect information from
the sensor network. We derive the maximum achievable rate for
the information retrieval process when d sensors are activated
at a time. For the Gaussian multiple access channel under the
total network power constraint, we derive an achievable rate
expression and show that the maximum achievable rate for the
Gaussian multiple access channel is O(log

2
d), obeying the same

scaling law as the capacity of an Gaussian multiple-input-single-
output channel.

I. INTRODUCTION

We consider information retrieval in a cooperative SEnsor
Network with Mobile Access (SENMA) [1]. As illustrated in
Fig. 1, SENMA contains two types of nodes: a large number
of low power geographically distributed sensors, and a mobile
access point capable of polling sensors individually. By coop-
erative SENMA (C-SENMA) we mean that, in communicating
to the mobile access point, sensors may reach an agreement
on the message to transmit, and appropriate codings can
be implemented across sensors. This makes the information
retrieval robust against failure of individual sensors.

If no sensor is misinformed, and if the mobile access point
polls one sensor at a time and the channel between each sensor
and the mobile access point is a discrete memoryless channel
q(y|x), then the maximum achievable rate for the information
retrieval is given by

C0 = max
p(x)

I(X;Y ).

In such a setting, there is no difference between retrieving
information from a single sensor or multiple sensors since all
sensors have the same message.

For large scale sensor networks, however, reaching complete
agreement among all sensors is very difficult, if not impossible.
For example, a software agent responsible for distributing the
message may not have reached all sensors, or sensors make
errors due to unreliable conference links. In practice, there
is always a possibility that some sensors do not have the
correct message for transmission. We refer to such sensors
as misinformed.

The achievable rate of cooperative sensor networks with
misinformed sensors is no longer obvious. The error of misin-
formed sensors cannot be modeled as part of the transmission
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Fig. 1. SEnsor Network with Mobile Access.

channel. The reason is that the mobile access point may be
able to detect misinformed sensors, and therefore not to poll
these nodes again.

In [2], we investigate a special pulling strategy and char-
acterized the maximum achievable rate. We consider in this
paper a general polling strategy that allows the mobile access
point to determine which sensors to poll based on previously
received transmissions and polling history. It has been proven
in [2] that when we activate one sensor at a time, the maximum
achievable rate is given by

C1 = (1 − β)max
p(x)

I(X;Y ) (1)

where β is the probability that the sensor is misinformed.
(When the sensor is misinformed, it chooses the message
randomly with equal probability.) Notice that if the mobile
access point always poll the same sensor, the achievable rate
would have been zero. On the other hand, if the mobile access
point always polls a new sensor, the achievable rate is lower
than the rate in (1).

In this paper, we extend the results to activating d nodes at
a time. The maximum achievable rate is given in Theorem 2.
We then consider an additive Gaussian multiple access channel
with a total power constraint and show that the maximum
achievable rate is O(log2 d), obeying the same rule as the
case when there is no misinformed sensors.

For notation compactness, denote an entry with two sub-
indices i and j by (·)ij . The meaning of ij, a double-index or
a scalar multiplication, can be determined by its context.
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(a) Step I: Orientation at t = 0.
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(b) Step II: Polling at t = 1, . . . , n. Here i, j ∈ kDt.
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(c) Step III: Transmission and Reception at t =

1, . . . , n.
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(d) Step IV: Decoding at t = n.

Fig. 2. Communication steps.

II. MODEL

The communication of the global message from the network
to the mobile access point is divided into four steps as shown
in Fig. 2: (a) orientation, (b) polling, (c) transmission and re-
ception, and (d) decoding. In the first step, nodes are informed
with the globe message W ∈ {1, . . . ,M} that is uniformly
distributed. Due to the size of the network, a node may be
informed incorrectly and end up with a different message. We
assume that each node receives the globe message correctly
with some probability, and the reception is independent of
other nodes. More specifically, the reception of node i is
controlled by a binary random variable Ui, independent of W
and identically independently distributed (i.i.d.) across node
index i with distribution

p(ui) =

{
β if ui = 0

1 − β if ui = 1

where β ∈ [0, 1] is a constant. When Ui = 1, the received
message at node i, W̃i, is equal to the globel message W .
When Ui = 0, W̃i is uniformly distributed from 1 to M . Thus

p(w̃i

∣∣ w, ui) =

{
δ(w̃i, w) if ui = 1
1
M 11≤w̃i≤M if ui = 0

where δ(a, b) is equal to 1 if a = b, 0 otherwise, and
the indicating function 1A equal to 1 if event A is true,
0 otherwise. The constant β controls the reception of the

globe message by individual nodes and is referred to as the
orientation error probability of the network.

The mobile access point comes to retrieve information from
the field after the information orientation has been accom-
plished. The information retrieval process consists of Step 2
Polling and Step 3 Transmission and Reception. We assume
the mobile access point has the ability to poll individual
sensors and a polling-based multiple access is employed: at
each time slot, the mobile access point polls d nodes, each
transmitting one symbol to the channel. Let D , {1, . . . , d}
and ZD denote {Z1, . . . , Zd} where Z1, . . . , Zd are generic
symbols. We assume each node has its own code book. At
time t, the access point polls nodes KDt = {K1t, . . . ,Kdt}
and symbols BDt = {B1t, . . . , Bdt}. More specifically, for
j ∈ D, node Kjt transmits the Bjt-th symbol of the codeword
corresponding to the W̃Kjt

-th message in node Kjt’s code
book. Since the mobile access point is usually equipped with
high-gain antennas and high-power transmitter, we assume the
polling channel is error free.

We assume that the uplink multiple access channels (MACs)
from any d nodes to the mobile access point are identical and
modeled by a discrete memoryless MAC {X ,Y, q(y

∣∣ xD)},
where X and Y are the input and output alphabets respectively,
and q(y

∣∣ xD) is the transition probability of the channel. We
assume the MAC is symmetrical with respect to input permu-
tations, i.e., q(y

∣∣ xπ1
, . . . , xπd

) is identical for all permutations
πD in the domain D.
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For j ∈ D and at time t, node Kjt, after receiving the
polling signal, transmits the selected symbol to the uplink
channel. Denote Xjt the transmission from node Kjt and Yt

the output of the MAC at time t. After receiving Yt, the mobile
access point moves to the next time slot t + 1 and starts the
polling step again. It may poll nodes that have or have not
been polled before. Step 2 and Step 3 alternate until t reaches
n, the number of time slots the mobile access point spends to
retrieve information from the field.

After polling some nodes, the access point may have gained
some knowledge about whether the nodes polled have received
the globe message correctly in the orientation step. If it
believes that one node is misinformed, it is then beneficial
not to poll that node again. We therefore allow the polling
signal KDt, BDt at time t to depend on the previous polling
signals Kt−1

D , Bt−1
D and the previous received channel outputs

Y t−1.
In the last step, the access point decodes the globe mes-

sage based on the observation of Y n and the polling his-
tory Kn

D, Bn
D. The decoded message is denoted by Ŵ ∈

{1, . . . ,M}. Let Wjt , W̃Kjt
be the message at the jt-th

polled node. The communication process described above is
summarized in Fig. 3.

We assume that the sensor network is large in the sense that
there are infinite number of nodes, and there is no limit on
how many times a node can be polled.

III. MAXIMUM ACHIEVABLE RATE WITH POLLING-BASED

MULTIPLE ACCESS: DEFINITIONS AND RESULTS

Denote (β,X ,Y, q(y
∣∣ xD)) the cooperative SENMA (C-

SENMA) with infinite nodes, orientation error probability β,
and communication MAC (X ,Y, q(y

∣∣ xD)). Let N be the set
of positive numbers and W , {1, 2, . . . ,M}. A code book
with M messages, denoted by C or c(k, b, w), is a mapping
from N ×N ×W to X , where the first N (or k) represents
the node index, the second N (or b) the symbol index, and
W the message index. That is, c(k, b, w) represents the b-th
symbol of the w-th codeword at the k-th node.

A polling policy, or policy in short, is a set of con-
ditional distributions P = {qt(kDt, bDt

∣∣ kt−1
D , bt−1

D , yt−1) :
t ≥ 1}, where kjt, bjt ≥ 1 and yt ∈ Y for all t ≥ 1
and all j ∈ D. After polling (kt−1

D , bt−1
D ) and receiving

yt−1, the mobile access point generates the polling signal
(KDt, BDt) randomly according to the conditional distribution
qt(kDt, bDt

∣∣ kt−1
D , bt−1

D , yt−1). Due to the symmetry of the
sensor network, without loss of generality, we assume that
qt(kjt

∣∣ kt−1
D , bt−1

D , yt−1) = 0 if kjt > dt for j ∈ D, i.e., we
only consider sensors 1 to dt at time t.

A decoder with n channel uses and M messages, denoted
by D or d(kn

D, bn
D, yn), is a mapping from N dn ×N dn ×Yn

to W . The mobile access point decodes the globe message by
assigning ŵ = d(kn

D, bn
D, yn), where (kn

D, bn
D) is the polling

history and yn is the received channel outputs.
For a given triple (C, P, D), the rate of communication

is defined as R , log(M)/n, where M is the number of
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Fig. 3. Channel model.

messages of the code book and n is the number of channel
uses of the decoder.

For a given C-SENMA, the error probability of a commu-
nication triple (C, P, D) is defined as Pe , P(Ŵ 6= W ),
where W ∈ {1, · · · ,M} is uniformly distributed and Ŵ is
the decoded message with the communication triple.

For a C-SENMA, a rate R is achievable if there exists
a sequence of (C, P, D) triples with rate R such that the
corresponding error probabilities go to zero.

As a special case when d = 1, the maximum achievable
rate is given by the following theorem:

Theorem 1 ([2]): For d = 1, the maximum achievable rate
of a C-SENMA (β,X ,Y, q(y

∣∣ x)) with polling-based multiple
access is

C1 = (1 − β)max
p(x)

I(X;Y ),

where X ∈ X , Y ∈ Y , and p(y
∣∣ x) = q(y

∣∣ x).

The extension of Theorem 1 is summarized as follows:

Theorem 2: For a given d, consider random variables XD

with distribution p(xD). Denote pI(xI) the marginal distri-
bution of XI for I ⊂ D. The maximum achievable rate of
a C-SENMA (β,X ,Y, q(y

∣∣ xD)) with polling-based multiple
access is

Cd = max
p(xD)

∑

I⊂D

(1 − β)|I|βd−|I|I(X
(I)
I ;Y ),

where X
(I)
D = (X

(I)
1 , . . . , X

(I)
d ) are derived from XD with

distribution

p(I)(x
(I)
D ) = pI(x

(I)
I )

∏

j /∈I

pj(x
(I)
j ),

and p(y
∣∣ x

(I)
D ) = q(y

∣∣ x
(I)
D ).

The direct part of Theorem 2 is outlined in the appendix.
Due to the space limit, the converse part is omitted here.
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IV. GAUSSIAN MULTIPLE ACCESS CHANNELS WITH A

TOTAL POWER CONSTRAINT

Consider the following Gaussian multiple access channel

y = v +
∑

i

xi (2)

where xi ∈ C is the input from the i-th sensor, v ∈ C is
the additive white Gaussian noise with zero mean and unit
variance, and y ∈ C is the channel output. We impose a total
power constraint P on the network, i.e., the total transmitted
power from all sensors is less than or equal to P :

1

n

n∑

t=1

d∑

j=1

|xjt|
2 ≤ P

where xjt is the jt-th transmission. If there is no orientation
error, i.e., β = 0, we know from the multiple-input-single-
output (MISO) channel capacity that, with d sensor polled at
a time, the maximum achievable rate is C

(0)
d = log2(1+ dP ).

Therefore, when β = 0, the maximum achievable rate C
(0)
d =

O(log2 d) goes to infinity as we increase d, the number of
sensors polled at a time. In this section, we show that even
with β > 0, the maximum achievable rate of the channel (2)
is still O(log2 d).

Consider activating d sensors at a time. Let the input
random variables X1, . . . , Xd be identically Gaussian dis-
tributed NC(0, P/d) and let any two input random variables
Xi, Xj have correlation coefficient 1. For I ⊂ D, since the
derived random variables X

(I)
D\I , independent of each other, are

independent of X
(I)
I , X

(I)
D\I contribute (d−|I|)P/d power to

the additive noise. Therefore,

I(X
(I)
I ;Y ) = log2

(
1 +

|I|2P/d

1 + (d − |I|)P/d

)
.

From Theorem 2, the following rate is achievable,

Rd =

d∑

i=0

(1 − β)iβd−i

(
d

i

)
log2

(
1 +

i2P/d

1 + (d − i)P/d

)
.

The next proposition shows that Rd = O(log2 d). Since Rd ≤

Cd ≤ C
(0)
d = O(log2 d), we have Cd = O(log2 d).

Proposition 3: For β ∈ [0, 1) and P > 0,

lim
d→∞

(Rd − log2 d) = log2

( (1 − β)2P

1 + βP

)
.

Proof: Let S1, S2, . . . , be i.i.d. Bernoulli with mean 1−
β. Then Td =

∑d
i=1 Si is binomial distributed. Let

f(a, b) , log2

(
a +

b2P

1 + (1 − b)P

)
.

We have

Rd − log2 d =

d∑

i=0

(1 − β)iβd−i

(
d

i

)
f(1/d, i/d)

= E[f(1/d, Td/d)].
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Fig. 4. Achievable rate Rd versus d: P = 10 and β = 0.1, 0.3, 0.5.

Since f(a, b) is continues at (0, 1− β), for all ε > 0, there
exists a δ > 0 such that for all a ∈ [0, δ) , A and b ∈
(1− β − δ, 1− β + δ) , B, |f(a, b)− f(0, 1− β)| ≤ ε/3. For
the same ε and δ,

|E[f(1/d, Yd/d)] − f(0, 1 − β)|

≤ E[|f(1/d, Yd/d) − f(0, 1 − β)|]

≤ EYd/d∈B[|f(1/d, Yd/d) − f(0, 1 − β)|]

+ EYd/d/∈B[|f(1/d, Yd/d)|]

+ Pr(Yd/d /∈ B)f(0, 1 − β). (3)

For large d, 1/d ∈ A. Therefore, due to the continuity of f ,
the first term in (3) is upper bounded by ε/3. The third term,
by the weak law of large number, is upper bounded by ε/3
for large d. We bound the second term as follows. For d ≥ 1
and i = 0, . . . , d, we have

f(1/d, i/d) ≤ log2(1/d + P ),

f(1/d, i/d) ≥ log2(1/d).

For large d such that 1/d + P ≤ d, we have

|f(1/d, i/d)| ≤ log2 d.

Hence, by Chebyshev inequality,

EYd/d/∈B[|f(1/d, Yd/d)|] ≤ Pr(Yd/d /∈ B) log2 d

≤
σ2

s

δ2d
log2 d

≤ ε/3 for large d.

Therefore, |E[f(1/d, Yd/d)] − f(0, 1 − β)| ≤ ε for large d.
Since ε > 0 is arbitrary, limd→∞ E[f(1/d, Yd/d)] = f(0, 1−
β), proving the proposition.

Fig. 4 shows the achievable rate Rd and the approximation
function log2 d + f(0, 1− β) versus d when P = 10 and β =
0.1, 0.3, 0.5. As shown in Fig. 4, Rd and the approximation
function converge as d increases. As expected, the achievable
rate is higher for a network with a smaller orientation error
probability.
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V. SUMMARY

We have presented the maximum achievable rate for co-
operative sensor networks with misinformed sensors when
d sensors are activated at a time. We have considered an
additive Gaussian multiple access channel with a network
power constraint and shown that the maximum achievable rate
is O(log2 d).

APPENDIX

SKETCH OF THE DIRECT PART

The communication of the C-SENMA involves the design
of the (C, P, D) triple. We first derive an achievable rate
based on a repetitive polling policy, the N -polling policy, and
then optimize the achievable rate to proof the achievability of
Theorem 2.

The N -polling policy is a deterministic policy that groups
every N time slots into a time frame (Fig. 5) and polls in a time
frame d nodes that have never been polled before, regardless
of the received channel outputs. More specifically, we active
nodes (i−1)d+1, . . . , id in the i-th time frame. And for node
(i−1)d+j, j = 1, . . . , d, we poll the ((t−1)d+j)-th symbol
at time t = 1, . . . , n. Mathematically, in the N -polling policy,

qt(kDt, bDt

∣∣ kt−1
D , bt−1

D , yt−1)

=





1
if kjt = b(t − 1)/Ncd + j and bjt = (t − 1)d + j

for all j = 1, . . . , d

0 otherwise

where bac is the largest integer not greater than a.

Lemma 4: For a given d, consider random variables SD ∈
X d with distribution p(sD). Denote pI(sI) the marginal
distribution of SI for I ⊂ D. Let Ī , D \ I. For a given
C-SENMA (β,X ,Y, q(y

∣∣ xD)), with the 1-polling policy, the
rate

Rd1 , I(SD;Y )

is achievable, where

p(y
∣∣ sD) =

∑

I⊂D

(1 − β)|I|β|Ī|
∑

s′
Ī
∈X |Ī|

q(y
∣∣ sI , s′Ī)

∏

j∈Ī

pj(s
′
j).

Proof: Code book Generation: Generate a code book
with M = 2nR messages at random according to the dis-
tribution p(sD). Specifically, for 1 ≤ t ≤ n, let sDt(w) =
(s1t(w), . . . , sdt(w)) be a mapping from W to X d. For 1 ≤
t ≤ n, 1 ≤ w ≤ M , assign sDt(w) a value independently
generated according to the distribution p(sD). After the ran-
dom assignment of sDt(w), let every node have the same code
book, i.e., let c(k, (t−1)d+j, w) = sjt(w) for all 1 ≤ k ≤ nd,
1 ≤ t ≤ n, 1 ≤ j ≤ d, and 1 ≤ w ≤ M .

Decoder: Typical set decoding is employed. Define the
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typical set A
(n)
ε with respect to the distribution p(sD, y)

A(n)
ε , {(sn

D, yn) ∈ X dn × Yn :
∣∣∣− 1

n
log p(sn

D) − H(SD)
∣∣∣ ≤ ε,

∣∣∣− 1

n
log p(yn) − H(Y )

∣∣∣ ≤ ε,
∣∣∣− 1

n
log p(sn

D, yn) − H(SD, Y )
∣∣∣ ≤ ε},

where p(sn
D, yn) =

∏n
i=1 p(sDi, yi). Upon receiving channel

outputs yn, the mobile access point declares the message ŵ
as the received message if there is one and only one ŵ ∈ W
such that (sn

D(ŵ), yn) ∈ A
(n)
ε ; otherwise, the decoder declares

an error.
The error analysis is omitted here due to the space limit. It

can be shown that, if R < I(SD;Y ), the average probability
of error, average over all codewords and all code books,
converges to zero as n goes to infinity.

Corollary 5: For a given d, a distribution p(sD) on the
alphabet X d, and a C-SENMA (β,X ,Y, q(y

∣∣ xD)), with the
N -polling policy, the rate

RdN ,
1

N
I(SN

D ;Y N )

is achievable, where SN
D ∈ X dN , Y N ∈ YN , and

p(sN
D , yN ) =

( N∏

i=1

p(sDi)
)(∑

I⊂D

(1 − β)|I|β|Ī|

·
N∏

i=1

∑

s′
Ī
∈X |Ī|

q(yi

∣∣ sIi, s
′
Ī)

∏

j∈Ī

pj(s
′
j)

)
. (4)

Proof: Consider the N -th extension of the MAC,
(XN ,YN , q(yN

∣∣ xN
D )), where

q(yN
∣∣ xN

D ) =

N∏

i=1

q(yi

∣∣ xDi).
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Let p(sN
D ) =

∏N
i=1 p(sDi) be the input distribution to the N -th

extended C-SENMA (β,XN ,YN , q(yN
∣∣ xN

D )). By Lemma 4,
I(SN

D ;Y N ) is achievable for the N -th extended system with
1-polling, where

p(sN
D , yN ) =

( N∏

i=1

p(sDi)
)(∑

I⊂D

(1 − β)|I|β|Ī|

·
∑

s′N
Ī

∈XN|Ī|

N∏

i=1

q(yi

∣∣ sIi, s
′
Īi)

∏

j∈Ī

pj(s
′
ji)

)

=
( N∏

i=1

p(sDi)
)(∑

I⊂D

(1 − β)|I|β|Ī|

·
N∏

i=1

∑

s′
Ī
∈X |Ī|

q(yi

∣∣ sIi, s
′
Ī)

∏

j∈Ī

pj(s
′
j)

)
.

The operation of the original C-SENMA with the N -polling
policy is equivalent to that of the N -th extended C-SENMA
with the 1-polling policy. Thus 1

N I(SN
D ;Y N ) is achievable for

the original system with N -polling.
We are now ready to prove the achievability of Theorem 2

by showing the convergence of RdN as N goes to infinity.
Let SN

D has distribution
∏N

i=1 p(sDi). Introduce VD ∈ {0, 1}d,
i.i.d. Bernoulli random variables with mean 1− β. Let VD be
independent of SN

D . It can be shown that if we let

p(yN
∣∣ sN

D , vD) =

N∏

i=1

∑

s′
Ī
∈X |Ī|

q(yi

∣∣ sIi, s
′
Ī)

∏

j∈Ī

pj(s
′
j) (5)

where I = {i : vi = 1}, then the resulting marginal
distribution p(sN

D , yN ) is given by (4).

Therefore,

1

N
I(SN

D ;Y N ) =
1

N
I(SN

D ;Y N , VD) −
1

N
I(SN

D ;VD

∣∣ Y N )

≥
1

N
I(SN

D ;Y N
∣∣ VD) −

d

N
(6)

→
1

N
I(SN

D ;Y N
∣∣ VD) as N → ∞

where (6) is because H(VD) ≤ d. For all vD ∈ {0, 1}d, let
I = {i : vi = 1}. Let X

(I)
D , derived from p(sD), and Y be

defined as in Theorem 2. It can be shown from (5) that

1

N
I(SN

D ;Y N
∣∣ vD) = I(X

(I)
I ;Y ).

Hence,

lim
N→∞

RdN = lim
N→∞

1

N
I(SN

D ;Y N )

≥
∑

I⊂D

(1 − β)|I|βd−|I|I(X
(I)
I ;Y ).

Optimizing over p(sD) concludes the proof of the achievability
of Theorem 2.
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